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Supplementary Notes 37 

Supplementary Note 1 38 

Solar model. Supplementary Figure 13 illustrates the PV module's orientation in relation to the 39 

sun. Solar position is articulated through the zenith angle (𝜃𝑧) and solar azimuth angle (𝜃𝑠𝑎). 𝜃𝑧 40 

represents the angle between the sun's rays and the vertical direction, serving as the complement 41 

to solar altitude or elevation1–3. 𝜃𝑠𝑎 signifies the angle between the projection of sun rays and a 42 

line due north or south4, measured on the horizontal plane. Both 𝜃𝑧 and 𝜃𝑠𝑎 are dynamic 43 

parameters influenced by local coordinates (latitude and longitude) and time, which is calculated 44 

using the NREL’s algorithm implemented in Sandia’s photovoltaic modeling library (PVLib)5,6. 45 

In addition to PV array density and PV panel height, the panel tilt angle (𝜃𝑡) and panel azimuth 46 

angle (𝜃𝑝𝑎) are pivotal in describing the PV panel orientation. Specifically, 𝜃𝑡 represents the 47 

angle between the horizontal plane and the PV panel, while 𝜃𝑝𝑎 is the horizontal orientation in 48 

relation to the north direction, typically measured clockwise from true north. In the case of fixed 49 

PV panels, 𝜃𝑡 and 𝜃𝑝𝑎 are typically set at optimal values to maximize PV generation based on the 50 

solar farm's location. However, if PV panels are configured in a tracking scheme for enhanced 51 

PV generation, both 𝜃𝑡 and 𝜃𝑝𝑎 undergo dynamic variations.  52 

In this context, the angle of incidence (𝜃𝐴𝑂𝐼) between sunlight and the PV panel front 53 

surface can be expressed as: 54 

cos(𝜃𝐴𝑂𝐼) = 𝑺 ∙ 𝑵 ,  (S1) 

where 𝑺 is the unit vector of solar rays and 𝑵 is the unit vector normal of the PV panel surface. 55 

According to Supplementary Figure 13a, 𝑺 and 𝑵 can be calculated by: 56 

𝑺 = cos(𝜃𝑧) 𝒛̂ + sin(𝜃𝑧)sin(𝜃𝑠𝑎)𝒆̂ + sin(𝜃𝑧) cos(𝜃𝑠𝑎) 𝒏 ̂,  (S2) 
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𝑵 = cos(𝜃𝑡)𝒛̂ + sin(𝜃𝑡)sin(𝜃𝑝𝑎)𝒆̂ + sin(𝜃𝑡)cos(𝜃𝑝𝑎)𝒏̂ ,  (S3) 

where 𝒛̂, 𝒆̂ and 𝒏 ̂ represent unit vectors pointing vertically, eastward, and northward, 57 

respectively. Hence, 𝜃𝐴𝑂𝐼 can be derived as: 58 

cos(𝜃𝐴𝑂𝐼) = cos(𝜃𝑧)cos(𝜃𝑡) + sin(𝜃𝑧)sin(𝜃𝑡)cos(𝜃𝑝𝑎 − 𝜃𝑠𝑎) .  (S4) 

Typically, the potential direct solar irradiance reaching the PV panel (𝐼𝑃𝑉,𝑑𝑖𝑟
𝑝𝑜𝑡

), accounting for the 59 

largest portion of PV generation, can be calculated by: 60 

𝐼𝑃𝑉,𝑑𝑖𝑟
𝑝𝑜𝑡

= 𝐼𝐷𝑁𝐼 ∙ cos(𝜃𝐴𝑂𝐼) ,  (S5) 

where 𝐼𝐷𝑁𝐼  is the direct normal solar irradiance. Hence, we can achieve the maximum 𝐼𝑃𝑉,𝑑𝑖𝑟
𝑝𝑜𝑡

 by 61 

differentiating 𝐼𝑃𝑉,𝑑𝑖𝑟
𝑝𝑜𝑡

 with respect to the tilt angle and set it equal to zero: 62 

𝜕𝐼𝑃𝑉,𝑑𝑖𝑟
𝑝𝑜𝑡

𝜕𝜃𝐴𝑂𝐼
= 0 .  

(S6) 

Furthermore, we can obtain the critical panel tilt angle, also considered as the dynamic tracking 63 

angle (𝜃𝑡,𝑡𝑟𝑎) for the classical single-axis tracking scheme7: 64 

𝜃𝑡,𝑡𝑟𝑎 = tan
−1[tan(𝜃𝑧)cos(𝜃𝑝𝑎 − 𝜃𝑠𝑎)] .  (S7) 

Based on equations (S4) - (S7), the minimum 𝜃𝐴𝑂𝐼,𝑚𝑖𝑛 and the maximum 𝐼𝑃𝑉,𝑑𝑖𝑟,𝑚𝑎𝑥
𝑝𝑜𝑡

 can be 65 

derived as: 66 

𝜃𝐴𝑂𝐼,𝑚𝑖𝑛 = cos
−1[cos(𝜃𝑧)cos(𝜃𝑡,𝑡𝑟𝑎) + sin(𝜃𝑧)sin(𝜃𝑡,𝑡𝑟𝑎)cos(𝜃𝑝𝑎 − 𝜃𝑠𝑎)] , (S8) 

𝐼𝑃𝑉,𝑑𝑖𝑟,𝑚𝑎𝑥
𝑝𝑜𝑡

= 𝐼𝐷𝑁𝐼 ∙ cos(𝜃𝐴𝑂𝐼,𝑚𝑖𝑛) . (S9) 

In addition, leveraging equations (S8) and (S9), along with the solar position5,6 and PV panel 67 

specifications (Supplementary Note 1 and Supplementary Table 1), enables us to obtain 68 

analytical solutions for solar irradiance distribution on and under the PV panels.  69 

For the collection of solar irradiance on PV panels, we make the assumption that PV 70 

panels have sufficient length to neglect edge effects on PV generation8,9. Typically, PV 71 
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generation comprises three fundamental components: direct (𝐼𝑃𝑉,𝑑𝑖𝑟), diffused (𝐼𝑃𝑉,𝑑𝑖𝑓) and 72 

albedo (𝐼𝑃𝑉,𝑎𝑙𝑏) solar irradiance collections (Supplementary Figure 11b-e).  73 

The direct solar irradiance collection (𝐼𝑃𝑉,𝑑𝑖𝑟 , Supplementary Figure 13b) can be 74 

calculated by: 75 

𝐼𝑃𝑉,𝑑𝑖𝑟(𝑙) = {
𝐼𝐷𝑁𝐼 ∙ cos(𝜃𝐴𝑂𝐼) ∙ (1 − 𝑅(𝜃𝐴𝑂𝐼)) ∙ 𝜂𝑑𝑖𝑟 , (𝑙 > ℎ𝑠)

0,   (𝑙 ≤ ℎ𝑠)
,   

(S10) 

where 𝑅(𝜃𝐴𝑂𝐼) is the angle-dependent reflectivity of the panel9, and 𝜂𝑑𝑖𝑟 is the PV module 76 

efficiency for direct irradiance9–11. The shade length on the panel due to the blockage of direct 77 

sunlight by adjacent panels is denoted as ℎ𝑠 (Supplementary Figure 13f). Assuming zero 78 

contribution from the shaded area, the average direct sunlight collection per unit panel area 79 

(𝐼𝑃𝑉.𝑑𝑖𝑟) can be further derived as: 80 

𝐼𝑃𝑉,𝑑𝑖𝑟 =
1

ℎ
∫ (𝐼𝐷𝑁𝐼 ∙ cos(𝜃𝐴𝑂𝐼)(1 − 𝑅(𝜃𝐴𝑂𝐼)) ∙ 𝜂𝑑𝑖𝑟)𝑑𝑙
ℎ

0
  

=
ℎ−ℎ𝑠

ℎ
∙ 𝐼𝐷𝑁𝐼 ∙ cos(𝜃𝐴𝑂𝐼)(1 − 𝑅(𝜃𝐴𝑂𝐼)) ∙ 𝜂𝑑𝑖𝑟 .  

(S11) 

The diffused sunlight collection component (𝐼𝑃𝑉,𝑑𝑖𝑓, Supplementary Figure 13c) is more 81 

complex than 𝐼𝑃𝑉,𝑑𝑖𝑟 and can be expressed as: 82 

𝐼𝑃𝑉,𝑑𝑖𝑓 = 𝐼𝑃𝑉,𝑑𝑖𝑓
𝐹 + 𝐼𝑃𝑉,𝑑𝑖𝑓

𝐵  ,  (S12) 

where 𝐼𝑃𝑉,𝑑𝑖𝑓
𝐹  and 𝐼𝑃𝑉,𝑑𝑖𝑓

𝐵  represent the average diffused sunlight collection per unit area of a 83 

bifacial PV panel (considering both front and back surfaces). For an observation point (𝑙) on the 84 

front surface, the diffused sunlight collection is given by:  85 

𝐼𝑃𝑉,𝑑𝑖𝑓
𝐹 (𝑙) = 𝐼𝐷𝐻𝐼 ∙ 𝐹𝑑𝑖𝑓,𝑃𝑉−𝑠𝑘𝑦(𝑙) ∙ 𝜂𝑑𝑖𝑓 ,  (S13) 

where 𝐼𝐷𝐻𝐼 is the diffused horizontal solar irradiance, 𝐹𝑑𝑖𝑓,𝑃𝑉−𝑠𝑘𝑦(𝑙) is the view factor from the 86 

observation point (𝑙) to the unobstructed sky, and 𝜂𝑑𝑖𝑓 is the PV module efficiency for diffused 87 
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irradiance. Here, 𝐹𝑑𝑖𝑓,𝑃𝑉−𝑠𝑘𝑦(𝑙) can be calculated by9: 88 

𝐹𝑑𝑖𝑓(𝑙) = 𝐼𝐷𝐻𝐼 ∙
1

2
(1 + cos(𝜃𝑡+𝜑𝑚,𝑃𝑉−𝑃𝑉(𝑙))) ∙ 𝜂𝑑𝑖𝑓 ,  (S14) 

𝜑𝑃𝑉,𝑚(𝑙) = tan
−1 [

(ℎ−𝑙) sin(𝜃𝑡)

𝑝−(ℎ−𝑙) cos(𝜃𝑡)
] ,  (S15) 

where 𝜑𝑚,𝑃𝑉−𝑃𝑉(𝑙) is the mask angle from the observation point (𝑙) to the adjacent panel, and 𝑝 89 

is the row-to-row PV spacing (Supplementary Figure 13c). Hence, the average diffused sunlight 90 

collection per unit area of a bifacial PV panel (𝐼𝑃𝑉,𝑑𝑖𝑓) can be further derived as: 91 

𝐼𝑃𝑉,𝑑𝑖𝑓
𝐹 =

𝐼𝐷𝐻𝐼𝜂𝑑𝑖𝑓

ℎ
∫ (

1

2
(1 + cos(𝜃𝑡+𝜑𝑚,𝑃𝑉−𝑃𝑉(𝑙)))) 𝑑𝑙

ℎ

0
 .  (S16) 

A similar calculation scheme was applied to the back surface of the panel where the tilt angle 92 

become 180° − 𝜃𝑡. Finally, the total diffused sunlight collection per unit bifacial panel area 93 

(𝐼𝑃𝑉,𝑑𝑖𝑓) equals the sum of the front surface component (𝐼𝑃𝑉,𝑑𝑖𝑓
𝐹 ) and the back surface component 94 

(𝐼𝑃𝑉,𝑑𝑖𝑓
𝐵 ). 95 

Compared with the direct (𝐼𝑃𝑉,𝑑𝑖𝑟) and diffused (𝐼𝑃𝑉,𝑑𝑖𝑓) components, the albedo sunlight 96 

collection (𝐼𝑃𝑉,𝑎𝑙𝑏) can be the most complex due to the albedo calculation process. 𝐼𝑃𝑉,𝑎𝑙𝑏 97 

includes direct and diffused albedo sunlight collections (Supplementary Figure 11d,e): 98 

𝐼𝑃𝑉,𝑎𝑙𝑏 = 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑟
𝐹 + 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑟

𝐵 + 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑓
𝐹 + 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑓

𝐵  ,  (S17) 

where 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑟
𝐹  and 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑟

𝐵  are the direct albedo sunlight collected on the front and back 99 

surfaces of the panel, respectively. 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑓
𝐹  and 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑓

𝐵  are the diffused albedo sunlight 100 

collected on the front and back surfaces of the panel, respectively. Here, 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑟
𝐹  can be 101 

calculated by: 102 

𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑟
𝐹 =

1

ℎ
∫ 𝐼𝑔𝑛𝑑,𝑑𝑖𝑟 ∙ 𝑅𝐴 ∙ 𝐹𝑎𝑙𝑏,𝑑𝑖𝑟,𝑃𝑉−𝑔𝑛𝑑

𝐹 (𝑙) ∙ 𝜂𝑑𝑖𝑓𝑑𝑙
ℎ

0
 ,  (S18) 

where 𝐼𝑔𝑛𝑑,𝑑𝑖𝑟 is the direct solar irradiance on the ground, 𝑅𝐴 represent the ground albedo12 and 103 
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𝐹𝑎𝑙𝑏,𝑑𝑖𝑟,𝑃𝑉−𝑔𝑛𝑑
𝐹 (𝑙) denotes the view factor from the observation point (𝑙) on the panel to the 104 

unshaded zone on the ground. 𝐹𝑎𝑙𝑏,𝑑𝑖𝑟,𝑃𝑉−𝑔𝑛𝑑
𝐹 (𝑙) can be expressed as8,9: 105 

𝐹𝑎𝑙𝑏,𝑑𝑖𝑟,𝑃𝑉−𝑔𝑛𝑑
𝐹 (𝑙) = ∑

1

2
{[sin(𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,2

𝑖 ) − sin(𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,1
𝑖 )] + [sin(𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,4

𝑖 ) −𝑖

sin(𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,3
𝑖 )]} ,  

(S19) 

𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,1
𝑖 = 𝜋 − 𝜃𝑡 − tan

−1 [
−𝑥𝑙,𝑡𝑠+(𝑖−1)𝑝+

𝐸+𝑙sin(𝜃𝑡)

tan(𝜃𝑡)

𝐸+𝑙sin(𝜃𝑡)
] ,  

(S20) 

𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,2
𝑖 = 𝜋 − 𝜃𝑡 − tan

−1 [
(𝑖−1)𝑝+

𝐸+𝑙sin(𝜃𝑡)

tan(𝜃𝑡)

𝐸+𝑙sin(𝜃𝑡)
] ,  

(S21) 

𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,3
𝑖 = 𝜋 − 𝜃𝑡 − tan

−1 [
−𝑥𝑙,𝑏𝑠+(𝑖−1)𝑝+

𝐸+𝑙sin(𝜃𝑡)

tan(𝜃𝑡)

𝐸+𝑙sin(𝜃𝑡)
] ,  

(S22) 

𝜑𝑎𝑙𝑏,𝑑𝑖𝑟,4
𝑖 = 𝜋 − 𝜃𝑡 − tan

−1 [
𝑖𝑝+

𝐸+𝑙sin(𝜃𝑡)

tan(𝜃𝑡)

𝐸+𝑙sin(𝜃𝑡)
] ,  

(S23) 

where 𝐸 represents the height between the bottom edge of the panel and ground, and 𝑥𝑙,𝑡𝑠 and 106 

𝑥𝑙,𝑏𝑠 denote the shade edges formed by the top and bottom edges of the PV panel, respectively. A 107 

similar calculation scheme was employed for the back surface of the PV panel. Additionally, 108 

𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑓
𝐹  can be expressed as (Supplementary Figure 13e): 109 

𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑓
𝐹 =

1

ℎ
∫ 𝐼𝑔𝑛𝑑,𝑑𝑖𝑓 ∙ 𝑅𝐴 ∙ 𝐹𝑎𝑙𝑏,𝑑𝑖𝑓,𝑃𝑉−𝑔𝑛𝑑

𝐹 (𝑙) ∙ 𝜂𝑑𝑖𝑓𝑑𝑙
ℎ

0
 ,  (S24) 

where 𝐼𝑔𝑛𝑑,𝑑𝑖𝑓 represents the diffused solar irradiance on the ground, and 𝐹𝑎𝑙𝑏,𝑑𝑖𝑓,𝑃𝑉−𝑔𝑛𝑑
𝐹 (𝑙) 110 

denotes the view factor from the observation point (𝑙) on the panel to the ground. Here, 111 

𝐹𝑎𝑙𝑏,𝑑𝑖𝑓,𝑃𝑉−𝑔𝑛𝑑
𝐹 (𝑙) can be calculated by8,9: 112 

𝐹𝑎𝑙𝑏,𝑑𝑖𝑓,𝑃𝑉−𝑔𝑛𝑑
𝐹 (𝑙) =

1

2
[1 − sin(𝜑𝑎𝑙𝑏,𝑑𝑖𝑓)] ,  (S25) 
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𝜑𝑎𝑙𝑏,𝑑𝑖𝑓 =

{
 
 

 
 𝜋
2
− 𝜃𝑡 + tan

−1 (
𝐸+𝑙sin(𝜃𝑡)

𝐸+𝑙sin(𝜃𝑡)

tan(𝜃𝑡)
+𝑖𝑝
) ,   if 𝑖𝑝 ≤ 𝑥𝑏

𝜋

2
− 𝜃𝑡 + tan

−1 (
𝐸+𝑙sin(𝜃𝑡)

𝐸+𝑙sin(𝜃𝑡)

tan(𝜃𝑡)
+𝑥𝑏
) ,   if 𝑖𝑝 > 𝑥𝑏

 ,  

(S26) 

where 𝜑𝑎𝑙𝑏,𝑑𝑖𝑓 signifies the view angle from the observation point (𝑙) to the ground, and 𝑥𝑏 113 

denotes the intersection point of the block line and along the 𝑥-axis. A similar calculation scheme 114 

was applied to the back surface of the panel, considering both 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑟
𝐵  and 𝐼𝑃𝑉,𝑎𝑙𝑏,𝑑𝑖𝑓

𝐵 . 115 

Based on equations (S4) - (S26), the total average sunlight collection per unit bifacial PV 116 

panel area (𝐼𝑃𝑉,𝑎𝑣𝑒𝑟) can be expressed as: 117 

𝐼𝑃𝑉,𝑎𝑣𝑒𝑟 = 𝐼𝑃𝑉,𝑑𝑖𝑟 + 𝐼𝑃𝑉,𝑑𝑖𝑓 + 𝐼𝑃𝑉,𝑎𝑙𝑏 .  (S27) 

As the cell temperature significantly influences PV generation, we employ the Faiman 118 

model13–15 and NREL’s PVWatts DC power model16 to establish the correlation between real 119 

climatic conditions and PV generation.  Here, the alternating current (AC) power of a PV panel 120 

can be expressed as: 121 

𝑃𝐴𝐶 =
𝐼𝑃𝑉,𝑎𝑣𝑒𝑟

1000
𝑃𝐷𝐶0[1 + 𝛾𝑃𝐷𝐶(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑟𝑒𝑓)] ∙ ILR ∙ 𝑛𝑚,  (S28) 

where 𝑃𝐷𝐶0 is the nominal direct current (DC) power of the PV module under standard test 122 

conditions (STC) of 1000 W/m2 and cell temperature of 25 ℃, 𝛾𝑃𝐷𝐶 is the temperature 123 

coefficient of power (typically ranging from -0.002 /℃ to -0.005 /℃), 𝑇𝑐𝑒𝑙𝑙 is the cell 124 

temperature, 𝑇𝑟𝑒𝑓 is the cell reference temperature (25 ℃), ILR is the inverter loading ratio17, and 125 

𝑛𝑚 is the number of PV modules in a PV panel. According to the Faiman model13–15, 𝑇𝑐𝑒𝑙𝑙 can be 126 

calculated by: 127 

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑖𝑟 +
𝑞𝑠𝑡𝑜𝑟𝑒

𝑓𝑡𝑜𝑡,𝑙𝑜𝑠𝑠
 ,  (S29) 

where 𝑇𝑎𝑖𝑟 is the air temperature, 𝑞𝑠𝑡𝑜𝑟𝑒 is the net heat flux stored within PV cells, and  𝑓𝑡𝑜𝑡,𝑙𝑜𝑠𝑠 128 
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is the total loss factor. Here, 𝑞𝑠𝑡𝑜𝑟𝑒 and 𝑓𝑡𝑜𝑡,𝑙𝑜𝑠𝑠 can be expressed as: 129 

𝑞𝑠𝑡𝑜𝑟𝑒 = 𝐼𝑃𝑉,𝑎𝑣𝑒𝑟 − 𝑞𝑟𝑎𝑑−𝑠𝑘𝑦 ,  (S30) 

𝑞𝑟𝑎𝑑−𝑠𝑘𝑦 = 𝜀𝑃𝑉 ∙ 𝐹𝑑𝑖𝑓,𝑃𝑉−𝑠𝑘𝑦 ∙ 𝜎 ∙ (𝑇𝑎𝑖𝑟 − 𝑇𝑎𝑏𝑠,𝑧𝑒𝑟𝑜)
4,  (S31) 

𝑓𝑡𝑜𝑡,𝑙𝑜𝑠𝑠 = 𝑢0 + 𝑢1 ∙ 𝑣𝑤𝑖𝑛𝑑 ,  (S32) 

where 𝑞𝑟𝑎𝑑−𝑠𝑘𝑦 represents the heat loss from PV module surface to the sky due to radiation, 𝜀𝑃𝑉 130 

is the infrared emissivity of the PV module surface facing the sky, 𝜎 is the Stefan-Boltzmann 131 

constant (5.67×10-8 W (m
2
∙K4)⁄ ), 𝑇𝑎𝑏𝑠,𝑧𝑒𝑟𝑜 is the absolute zero temperature (-273.15 K), 𝑢0 is 132 

the combined heat loss factor coefficient, 𝑢1 is the combined heat loss factor influenced by the 133 

local wind, and 𝑣𝑤𝑖𝑛𝑑 is the local wind speed measured at the same height of the PV module 134 

which can be extracted directly from the National Solar Radiation Database (NSRDB)18–23.  135 

The solar irradiance intercepted by PAR available to the crops under PV panels can 136 

significantly influence crop growth24. We commence by calculating the spatial shade distribution, 137 

where the blockage of direct solar irradiance by PV panels creates shade on the ground or at any 138 

elevation below the PV arrays. The length (𝑙𝑠) and the edges (𝑙𝑡𝑠, 𝑙𝑏𝑠) of the shade 139 

(Supplementary Figure 13f) are determined by: 140 

𝑙𝑠 = 𝑙𝑡𝑠 − 𝑙𝑏𝑠 ,  (S33) 

𝑙𝑡𝑠 =
𝐸+ℎsin(𝜃𝑡)

tan(𝜃𝑡)
+
[𝐸+ℎsin(𝜃𝑡)][cos(𝜃𝑝𝑎−𝜃𝑠𝑎)]

tan(
𝜋

2
−𝜃𝑧)

 ,  (S34) 

𝑙𝑏𝑠 =
𝐸

tan(𝜃𝑡)
+
𝐸[cos(𝜃𝑝𝑎−𝜃𝑠𝑎)]

tan(
𝜋

2
−𝜃𝑧)

 ,  (S35) 

where 𝑙𝑡𝑠 and 𝑙𝑏𝑠 represent the edges of the shade caused by the top and bottom edges of the PV 141 

panel, respectively. It is essential to highlight the potential occurrence of mutual (row-to-row) 142 

shading (ℎ𝑠), particularly when 𝜃𝑧 is low and 𝜃𝑡 is high (Supplementary Figure 13f). In such 143 

cases, ℎ𝑠 can be derived as:  144 
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ℎ𝑠 =
(𝑙𝑡𝑠−𝑝)[ℎ+

𝐸

sin(𝜃𝑡)
]

𝑙𝑡𝑠
−

𝐸

sin(𝜃𝑡)
 .  

(S36) 

Usually, mutual shading can lead to significant PV production loss due to electrical mismatch25–145 

27. To reduce the mutual shade influence, PV panels should operate at increased 𝜃𝐴𝑂𝐼 when the 146 

sun is low, preventing row-to-row shading. We employed the backtracking algorithm by rotating 147 

the tracker backward from the ideal rotation to shorten the shade cast by the PV panels and avoid 148 

shading the panels behind them. Hence, we should ensure: 149 

ℎ𝑠 ≤ 0 .  (S37) 

Thus, based on equations (S33) - (S37), we can determine the optimum tracking scheme to 150 

maximize the potential direct solar irradiance collection. 151 

For an arbitrary observation point (𝑥) on the ground or at any elevation under the PV 152 

panel (Supplementary Figure 13g), local direct solar irradiance 𝐼𝑔𝑛𝑑,𝑑𝑖𝑟(𝑥) on the horizontal 153 

plane can be calculated by:  154 

𝐼𝑔𝑛𝑑,𝑑𝑖𝑟(𝑥) = {
𝐼𝐷𝑁𝐼 ∙ cos(𝜃𝑧),   if 𝑥 < 𝑙𝑏𝑠 or  𝑥 > 𝑙𝑡𝑠

0,   if 𝑙𝑡𝑠 ≤ 𝑥 ≤ 𝑙𝑏𝑠
 . 

(S38) 

Local diffused solar irradiance 𝐼𝑔𝑛𝑑,𝑑𝑖𝑓(𝑥) on the horizontal plane can be determined by: 155 

𝐼𝑔𝑛𝑑,𝑑𝑖𝑓(𝑥) = 𝐼𝐷𝐻𝐼 ∙ 𝐹𝑑𝑖𝑓,𝑔𝑛𝑑−𝑠𝑘𝑦(𝑥) , (S39) 

where 𝐼𝐷𝐻𝐼 is the diffused horizontal solar irradiance, and 𝐹𝑔𝑛𝑑.𝑑𝑖𝑓(𝑥) is the view factor from the 156 

observation point to the unobstructed sky. Here, the calculation of  𝐹𝑔𝑛𝑑,𝑑𝑖𝑓(𝑥) is required to 157 

consider the mask angle caused by both the back and front surfaces of all PV panels 158 

(Supplementary Figure 13g). The mask angle subtended from 𝑥 to the top and bottom edges of a 159 

PV panel at the back surface (𝜃𝑡|𝐵
𝑖  and 𝜃𝑏|𝐵

𝑖 ) and front surface (𝜃𝑡|𝐹
𝑖  and 𝜃𝑏|𝐹

𝑖 ) can be expressed 160 

as: 161 
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𝜃𝑡|𝐵
𝑖 =

{
 
 

 
 tan−1 [

𝐸+ℎsin(𝜃𝑡)

−(𝑖−1)𝑝−𝑥+
𝐸+ℎsin(𝜃𝑡)

tan(𝜃𝑡)

] ,   if 𝜃𝑡|𝐵
𝑖 <

𝜋

2

𝜋 + tan−1 [
𝐸+ℎsin(𝜃𝑡)

−(𝑖−1)𝑝−𝑥+
𝐸+ℎsin(𝜃𝑡)

tan(𝜃𝑡)

] ,   if 𝜃𝑡|𝐵
𝑖 >

𝜋

2

 ,  

(S40) 

𝜃𝑏|𝐵
𝑖 =

{
 
 

 
 tan−1 [

𝐸

−(𝑖−1)𝑝−𝑥+
𝐸

tan(𝜃𝑡)

] ,   if 𝜃𝑡|𝐵
𝑖 <

𝜋

2

𝜋 + tan−1 [
𝐸

−(𝑖−1)𝑝−𝑥+
𝐸

tan(𝜃𝑡)

] ,   if 𝜃𝑡|𝐵
𝑖 >

𝜋

2

 ,  

(S41) 

𝜃𝑡|𝐹
𝑖 = tan−1 [

𝐸+ℎsin(𝜃𝑡)

𝑖𝑝−𝑥+
𝐸+ℎsin(𝜃𝑡)

tan(𝜃𝑡)

] ,  
(S42) 

𝜃𝑏|𝐹
𝑖 = tan−1 [

𝐸

𝑖𝑝−𝑥+
𝐸

tan(𝜃𝑡)

] .  
(S43) 

Hence, the effective view factor 𝐹𝑔𝑛𝑑.𝑑𝑖𝑓(𝑥) from the observation point to the sky over all PV 162 

panels can be calculated by: 163 

𝐼𝑔𝑛𝑑,𝑑𝑖𝑓(𝑥) =
1

2
[cos (∑ (𝜃𝑡|𝐵

𝑖 − 𝜃𝑏|𝐵
𝑖 )𝑖 + cos (∑ (𝜃𝑡|𝐹

𝑖 − 𝜃𝑏|𝐹
𝑖 )𝑖 ] .  (S44) 

Finally, an arbitrary observation point (𝑥) on the ground or at any elevation under the PV panel 164 

receives the total solar irradiance: 165 

𝐼𝑔𝑛𝑑,𝑡𝑜𝑡(𝑥) = 𝐼𝑔𝑛𝑑,𝑑𝑖𝑟(𝑥) + 𝐼𝑔𝑛𝑑,𝑑𝑖𝑓(𝑥) ,  (S45) 

where the 𝐼𝑔𝑛𝑑,𝑑𝑖𝑟(𝑥) is equal to zero within the shade zone.  166 

Validation of the solar model. To validate our solar model, we conducted solar tests at Solar 167 

Farm 2.0, focusing on solar irradiance distribution under the PV arrays (Supplementary Figure 168 

1). Solar Farm 2.0, a 54-acre, 12.3 megawatt (MWdc) solar farm located in Champaign, Illinois 169 

(40.0692° N, 88.2481° W), is approved by the University of Illinois Board of Trustees as the sole 170 

member of Prairieland Energy, Inc. The installation features bi-facial monocrystalline PV panels 171 

with an east-west tracking system, moving daily to follow the sun's trajectory. Each PV panel, 172 
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consisting of 78 PV modules (each with a length ℎ of 2.022 m and a width 𝑤 of 0.992 m), is 173 

installed with a row-to-row spacing (pitch) of ~ 5.44 m. Supplementary Figure 1c depicts the 174 

experimental setup for measuring the Photosynthetically Active Radiation (PAR) distribution 175 

under PV panels. Eight spectrometers (STS-VIS, ±2%, Ocean Insight), evenly spaced at 176 

intervals (𝑑ℎ1) of 0.39 m and a height (𝑑𝑣1) of 0.84 m under the PV panel, were strategically 177 

placed for dynamic PAR distribution capture from August 3 to October 17, 2023. Additionally, 178 

we positioned an extra spectrometer beyond the confines of the solar farm to record the 179 

unobstructed sunlight, serving as a baseline for assessing shading effects. The STS-VIS 180 

spectrometer, leveraging a unique optical design and a CMOS array detector, delivers a high 181 

signal-to-noise ratio (>1500:1) and a wide dynamic range (4600:1), making it suitable for 182 

measuring low-concentration absorption to high-intensity light and laser characterization. We 183 

meticulously designed and crafted precision sensor housings using 3D printing, aiming to 184 

streamline sensor installation and enhance waterproof functionality. To enhance the scope of our 185 

experiments, we additionally utilized three quantum sensors (SQ-215-SS, ±5%, Apogee 186 

Instruments) for PAR (400-700 nm) measurement from June 21 to September 19, 2023. The 187 

quantum sensors were installed at horizontal distances of 𝑑ℎ2 = 1.20 m and 𝑑ℎ3 = 1.52 m, and 188 

a vertical distance of 𝑑𝑣2 = 0.69 m, as depicted in Supplementary Figure 1c. Similar to the 189 

spectrometer setup, we placed an additional quantum sensor outside the solar farm to capture the 190 

unobstructed sunlight, thus facilitating a detailed analysis of shade levels. 191 

Supplementary Figure 1d illustrates the comparison of solar irradiance distribution 192 

between simulation and test results. Due to the NSRDB database18–23 being updated only until 193 

the year 2022, we performed the simulation using the real weather data from the last decade 194 

(2013-2022) to achieve the time-averaged spatial solar irradiance distribution, which corresponds 195 
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to the test periods. To enable an equitable comparison, we normalized both the simulated and 196 

observed local solar irradiances against full sunlight measurements outside the solar farm. we 197 

also nondimensionalized the observation position 𝑥 relative to the PV length (ℎ). We observe a 198 

high level of consistency between the simulation results and the experimental outcomes. This 199 

indicates that our solar model can dynamically capture the spatial PAR distribution under PV 200 

panels with a high fidelity. In addition to the validation of PAR distribution, we conducted a 201 

comparative study of PV generation between our solar model and meter readings from Solar 202 

Farm 2.0, as illustrated in Supplementary Figure 1b. Likewise, our solar model demonstrates a 203 

remarkable ability to predict the PV generation of Solar Farm 2.0, with most discrepancies being 204 

less than 6%. This robust performance establishes a solid foundation for developing the AV 205 

system design model.  206 
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Supplementary Note 2 207 

Crop model. Here, the model simulated soybean yield (𝑌𝑐𝑟𝑜𝑝,𝐴𝑉) as: 208 

𝑌𝑐𝑟𝑜𝑝,𝐴𝑉 = ∆𝑄𝑟 × HI ,  (S46) 

where ∆𝑄𝑟 represents the radiation-limited dry-biomass accumulation, and HI denotes the 209 

harvest index. Here, ∆𝑄𝑟 is a function of the intercepted radiation (𝐼), radiation use efficiency 210 

(RUE), diffuse factor (𝑓𝑑), stress factor (𝑓𝑠), and carbon dioxide factor (𝑓𝑐): 211 

∆𝑄𝑟 = 𝐼 × RUE × 𝑓𝑑 × 𝑓𝑠 × 𝑓𝑐  .  (S47) 

Here, the intercepted radiation (𝐼) can be calculated based on the leaf area index (LAI, m2/m2) 212 

and the extinction coefficient 𝑘28–30: 213 

𝐼 = 𝐼0 (1 −
exp(−𝑘×LAI×𝑓ℎ)

𝑓ℎ
) ,  (S48) 

where 𝐼0 signifies the total radiation at the top of the canopy (MJ), and 𝑓ℎ is light interception 214 

modified to give hedge-row effect with skip row, which is set to 1 according to the APSIM 215 

soybean model28,29. The leaf area index (LAI), a key factor in carbon production, is determined 216 

by the increase in leaf dry weight (∆𝑄𝑙𝑒𝑎𝑓) and the maximum specific leaf area (SLA𝑚𝑎𝑥): 217 

∆LAI𝑑,𝑐 = ∆𝑄𝑙𝑒𝑎𝑓 × SLA𝑚𝑎𝑥 .  (S49) 

Here, ∆𝑄𝑙𝑒𝑎𝑓 also represents daily increment in leaf biomass which can be expressed as: 218 

∆𝑄𝑙𝑒𝑎𝑓 = ∆𝑄 × 𝐹𝑙𝑒𝑎𝑓,  (S50) 

where the actual daily biomass accumulation (∆𝑄) results from water limitation applied on the 219 

potential radiation-driven biomass accumulation (Δ𝑄𝑟). Hence, when soil water is assumed to be 220 

non-limiting, biomass accumulation will be limited by the radiation: 221 

∆𝑄 = Δ𝑄𝑟 .  (S51) 

Here, 𝐹𝑙𝑒𝑎𝑓 denotes the fraction of available biomass partitioned to the leaf, which is defined as a 222 
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function of the stage code (Supplementary Figure 2a,b). SLA𝑚𝑎𝑥, a function of LAI, can be 223 

calculated by the crop-specific SLA𝑚𝑎𝑥-LAI curve as shown in Supplementary Figures 2c. 224 

Similar to 𝐹𝑙𝑒𝑎𝑓, RUE (g/MJ) is intricately linked with the stage code (Supplementary Figure 2d). 225 

The diffuse factor 𝑓𝑑 can be expressed as31: 226 

𝑓𝑑 =
𝑅𝑑

𝑅𝑠
 ,  (S52) 

where 𝑅𝑑 and 𝑅𝑠 denote the daily diffused and global solar irradiance at the surface, respectively. 227 

These values will be accurately determined by our solar model, which operates at an advanced 228 

computing resolution of approximately 0.1 m based on the AV farm scale. Both the stress factor 229 

(𝑓𝑠) and carbon dioxide factor (𝑓𝑐) are set to 1 according to the present assumptions. In addition, 230 

recent field research has established a correlation between the harvest index (HI) and the 231 

seasonal average temperature32: 232 

HI = −0.0072𝑇𝑠
2 + 0.32𝑇𝑠 − 2.96 ,  (S53) 

where 𝑇𝑠 represents the growing season average canopy temperature.  233 

Regarding the phenology of soybean (Supplementary Figure 2a), the timing of each 234 

phase, excluding the sowing-to-germination phase driven by sowing depth and thermal time, is 235 

determined by the accumulation of thermal time (TT), adjusted for other factors (like 236 

photoperiod) which vary with the phase considered. The length of each phase is dictated by a 237 

fixed thermal time target which is typically cultivar specific. During the computation of TT, the 238 

daily thermal time (ΔTT) can be calculated from the daily average of maximum and minimum 239 

crown temperatures (Supplementary Figure 2e)29 for both Vegetative and  Reproductive phases: 240 

ΔTT = {

      𝑇𝑐 − 10, 10 ≤ 𝑇𝑐 < 30

2(40 − 𝑇𝑐), 30 ≤ 𝑇𝑐 < 40
                             0,   𝑇𝑐 < 10 or 𝑇𝑐 ≥ 40

 (Vegetative Phase).  (S54) 
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ΔTT = {

                       5,   10 ≤ 𝑇𝑐 < 15
5 + (𝑇𝑐 − 15),   15 ≤ 𝑇𝑐 < 30

      2(40 − 𝑇𝑐),   30 ≤ 𝑇𝑐 < 40
                                  0,   𝑇𝑐 < 10 or 𝑇𝑐 ≥ 40

 (Reproductive Phase). (S55) 

Here, 𝑇𝑐 is the daily crown mean temperature which can be calculated by the maximum (𝑇𝑐,𝑚𝑎𝑥) 241 

and minimum (𝑇𝑐,𝑚𝑖𝑛) crown temperatures33: 242 

𝑇𝑐 =
𝑇𝑐,𝑚𝑎𝑥+𝑇𝑐,𝑚𝑖𝑛

2
 .  (S56) 

Here, 𝑇𝑐,𝑚𝑎𝑥 and 𝑇𝑐,𝑚𝑖𝑛 can be computed based on the maximum (𝑇𝑚𝑎𝑥) and minimum (𝑇𝑚𝑖𝑛) air 243 

temperatures, respectively: 244 

𝑇𝑐,𝑚𝑎𝑥 = {
2 + 𝑇𝑚𝑎𝑥(0.4 + 0.0018(𝐻𝑠𝑛𝑜𝑤 − 15)

2),   𝑇𝑚𝑎𝑥 < 0
                                                                 𝑇𝑚𝑎𝑥,   𝑇𝑚𝑎𝑥 ≥ 0

 ,  
(S57) 

𝑇𝑐,𝑚𝑖𝑛 = {
2 + 𝑇𝑚𝑖𝑛(0.4 + 0.0018(𝐻𝑠𝑛𝑜𝑤 − 15)

2),   𝑇𝑚𝑖𝑛 < 0
                                                                 𝑇𝑚𝑖𝑛,   𝑇𝑚𝑖𝑛 ≥ 0

 , 
(S58) 

where 𝐻𝑠𝑛𝑜𝑤 is the snow depth which is set to zero in the present soybean model. 245 

Meanwhile, the rate of thermal time accumulation was further modified by photoperiod modifier 246 

during the phase from end of the juvenile stage to floral initiation: 247 

𝑝𝑚,𝐷 =
1

6.76
(21.19 − 𝑝ℎ,𝐷) .  (S59) 

Here, 𝑝𝑚,𝐷 represents the daily photoperiod modifier, and 𝑝ℎ,𝐷 denotes the duration of the day (in 248 

hours). Finally, the thermal time (TT) can be expressed as the sum of daily thermal times (ΔTT) 249 

over a specified number of days (𝑛): 250 

TT =  ∑ (ΔTT ∙𝑛
𝐷=1 𝑝𝑚,𝐷) ,  (S60) 

where 𝑛 is the number of days (𝐷) for the accumulation of the thermal time. 251 

 252 

Validation of the soybean model. To validate the simplified soybean model, we conducted a 253 

thorough comparative analysis against USDA NASS county-level historical soybean yields34 254 
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from three distinct locations:  Champaign, Illinois (40.0692° N, 88.2481° W), Faribault, 255 

Minnesota (44.2966° N, 93.2418° W), Bolivar, Mississippi (33.6566° N, 91.0464° W). The 256 

results, presented in Supplementary Figure 2f-h, underscore the robust performance of our 257 

soybean model. Most of our simulation results can be found to fall within ±6% of the actual 258 

field yields over the past 7 years (2016-2022), with a minority of cases exhibiting slight 259 

variances up to ±8%. The temporal trends of the simulated yields align closely with historical 260 

data, which underscores the model's capability to predict yields and capture the effects of 261 

variable climate conditions on annual soybean production. This alignment not only confirms the 262 

model's efficacy in forecasting soybean yields, but also highlights its utility in investigating the 263 

impacts of PV panel shading on soybean growth. Whin this context, the validated soybean model 264 

holds promise for applications in assessing the impact of solar installations on soybean 265 

performance, contributing valuable insights to sustainable agriculture practices in varying 266 

environmental contexts based on AV scenarios. 267 

  268 
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Supplementary Note 3 269 

Economic model. On the agricultural side, the expected average annual soybean profit per unit 270 

AV farm area (𝑃𝑐𝑟𝑜𝑝,𝐴𝑉) can be expressed as: 271 

𝑃𝑐𝑟𝑜𝑝,𝐴𝑉 =
𝑂𝑐𝑟𝑜𝑝,𝐴𝑉(PRI𝑐𝑟𝑜𝑝−VC𝑐𝑟𝑜𝑝)−FC𝑐𝑟𝑜𝑝𝐴𝑐𝑟𝑜𝑝,𝐴𝑉

𝐴𝐴𝑉
 ,   (S61) 

Here, 𝑂𝑐𝑟𝑜𝑝,𝐴𝑉 denotes the crop (soybean) output (in bushels) of the AV system, PRI𝑐𝑟𝑜𝑝 272 

represents the crop price (in US$/bushel), VC𝑐𝑟𝑜𝑝 indicates the variable cost of the crop (in 273 

US$/bushel), FC𝑐𝑟𝑜𝑝 is the fixed cost of the crop (in US$/acre), 𝐴𝑐𝑟𝑜𝑝,𝐴𝑉 signifies the crop area 274 

(in acres) in the AV system, and 𝐴𝐴𝑉 represents the overall AV farm area (in acres). Similarly, the 275 

crop profit of a traditional crop farm (𝑃𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚, in US$/acre) can be calculated by: 276 

𝑃𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚 =
𝑂𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚(PRI𝑐𝑟𝑜𝑝−VC𝑐𝑟𝑜𝑝)−FC𝑐𝑟𝑜𝑝𝐴𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚

𝐴𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚
 ,  (S62) 

where 𝑂𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚 denotes the crop (soybean) output (in bushels) of a traditional crop farm, and 277 

𝐴𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚 represents the traditional crop farm area (in acres) equivalent to the AV system area 278 

(𝐴𝐴𝑉). 279 

On PV energy side, the expected average annual PV profit per unit AV system area 280 

(𝑃𝑒,𝐴𝑉) is defined as: 281 

𝑃𝑒,𝐴𝑉 = (PPA + REC − LCOE)𝐸𝑃𝑉,𝑖 ,   (S63) 

where PPA is the power purchase agreement (PPA) price of PV electricity (in US$/kWh), REC 282 

represents the solar renewable energy credit (in US$/kWh), LCOE denotes the levelized cost of 283 

energy for PV electricity (in US$/kWh), and 𝐸𝑃𝑉,𝑖 signifies the annual PV electricity generation 284 

(in kWh) in year 𝑖. Here, LCOE serves as a metric gauging the average net present cost of 285 

electricity generation throughout the lifespan of a generator, including PV and AV systems35–37. 286 

Acting as a valuable tool, LCOE facilitates a comprehensive comparison of the economic 287 
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viability among diverse energy sources. This metric proves instrumental in conducting a cost-288 

effectiveness assessment for energy generation technologies, especially pertinent to long-term 289 

evaluations of PV and AV systems38–40. The calculation of LCOE involves dividing the 290 

discounted sum of energy generation costs, encompassing capital expenditure, operating 291 

expenditure, land lease, and transmission costs, by the discounted total PV electricity production 292 

over the entire lifespan of the AV system39,40: 293 

LCOE =
CAPEX+NPV((OPEX𝑖+Lease𝑖+Trans𝑖)∗(1+Inf)

𝑖−1,∀𝑖=1…𝑇|𝛿,𝑇)

NPV(𝐸𝑃𝑉,𝑖∗(1−𝐷)
𝑖−1,∀𝑖=1…𝑇|𝛿,𝑇)

 ,  
(S64) 

Here, CAPEX represents the capital expenditure, OPEX𝑖 denotes the annual operating 294 

expenditure, Lease𝑖 reflects the annual land lease cost, and Trans𝑖 signifies the annual 295 

transmission cost in year 𝑖. The variable 𝑖 designates the specific year under consideration. 296 

Additionally, Inf denotes the inflation rate, 𝐷 represents the annual degradation rate of PV 297 

modules, 𝛿 is the real discount rate, 𝑇 signifies the economic life of the AV system, and NPV 298 

stands for the net present value41,42. 299 

 In Supplementary Table 2, a comprehensive depiction of the parameters employed in the 300 

economic model is presented. The current AV system boasts a 25-year lifespan, accompanied by 301 

an annual operating expense (OPEX) of US$15/kW. Leveraging outputs from our solar and crop 302 

models, which compute PV generation and crop yield respectively, these vital data are 303 

seamlessly integrated into our economic model. This meticulous integration facilitates a 304 

systematic modelling procedure encompassing PV generation, crop yield, and economic profit, 305 

thereby enhancing the comprehensiveness of the AV implementation analysis. 306 

  307 
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Supplementary Note 4 308 

Optimization model. NSGA-II43–45 operates on four foundational principles: Non-Dominated 309 

Sorting, Elite Preserving Operator, Crowding Distance and Selection Operator, as illustrated in 310 

Fig. 2c and Supplementary Figure 14. 311 

The Non-Dominated Sorting is the initial step, where the algorithm sorts the population 312 

based on Pareto dominance. During Non-Dominated Sorting, the population members are sorted 313 

using the concept of Pareto dominance. Initially, the algorithm assigns the highest priority (first 314 

rank) to the non-dominated individuals within the population, segregating them into the foremost 315 

front and subsequently removing them from consideration for the current sorting phase. This 316 

procedure iterates, with each cycle identifying the next set of non-dominated members, assigning 317 

them a subsequent rank, and placing them in the next front, until all individuals are ranked, as 318 

depicted Supplementary Figure 14b. 319 

The Elite Preserving Operator ensures the retention of elite solutions across generations, 320 

transferring non-dominated solutions from one generation to the next unless they are 321 

outperformed by newer solutions. 322 

The Crowding Distance measures the solution density surrounding a particular 323 

individual, which is calculated as the average distance between two nearest solutions for each 324 

objective along the Pareto Front Approximation. This metric helps maintain diversity by favoring 325 

individuals in less crowded regions as indicated by large crowding distance. The crowding 326 

distance for an individual is depicted through the average side-length of the cuboid formed by its 327 

neighboring solutions, as demonstrated in Supplementary Figure 14c, and mathematically 328 

represented by the formula in equation (S65): 329 
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CD(𝑖) = ∑
𝑓𝑗
𝑖+1−𝑓𝑗

𝑖−1

𝑓𝑗
𝑚𝑎𝑥−𝑓𝑗

𝑚𝑖𝑛
𝑘
𝑖=1  ,  

(S65) 

where CD(𝑖) denotes the crowding distance for the  𝑖𝑡ℎ individual, 𝑓𝑗
𝑚𝑎𝑥 and 𝑓𝑗

𝑚𝑖𝑛 are the 330 

maximum and minimum values of the 𝑗𝑡ℎ objective function across all individuals, and 𝑘 is the 331 

number of objectives. 332 

The Selection Operator guides the formation of the subsequent generation's population 333 

through crowded tournament selection, leveraging both the ranks and crowding distances of 334 

individuals. The selection criteria prioritize individuals of superior rank; among those of equal 335 

rank, individuals with greater crowding distances are chosen, which ensures both quality and 336 

diversity in the evolving population. 337 

To facilitate the seamless implementation of Multi-Objective Optimization Design 338 

(MOOD) within our AV system, we integrated jMetalPy46, an open-source Python-based 339 

framework tailored for multi-objective optimization algorithms, into our AV system model. To 340 

strike a balance between computational load and solution diversity, we set the population size to 341 

100, which allows for a broad exploration of solutions while managing computational resources 342 

efficiently. The population size determines the number of solutions (individuals) in each 343 

generation. The same size was applied to the offspring population to ensure a steady population 344 

count across generations. For mutation, we chose PolynomialMutation with its probability set as 345 

the reciprocal of the number of variables. This ensures that the mutation rate inversely scales 346 

with the number of variables, thus enhancing diversity without saturating the search space. We 347 

set the distribution index to 20 to properly control the mutation's spread within the population. 348 

We employed the Simulated Binary Crossover (SBXCrossover) as the crossover operator for 349 

real-valued variables. In SBXCrossover, we set the probability to 1.0, which indicates that 350 

crossover occurs in every pair of selected solutions. The distribution index was similarly set at 20 351 
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for the crossover operator, which influences offspring distribution to favor solutions nearer to 352 

their parents, thus enabling thorough local searches. Finally, we set the convergence condition of 353 

NSGA-II based on the average change in the spread of Pareto solutions (∆SPS𝑔)47, which is 354 

calculated by: 355 

∆SPS𝑔 = (
∑ 𝑑𝑖𝑗
𝑛(𝑛−1)/2
𝑝=1

𝑛(𝑛−1)/2
)
𝑔

− (
∑ 𝑑𝑖𝑗
𝑛(𝑛−1)/2
𝑝=1

𝑛(𝑛−1)/2
)
𝑔−1

 ,   
(S66) 

𝑑𝑖𝑗 = √(𝑦𝑖 − 𝑦𝑗)
2
+ (𝑥𝑖 − 𝑥𝑗)

2
 ,  

(S67) 

Here, 𝑔 represents the current iteration number.  𝑛 denotes the total number of individuals in the 356 

population. 𝑖 and 𝑗 signify the indices ranging from 1 to 𝑛, with 𝑖 ≠  𝑗 and 𝑖 < 𝑗. 𝑑𝑖𝑗 refers to the 357 

span length (Euclidean distance) between any two solutions 𝑖 and 𝑗 along the Pareto-optimal 358 

front. The algorithm aims for convergence when |∆SPS𝑔| < 1𝐸 − 3, which indicates minimal 359 

disparity in Pareto solution spreads between successive iterations and suggesting an approach 360 

towards the true Pareto Front. Our MOOD results demonstrate that the Pareto solutions tend to 361 

converge within 100 iterations. To further explore the evolutionary process of MOOD, we 362 

extended the optimization to run for up to 1000 iterations, as detailed in Supplementary Video 4. 363 

This approach not only demonstrates the convergence behavior of our model but also enriches 364 

our understanding of the MOOD process over a more extended series of iterations. 365 

  366 
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Supplementary Figures 367 

 368 

Supplementary Figure 1. Validation of the solar model. a, Three-dimensional view of Solar 369 

Farm 2.0, located in Champaign, Illinois (40.0692 °  N, 88.2481 °  W), featuring bi-facial 370 

monocrystalline PV panels equipped with dynamic east-west tracking system. b, Comparison of 371 

monthly (from June 2021 to May 2022) PV electricity generation (𝐸𝑃𝑉) between the solar modeling 372 

results (blue circles) and the meter readings (orange diamonds) from Solar Farm 2.0. The shaded 373 

blue area indicates the ± 6% range around the simulation results, underscoring the model's 374 

accuracy. c, Schematic depicting the solar test setup at Solar Farm 2.0. Nine spectrometers (STS-375 

VIS, ±2%, Ocean Insight) are used for the dynamic Photosynthetically Active Radiation (PAR) 376 

capture, with eight installed at an interval (𝑑ℎ1) of 0.39 m and a height (𝑑𝑣1) of 0.84 m above the 377 

ground, and one beyond the confines of Solar Farm 2.0 to record the unobstructed PAR. Four 378 

quantum sensors (SQ-215-SS, ±5% , Apogee Instruments) are deployed for additional PAR 379 

measurements. Three are mounted at a height (𝑑𝑣2) of 0.69 m, with horizontal distances 𝑑ℎ2 =380 

1.20 m and 𝑑ℎ3 = 1.52 m, and one is positioned outside Solar Farm 2.0 to record the unobstructed 381 

PAR. d, Comparison of solar irradiance distribution (𝐼𝑔𝑛𝑑,𝑡𝑜𝑡
∗ ) between the solar modeling results 382 

(blue line and orange line) and the test outcomes (blue circles and orange squares). The blue color 383 

represents the 𝐼𝑔𝑛𝑑,𝑡𝑜𝑡
∗   distribution at a height of 𝑑𝑣1 , while the orange color denotes 𝐼𝑔𝑛𝑑,𝑡𝑜𝑡

∗  384 

distribution at a height of 𝑑𝑣2. 385 
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 388 

Supplementary Figure 2. Validation of the crop model. a, Conceptual diagram for phenological 389 

stages in the APSIM model, featuring thermal time target, phenological stage code and stage name. 390 

b, Relationship between 𝐹𝑙𝑒𝑎𝑓 and the stage code. 𝐹𝑙𝑒𝑎𝑓 denotes the fraction of available biomass 391 

partitioned to the leaf. c, Relationship between the maximum specific leaf area (SLA𝑚𝑎𝑥) and the 392 

leaf area index (LAI). d, Relationship between the radiation use efficiency (RUE) and the stage 393 

code. e, Relationship between the daily thermal time (ΔTT) and the daily crown mean temperature 394 

(𝑇𝑐) for Vegetative and Reproductive Photoperiods, respectively. f-h, Comparison of soybean yield 395 

(𝑌𝑐𝑟𝑜𝑝,𝑓𝑎𝑟𝑚) between the crop modeling results (blue circles) and the county-level historical yields 396 

(orange diamonds) sourced from the National Agricultural Statistics Service (NASS) of the United 397 

States Department of Agriculture (USDA). The sites compared include Champaign, Illinois (f), 398 

Faribault, Minnesota (g) and Bolivar, Mississippi (h), respectively. The shaded blue area denotes 399 

a ±8% range around the simulation results. 400 

 401 
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 403 

Supplementary Figure 3. Development of a Graphical User Interface (GUI) for AV system 404 

simulation based on python. a, Flowchart illustrating the sequential process of the AV system 405 

simulation, including the input parameters, modeling steps, and generated outputs. b, Basic layout 406 

of the GUI, featuring distinct modules for input, output, figure output, and simulation control. The 407 

input module allows users to specify AV design parameters, such as PV and farm dimensions, and 408 

PV technology specifications. The simulation control module, equipped with start and stop buttons, 409 

manages the simulation process, and indicates the completion time. The output module provides 410 

critical data on solar irradiance, crop yield, PV generation, Land Equivalent Ratio (LER), and 411 

overall system profitability. The figure output module visually represents solar irradiance and crop 412 

yield distributions across various pitches, tailored to the configured AV system specifications. 413 

 414 

  415 



S-26 

 416 

Supplementary Figure 4. Soybean yields by county in 2022 across selected US states. This 417 

map highlights the soybean yield data collected from the primary soybean production regions in 418 

the United States, including the Upper Midwest, the Northern Great Plains, and the Delta Region, 419 

among others. The data collection emphasizes areas known for significant soybean cultivation, 420 

offering insights into regional yield variations. 421 

 422 
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 424 

Supplementary Figure 5. Influence of row-to-row spacing (𝒑∗) and PV installation height (𝑯∗) 425 

on solar irradiance distribution (𝑰𝒈𝒏𝒅,𝒕𝒐𝒕) on AV farms. a-c, Contour of 𝐼𝑔𝑛𝑑,𝑡𝑜𝑡 at 10 am on 426 

September 22, 2022, for 𝑝∗ = 3  and 𝐻∗ = 0.9  (a), for 𝑝∗ = 5  and 𝐻∗ = 0.9  (b), and for 𝑝∗ = 5 427 

and 𝐻∗ = 1.8 (c). d-f, Contour of 𝐼𝑔𝑛𝑑,𝑡𝑜𝑡 at 3 pm on September 22, 2022, for 𝑝∗ = 3 and 𝐻∗ =428 

0.9  (d), for 𝑝∗ = 5  and 𝐻∗ = 0.9  (e), and for 𝑝∗ = 5  and 𝐻∗ = 1.8  (f). The white dashed line 429 

represents the PV panel edge at zero tilt. Low 𝐼𝑔𝑛𝑑,𝑡𝑜𝑡 regions indicate the shaded areas under the 430 

PV panels. 𝑥∗  and 𝑦∗  signify the coordinates of the observation position on an AV farm, 431 

nondimensionalized by the PV module length (ℎ). Both the row-to-row spacing (𝑝∗) and the PV 432 

installation height (𝐻∗) are nondimensionalized by ℎ. 433 

 434 

  435 
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 436 

Supplementary Figure 6. Sensitivity analysis of design variables to PV and crop outputs 437 

based in an AV system.  a, Influence of row-to-row spacing (𝑝∗, pitch) on Land Equivalent Ratio 438 

(LER) and shade effect (𝑆∗) across various PV installation heights (𝐻∗). 𝑝∗ and 𝐻∗ refer to the 439 

row-to-row spacing and PV installation height nondimensionalized by the PV module length (ℎ), 440 

respectively. Blue circles, orange squares and green pentagons, corresponding to 𝐻∗ of 0.90, 1.35 441 

and 1.80, respectively, demonstrate the correlation between LER and 𝑝∗. Red hexagons, violet 442 

diamonds, and thin brown diamonds, corresponding to 𝐻∗ of 0.90, 1.35 and 1.80, illustrate the 443 

correlation between 𝑆∗ and 𝑝∗. b-d, Influence of crop buffer (𝑏𝑐𝑟𝑜𝑝
∗ ) on crop yield (𝑌𝑐𝑟𝑜𝑝

∗ ) and crop 444 

profit (𝑃𝑐𝑟𝑜𝑝
∗ ) for varying row-to-row spacings: 𝑝∗ = 3 in (b), 5 in (c) and 7 in (d), all under the 445 

same PV installation heights (𝐻∗) as outlined in (a). 446 

 447 

  448 
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 449 

Supplementary Figure 7. Pareto Front Approximation (PFA) analysis utilizing the Non-450 

dominated Sorting Genetic Algorithm (NSGA-II) in Faribault, Minnesota. a, 𝑌𝑃𝑉
∗  vs. 𝑌𝑐𝑟𝑜𝑝

∗ , 451 

𝑌𝑃𝑉
∗   vs. 𝑆∗ , and 𝑌𝑃𝑉

∗   vs. LER, illustrating how PV generation interacts with crop yield, shading 452 

impacts, and overall land use efficiency. b, 𝑃𝑃𝑉
∗  vs. 𝑃𝑐𝑟𝑜𝑝

∗ , 𝑃𝑃𝑉
∗  vs. 𝑆∗, and 𝑃𝑃𝑉

∗  vs. LER, illustrating 453 

how PV profit interacts with crop profit, shading impacts, and overall land use efficiency. c, 𝑌𝑐𝑟𝑜𝑝
∗  454 

vs. 𝑃𝑐𝑟𝑜𝑝
∗ , 𝑌𝑐𝑟𝑜𝑝

∗  vs. 𝑆∗, and 𝑌𝑐𝑟𝑜𝑝
∗  vs. LER, illustrating how crop yield interacts with crop profit, 455 

shading impacts, and overall land use efficiency. d, 𝑌𝑃𝑉
∗   vs. 𝑃𝑃𝑉

∗  , 𝑌𝑃𝑉
∗   vs. 𝑆∗ , and 𝑌𝑃𝑉

∗   vs. LER, 456 

illustrating how PV generation interacts with PV profit, shading impacts, and overall land use 457 

efficiency. e, 𝑌𝑐𝑟𝑜𝑝
∗  vs. 𝑃𝑃𝑉

∗ ,  𝑌𝑐𝑟𝑜𝑝
∗  vs. 𝑆∗, and  𝑌𝑐𝑟𝑜𝑝

∗  vs. LER, illustrating how crop yield interacts 458 

with PV profit, shading impacts, and overall land use efficiency. f, 𝑌𝑃𝑉
∗  vs. 𝑃𝑐𝑟𝑜𝑝

∗ ,  𝑌𝑃𝑉
∗  vs. 𝑆∗, and  459 

𝑌𝑃𝑉
∗   vs. LER, illustrating how PV generation interacts with crop profit, shading impacts, and 460 

overall land use efficiency. 461 

 462 

 463 
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 465 

Supplementary Figure 8. Pareto Front Approximation (PFA) analysis utilizing the Non-466 

dominated Sorting Genetic Algorithm (NSGA-II) in Bolivar, Mississippi. a, 𝑌𝑃𝑉
∗  vs. 𝑌𝑐𝑟𝑜𝑝

∗ , 𝑌𝑃𝑉
∗  467 

vs. 𝑆∗, and 𝑌𝑃𝑉
∗  vs. LER, illustrating how PV generation interacts with crop yield, shading impacts, 468 

and overall land use efficiency. b, 𝑃𝑃𝑉
∗  vs. 𝑃𝑐𝑟𝑜𝑝

∗ , 𝑃𝑃𝑉
∗  vs. 𝑆∗, and 𝑃𝑃𝑉

∗  vs. LER, illustrating how PV 469 

profit interacts with crop profit, shading impacts, and overall land use efficiency. c, 𝑌𝑐𝑟𝑜𝑝
∗  vs. 𝑃𝑐𝑟𝑜𝑝

∗ , 470 

𝑌𝑐𝑟𝑜𝑝
∗   vs. 𝑆∗ , and 𝑌𝑐𝑟𝑜𝑝

∗   vs. LER, illustrating how crop yield interacts with crop profit, shading 471 

impacts, and overall land use efficiency. d, 𝑌𝑃𝑉
∗  vs. 𝑃𝑃𝑉

∗ , 𝑌𝑃𝑉
∗  vs. 𝑆∗, and 𝑌𝑃𝑉

∗  vs. LER, illustrating 472 

how PV generation interacts with PV profit, shading impacts, and overall land use efficiency. e, 473 

𝑌𝑐𝑟𝑜𝑝
∗  vs. 𝑃𝑃𝑉

∗ ,  𝑌𝑐𝑟𝑜𝑝
∗  vs. 𝑆∗, and  𝑌𝑐𝑟𝑜𝑝

∗  vs. LER, illustrating how crop yield interacts with PV profit, 474 

shading impacts, and overall land use efficiency. f, 𝑌𝑃𝑉
∗  vs. 𝑃𝑐𝑟𝑜𝑝

∗ ,  𝑌𝑃𝑉
∗  vs. 𝑆∗, and  𝑌𝑃𝑉

∗  vs. LER, 475 

illustrating how PV generation interacts with crop profit, shading impacts, and overall land use 476 

efficiency. 477 

 478 

 479 
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 481 

Supplementary Figure 9. Analysis of Pareto Set (PS) correlations with Agrivoltaic (AV) 482 

system objectives and key factors in Champaign, Illinois. This figure presents the relationships 483 

between the PS and each of the four AV objectives, including PV generation (𝑌𝑃𝑉
∗ ), PV profit (𝑃𝑃𝑉

∗ ), 484 

crop yield (𝑌𝑐𝑟𝑜𝑝
∗ ), and crop profit (𝑃𝑐𝑟𝑜𝑝

∗ ), alongside the shade effect (𝑆∗) and the Land Equivalent 485 

Ratio (LER) within the optimal AV design variable domain. a, PS vs. 𝑌𝑃𝑉
∗  , demonstrating how 486 

variations in PS correlate with PV generation efficiency, guided by the color bar. b, PS vs. 𝑌𝑐𝑟𝑜𝑝
∗ , 487 

exploring the relationship between PS and crop yield, with the correlation strength indicated by 488 

the color bar. c, PS vs. 𝑃𝑃𝑉
∗ , illustrating the correlation between PS and PV profit, as shown by the 489 

color bar. d, PS vs. 𝑃𝑐𝑟𝑜𝑝
∗ , highlighting how PS influences crop profit, with the correlation degree 490 

represented by the color bar. e, PS vs. LER, examining the link between PS and LER, indicated by 491 

the color bar. f, PS vs. 𝑆∗, analyzing the correlation between PS and the shading effect with the 492 

impact magnitude shown by the color bar. 493 

 494 

  495 
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 496 

Supplementary Figure 10. Analysis of Pareto Set (PS) correlations with Agrivoltaic (AV) 497 

system objectives and key factors in Faribault, Minnesota. This figure presents the 498 

relationships between the PS and each of the four AV objectives, including PV generation (𝑌𝑃𝑉
∗ ), 499 

PV profit (𝑃𝑃𝑉
∗ ), crop yield (𝑌𝑐𝑟𝑜𝑝

∗ ), and crop profit (𝑃𝑐𝑟𝑜𝑝
∗ ), alongside the shade effect (𝑆∗) and the 500 

Land Equivalent Ratio (LER) within the optimal AV design variable domain. a, PS vs. 𝑌𝑃𝑉
∗  , 501 

demonstrating how variations in PS correlate with PV generation efficiency, guided by the color 502 

bar. b, PS vs. 𝑌𝑐𝑟𝑜𝑝
∗ , exploring the relationship between PS and crop yield, with the correlation 503 

strength indicated by the color bar. c, PS vs. 𝑃𝑃𝑉
∗ , illustrating the correlation between PS and PV 504 

profit, as shown by the color bar. d, PS vs. 𝑃𝑐𝑟𝑜𝑝
∗ , highlighting how PS influences crop profit, with 505 

the correlation degree represented by the color bar. e, PS vs. LER, examining the link between PS 506 

and LER, indicated by the color bar. f, PS vs. 𝑆∗, analyzing the correlation between PS and the 507 

shading effect with the impact magnitude shown by the color bar. 508 

 509 

  510 

  

   

 



S-33 

 511 

Supplementary Figure 11. Analysis of Pareto Set (PS) correlations with Agrivoltaic (AV) 512 

system objectives and key factors in Bolivar, Mississippi. This figure presents the relationships 513 

between the PS and each of the four AV objectives, including PV generation (𝑌𝑃𝑉
∗ ), PV profit (𝑃𝑃𝑉

∗ ), 514 

crop yield (𝑌𝑐𝑟𝑜𝑝
∗ ), and crop profit (𝑃𝑐𝑟𝑜𝑝

∗ ), alongside the shade effect (𝑆∗) and the Land Equivalent 515 

Ratio (LER) within the optimal AV design variable domain. a, PS vs. 𝑌𝑃𝑉
∗  , demonstrating how 516 

variations in PS correlate with PV generation efficiency, guided by the color bar. b, PS vs. 𝑌𝑐𝑟𝑜𝑝
∗ , 517 

exploring the relationship between PS and crop yield, with the correlation strength indicated by 518 

the color bar. c, PS vs. 𝑃𝑃𝑉
∗ , illustrating the correlation between PS and PV profit, as shown by the 519 

color bar. d, PS vs. 𝑃𝑐𝑟𝑜𝑝
∗ , highlighting how PS influences crop profit, with the correlation degree 520 

represented by the color bar. e, PS vs. LER, examining the link between PS and LER, indicated by 521 

the color bar. f, PS vs. 𝑆∗, analyzing the correlation between PS and the shading effect with the 522 

impact magnitude shown by the color bar. 523 
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 526 

Supplementary Figure 12. Correlation between PV profit and crop profit per land area. This 527 

figure presents the optimal trade-off between the PV profit and the crop profit at various PV costs, 528 

referring to PV capital expenditure (CAPEX).  a, PV CAPEX = 1.24 US$/W. b, PV CAPEX = 529 

1.25 US$/W. c, PV CAPEX = 1.26 US$/W. d, PV CAPEX = 1.27 US$/W. The orange dotted line 530 

represents the equal-weight boundary between PV profit and crop profit, with the crop-dominant 531 

region above the boundary and the PV-dominant region below it. 532 
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 534 

Supplementary Figure 13. Schematic of the solar model development. a, Schematic of the PV 535 

module's orientation in relation to the sun. b, Schematic of direct sunlight collection on the front 536 

surface of a PV panel. c, Schematic of diffused sunlight collection on the front surface of a PV 537 

panel. d, Schematic of direct albedo sunlight collection on the front surface of a PV panel. e, 538 

Schematic of diffused albedo sunlight collection on the front surface of a PV panel. f, Schematic 539 

of the shade cast by a PV panel under sunlight. g, Schematic of the diffused solar irradiance 540 

reaching an arbitrary observation point (𝑥) on the ground or at any elevation within an AV farm. 541 

 542 
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 544 

Supplementary Figure 14. Illustrative overview of the NSGA-II procedure. a, Flow chart 545 

demonstrating key steps of the NSGA-II algorithm, from initialization through to the selection of 546 

the next generation. b, Schematic of Non-dominated sorting procedure. c, Schematic of Crowding 547 

distance calculation.  548 
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Supplementary Tables 549 

Supplementary Table 1. Main PV module specifications used in the solar model.  550 

Electrical Data | STC* Nominal Max. Power (𝑷𝒎𝒂𝒙, W) Module Efficiency (%) 

Bifacial Module 365 18.2 

Bifacial Gain** 

5% 383 19.1 

10% 402 20.0 

20% 438 21.8 

30% 475 23.7 

Operating Temperature -40°C ~ +85°C  

Power Bifaciality*** 70%  

Dimensions 2022 × 992 × 30 mm (79.6 × 39.1 × 1.18 in) 

Temperature Coefficient (𝑃𝑚𝑎𝑥) -0.36%/°C  

Nominal Module Operating 

Temperature 
41 ± 3°C  

* Under Standard Test Conditions (STC) of irradiance of 1000 W/m2, spectrum AM 1.5 and cell 551 

temperature of 25°C. 552 

** Bifacial Gain: The additional gain from the back side compared to the power of the front side 553 

at the standard test condition. It depends on mounting (structure, height, tilt angle etc.) and 554 

albedo of the ground. 555 

*** Power Bifaciality = 𝑃𝑚𝑎𝑥,𝑟𝑒𝑎𝑟 𝑃𝑚𝑎𝑥,𝑓𝑟𝑜𝑛𝑡⁄ , both 𝑃𝑚𝑎𝑥,𝑟𝑒𝑎𝑟 and 𝑃𝑚𝑎𝑥,𝑓𝑟𝑜𝑛𝑡 are tested under STC, 556 

Bifaciality Tolerance: ± 5%. 557 
  558 
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Supplementary Table 2. Parameters used in the economic model. CAPEX represents the capital 559 

expenditure, and OPEX denotes the operating expenditure.  560 

Parameters   Variable  Units  Value    

Solar Component    

Expected lifetime of PV/AV system48,49 𝑇 years  25.00 

Annual degradation rate of PV modules48,49 𝐷 %/year 0.50 

Real discount rate48,49 𝛿 %/year 6.50 

Inflation rate48–50 Inf %/year 2.50 

Raised panel CAPEX17,51 CAPEX US$/W 1.07 

Annual OPEX for AV system52,53 OPEX𝑖 US$/kW 15.00 

Annual transmission cost for PV electricity54 Trans𝑖 US$/MWh 3.67 

Annual land lease cost for AV system48,49 Lease𝑖 US$/acre 1000.00 

Power purchase agreement price of PV 

electricity55 
PPA US$/MWh 75.70 

Solar renewable energy credit56 REC US$/MWh 6.60 

Agricultural component     

Soybean price57 PRI𝑐𝑟𝑜𝑝 US$/bushel 9.69 

Soybean Variable Cost57 VC𝑐𝑟𝑜𝑝 US$/bushel 2.50 

Soybean Fixed Cost57 FC𝑐𝑟𝑜𝑝 US$/acre 136.00 

 561 

  562 
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