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Supplementary Notes

Supplementary Note 1
Solar model. Supplementary Figure 13 illustrates the PV module's orientation in relation to the
sun. Solar position is articulated through the zenith angle (6,) and solar azimuth angle (6,). 6,
represents the angle between the sun's rays and the vertical direction, serving as the complement
to solar altitude or elevation’3. @, signifies the angle between the projection of sun rays and a
line due north or south*, measured on the horizontal plane. Both 8, and 6, are dynamic
parameters influenced by local coordinates (latitude and longitude) and time, which is calculated
using the NREL’s algorithm implemented in Sandia’s photovoltaic modeling library (PVLib)>®.
In addition to PV array density and PV panel height, the panel tilt angle (6;) and panel azimuth
angle (6,) are pivotal in describing the PV panel orientation. Specifically, 8, represents the
angle between the horizontal plane and the PV panel, while 6, is the horizontal orientation in
relation to the north direction, typically measured clockwise from true north. In the case of fixed
PV panels, 8; and 6,,, are typically set at optimal values to maximize PV generation based on the
solar farm's location. However, if PV panels are configured in a tracking scheme for enhanced
PV generation, both 8, and 6,,, undergo dynamic variations.
In this context, the angle of incidence (640;) between sunlight and the PV panel front

surface can be expressed as:

cos(8,0;) =S-N, (S1)
where S is the unit vector of solar rays and N is the unit vector normal of the PV panel surface.
According to Supplementary Figure 13a, § and N can be calculated by:

S = cos(6,) Z + sin(6,)sin(6,,)e + sin(0,) cos(b,) T, (S2)
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N = cos(6,)z + sin(et)sin(epa)é + sin(@t)cos(epa)ﬁ, (S3)
where Z, @ and 0 represent unit vectors pointing vertically, eastward, and northward,
respectively. Hence, 8,,; can be derived as:

cos(Ba0;) = cos(8,)cos(8,) + sin(8,)sin(8,)cos(0,, — Osq) - (54)
Typically, the potential direct solar irradiance reaching the PV panel (Iﬁf,”tdir), accounting for the

largest portion of PV generation, can be calculated by:

Ipot

pv,air = Ioni - c0s(@a0;) » (S5)

. . . . . . ot
where Iy, is the direct normal solar irradiance. Hence, we can achieve the maximum I{,’V qir DY

differentiating If,’gltdir with respect to the tilt angle and set it equal to zero:

al}gg,tdir _ (S6)

00 401

Furthermore, we can obtain the critical panel tilt angle, also considered as the dynamic tracking

angle (0, ¢rq) for the classical single-axis tracking scheme’:

04 ¢ra = tan~t[tan(6,)cos(Bpy — 54)] - (S7)
Based on equations (S4) - (S7), the minimum 840, i, and the maximum Igg,tdir,m ax Can be
derived as:
B401.min = c0s~t[cos(8,)cos(0y¢rq) + sin(8,)sin(6y 14 )cos(0pq — 054)] (S8)
Iy airmax = ot * €05(Baormin) - (89)

In addition, leveraging equations (S8) and (S9), along with the solar position®® and PV panel
specifications (Supplementary Note 1 and Supplementary Table 1), enables us to obtain
analytical solutions for solar irradiance distribution on and under the PV panels.

For the collection of solar irradiance on PV panels, we make the assumption that PV

panels have sufficient length to neglect edge effects on PV generation®®. Typically, PV
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generation comprises three fundamental components: direct (Ipy g;7-), diffused (Ipy 4i¢) and
albedo (Ipy q1p) solar irradiance collections (Supplementary Figure 11b-e).
The direct solar irradiance collection (Ipy 4i-, Supplementary Figure 13b) can be

calculated by:

Ipng - c0s(Ba0;) - (1 - R(HAOI)) “Nair» (L > hy) (510)
0, (I<hy) ’

Ipy,air(1) = {
where R(8,,) is the angle-dependent reflectivity of the panel®, and 7,4, is the PV module
efficiency for direct irradiance®**. The shade length on the panel due to the blockage of direct
sunlight by adjacent panels is denoted as hy (Supplementary Figure 13f). Assuming zero
contribution from the shaded area, the average direct sunlight collection per unit panel area
(Ipy 4ir) can be further derived as:

h
Ipy qir = %fo (IDNI ) COS(HAOI)(]- - R(eAOI)) 'Udir)dl (S11)

h—hg
h

“Ipnr COS(QAOI)(l - R(QAOI)) ‘Nair -
The diffused sunlight collection component (Ipy 4;¢, Supplementary Figure 13¢) is more
complex than Ipy 4;, and can be expressed as:
Ipv.air = Ipv air + Ipv air » (S12)
where Ify 4;r and IF, ;¢ represent the average diffused sunlight collection per unit area of a

bifacial PV panel (considering both front and back surfaces). For an observation point (1) on the
front surface, the diffused sunlight collection is given by:

Iy air (D = Inpr * Faip pv—siey (D * Naig (S13)
where Ipy; is the diffused horizontal solar irradiance, Fy;f py—sky (1) is the view factor from the

observation point (1) to the unobstructed sky, and 14 is the PV module efficiency for diffused
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irradiance. Here, Fy; ¢ py_sky (1) can be calculated by?®:

Faif(D) = Ippy %(1 +c05(0¢+@m,pv—pr (D)) *Taif » (S14)

1 [_(=Dsin(8) (S15)

(pPV,m(l) =tan p—(h—1) cos(6:)1’

where @, py_py (1) is the mask angle from the observation point (I) to the adjacent panel, and p

is the row-to-row PV spacing (Supplementary Figure 13c). Hence, the average diffused sunlight

collection per unit area of a bifacial PV panel (Ipy 4i¢) can be further derived as:

Ipumaiy (1 316
IgV,dl'f - DH; 4y fO (E (1 + COS(8t+(pm,PV—PV(l)))> dl . ( )

A similar calculation scheme was applied to the back surface of the panel where the tilt angle
become 180° — 6,. Finally, the total diffused sunlight collection per unit bifacial panel area

(Ipy ai f) equals the sum of the front surface component (/ II;V,di f) and the back surface component
By aif)-

Compared with the direct (Ipy 4;) and diffused (Ipy 4ir) components, the albedo sunlight
collection (Ipy 4;) can be the most complex due to the albedo calculation process. Ipy g1
includes direct and diffused albedo sunlight collections (Supplementary Figure 11d,e):

Ipv.aip = Ipv.aair + 1bv.awair + Ibv.aiair + Ipv.aibais » (S17)
where [ II;V,alb,dir and [ ;?V,alb,dir are the direct albedo sunlight collected on the front and back
surfaces of the panel, respectively. Ipy q1p air and 1By 415 4 are the diffused albedo sunlight
collected on the front and back surfaces of the panel, respectively. Here, Ify 415, 4ir can be
calculated by:

IgV,alb,dir = %foh Ignd,dir "Ry - Fcflb,dir,PV—gnd - Tldifdl ’ (S18)

where Igpq qir 18 the direct solar irradiance on the ground, R, represent the ground albedo'? and
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104 Fcflb’dir, pv—gna (1) denotes the view factor from the observation point (1) on the panel to the

105  unshaded zone on the ground. Fcﬁb'dir,w_ gna (D) can be expressed as®9:

F o L[ i ; i ; i
Fai,air,pv-gna(l) = ZiE{[SIH(‘Palb,dir,z) = sin(@a,air1)] + [sin(Pa,aira) - (19
. i
Sln(‘/’alb,dir,3)]} ’
) E+1sin(6¢)
i =1 —60, —tan"! “Hest VP GG, (520)
Paib,dir,1 t E+1sin(6¢) ’
. E+1sin(6¢)
O givy =T — 0, —tan™! (P ey (521)
alb,dir,2 t E+lIsin(6y) ’
_ . E+lsin(8¢) S22
(pi | i a tan—l xps+(i 1)p+7tan(9t) ( )
alb,dir,3 t E+Isin(6y) ’
E+1sin(6¢)
i =m7—6, —tan! P+ an@, (523)
Paib,dir,a t E+lIsin(6y) |’

106 where E represents the height between the bottom edge of the panel and ground, and x; ;s and
107 x;ps denote the shade edges formed by the top and bottom edges of the PV panel, respectively. A
108  similar calculation scheme was employed for the back surface of the PV panel. Additionally,

109 Ipy awai £ can be expressed as (Supplementary Figure 13e):

— F

1 +h
IEy aibair = gfo Ignaair * Ra* Faaifpv-gna(D *Nairdl, (S24)

110 where I, 4i represents the diffused solar irradiance on the ground, and Fflb'di £.pv—gna(D
111 denotes the view factor from the observation point (/) on the panel to the ground. Here,

112 Faypair pv—gna(D) can be calculated by®®:

F(flb,dif,PV—gnd D= %[1 - Sin(fpazb,dif)] ) (825)
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125
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128

(S26)

T -1 E+lsin(9t) e
~—0; +tan E+lsin(@p . |’ if ip < xy
2 o iy

_ tan(6¢)
Paib,dif =

s -1 E+lsin(9t) apo.
k5—9t+tan (W , ifip > xp

tan(6p)
where @qp qif signifies the view angle from the observation point () to the ground, and x;,
denotes the intersection point of the block line and along the x-axis. A similar calculation scheme
was applied to the back surface of the panel, considering both I7}, 41, air and 15y ap ai Iz

Based on equations (S4) - (S26), the total average sunlight collection per unit bifacial PV
panel area (Ipy 4yer) can be expressed as:

Ipv,aver = Ipv,air t+ Ipv.air + Ipv,aip - (527)

As the cell temperature significantly influences PV generation, we employ the Faiman
model*® and NREL’s PVWatts DC power model®® to establish the correlation between real
climatic conditions and PV generation. Here, the alternating current (AC) power of a PV panel

can be expressed as:

I aver
Pyc = Plv(’)oo PDCO[1 + )/PDC(Tcell - Tref)] “ILR -y, (828)

where Ppc, 1s the nominal direct current (DC) power of the PV module under standard test
conditions (STC) of 1000 W/m? and cell temperature of 25 °C, ¥pp is the temperature
coefficient of power (typically ranging from -0.002 /°C to -0.005 /°C), T,e; is the cell
temperature, Ty is the cell reference temperature (25 °C), ILR is the inverter loading ratiol’, and
N,y is the number of PV modules in a PV panel. According to the Faiman model***°, T,,;, can be
calculated by:

Teen = Tair + dstore , (529)

f tot,loss

where T,;, is the air temperature, q¢ore 1s the net heat flux stored within PV cells, and fio¢ 1055
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141
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143

144

is the total loss factor. Here, s¢ore and fio¢ 1055 Can be expressed as:

Qstore = IPV,aver ~ Qrad-sky » (S30)
Qrad-sky = €pv* Fdif,PV—sky "o (Tair - Tabs,zero)4; (S31)
ftot,loss = Ug + Uy " Vwind » (S32)

where qrqq-sky represents the heat loss from PV module surface to the sky due to radiation, &py
is the infrared emissivity of the PV module surface facing the sky, o is the Stefan-Boltzmann
constant (5.67x10° W/ (rnz-K4)), Taps zero 18 the absolute zero temperature (-273.15 K), u, is
the combined heat loss factor coefficient, u; is the combined heat loss factor influenced by the
local wind, and v,,;,,4 1s the local wind speed measured at the same height of the PV module
which can be extracted directly from the National Solar Radiation Database (NSRDB)#23,

The solar irradiance intercepted by PAR available to the crops under PV panels can
significantly influence crop growth?®. We commence by calculating the spatial shade distribution,
where the blockage of direct solar irradiance by PV panels creates shade on the ground or at any
elevation below the PV arrays. The length (L) and the edges (I, ,5) of the shade

(Supplementary Figure 13f) are determined by:

ls = lis — lps, (S33)
I — E+hsin(8;) , [E+hsin(8¢)][cos(0pq—0sa)] (S34)
ts — tan(6;) tan(g—ez) !
I = E E[cos(epa—BSa)] (835)
bs tan(6;) tan(;—r—Oz) ’

where l;; and [, represent the edges of the shade caused by the top and bottom edges of the PV
panel, respectively. It is essential to highlight the potential occurrence of mutual (row-to-row)
shading (hg), particularly when 6, is low and 6, is high (Supplementary Figure 13f). In such

cases, h, can be derived as:
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161

G Prtggsl g (S36)

ltS sin(@t) )

S

Usually, mutual shading can lead to significant PV production loss due to electrical mismatch?-
2 To reduce the mutual shade influence, PV panels should operate at increased 8,,; when the
sun is low, preventing row-to-row shading. We employed the backtracking algorithm by rotating
the tracker backward from the ideal rotation to shorten the shade cast by the PV panels and avoid
shading the panels behind them. Hence, we should ensure:
hs <0. (S37)

Thus, based on equations (S33) - (S37), we can determine the optimum tracking scheme to
maximize the potential direct solar irradiance collection.

For an arbitrary observation point (x) on the ground or at any elevation under the PV
panel (Supplementary Figure 13g), local direct solar irradiance Iy, 4 4ir (x) on the horizontal
plane can be calculated by:

Ipny - cos(6,), ifx < lpsor x > I (S38)

Ignd,dir(x) = { O, if lts <x< lbs

Local diffused solar irradiance Iy, 4;¢(x) on the horizontal plane can be determined by:
Igna,air () = Ipur * Faif gna-sky(X) (539)
where Ipy; is the diffused horizontal solar irradiance, and Fj,,4 4;¢ () is the view factor from the
observation point to the unobstructed sky. Here, the calculation of Fy,4 4;¢(x) is required to
consider the mask angle caused by both the back and front surfaces of all PV panels
(Supplementary Figure 13g). The mask angle subtended from x to the top and bottom edges of a
PV panel at the back surface (Htil g and Hf)l ) and front surface (Gti| r and 9,‘;| ) can be expressed

as:
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( can-1 E+hsin(6,) ifei <™ (340)
—(i—l) —X+M ’ tlB 2
i p tan(6¢)
tB = # '
1 E+hsin(6¢) e ni r
kT[ + tan |:_(l_1) _x+m ) lf Btl'lB > ;
p tan(6¢)
| S41
—(i—-1) et 1B 2
ei _ p tan(6¢)
b|B = '
4+ tan™! I L l if 7 > >
_(i_l)p_x+tan(9t) 2
i 1 E+hsin(6;) (842)
0t|F = tan L E+hsin(6p |’
Ip—x+ tan(6¢)
' . : (543
911;|F =tan~! l l : )
lp_x+tan(9t)

Hence, the effective view factor Fj, 4 4ir(x) from the observation point to the sky over all PV
panels can be calculated by:

Igna,air(X) = %[COS (Xi(6i5 — Opy) + cos (Xi(6fr — 04ir)] - (S44)
Finally, an arbitrary observation point (x) on the ground or at any elevation under the PV panel
receives the total solar irradiance:

Ignatot (X)) = Igna,air (X) + Igna,air (X)) , (545)

where the I, 4i (%) is equal to zero within the shade zone.
Validation of the solar model. To validate our solar model, we conducted solar tests at Solar
Farm 2.0, focusing on solar irradiance distribution under the PV arrays (Supplementary Figure
1). Solar Farm 2.0, a 54-acre, 12.3 megawatt (MWdc) solar farm located in Champaign, Illinois
(40.0692° N, 88.2481° W), is approved by the University of Illinois Board of Trustees as the sole
member of Prairieland Energy, Inc. The installation features bi-facial monocrystalline PV panels

with an east-west tracking system, moving daily to follow the sun's trajectory. Each PV panel,
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173 consisting of 78 PV modules (each with a length h of 2.022 m and a width w 0of 0.992 m), is
174  installed with a row-to-row spacing (pitch) of ~ 5.44 m. Supplementary Figure 1c¢ depicts the
175  experimental setup for measuring the Photosynthetically Active Radiation (PAR) distribution
176 under PV panels. Eight spectrometers (STS-VIS, +2%, Ocean Insight), evenly spaced at

177  intervals (dyq) of 0.39 m and a height (d,,;) of 0.84 m under the PV panel, were strategically
178  placed for dynamic PAR distribution capture from August 3 to October 17, 2023. Additionally,
179  we positioned an extra spectrometer beyond the confines of the solar farm to record the

180  unobstructed sunlight, serving as a baseline for assessing shading effects. The STS-VIS

181  spectrometer, leveraging a unique optical design and a CMOS array detector, delivers a high
182  signal-to-noise ratio (>1500:1) and a wide dynamic range (4600:1), making it suitable for

183  measuring low-concentration absorption to high-intensity light and laser characterization. We
184  meticulously designed and crafted precision sensor housings using 3D printing, aiming to

185  streamline sensor installation and enhance waterproof functionality. To enhance the scope of our
186  experiments, we additionally utilized three quantum sensors (SQ-215-SS, +5%, Apogee

187  Instruments) for PAR (400-700 nm) measurement from June 21 to September 19, 2023. The
188  quantum sensors were installed at horizontal distances of dy, = 1.20 m and dj,; = 1.52 m, and
189  avertical distance of d,,, = 0.69 m, as depicted in Supplementary Figure 1c. Similar to the

190  spectrometer setup, we placed an additional quantum sensor outside the solar farm to capture the
191  unobstructed sunlight, thus facilitating a detailed analysis of shade levels.

192 Supplementary Figure 1d illustrates the comparison of solar irradiance distribution

193 between simulation and test results. Due to the NSRDB database’®23 being updated only until
194  the year 2022, we performed the simulation using the real weather data from the last decade

195  (2013-2022) to achieve the time-averaged spatial solar irradiance distribution, which corresponds
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to the test periods. To enable an equitable comparison, we normalized both the simulated and
observed local solar irradiances against full sunlight measurements outside the solar farm. we
also nondimensionalized the observation position x relative to the PV length (h). We observe a
high level of consistency between the simulation results and the experimental outcomes. This
indicates that our solar model can dynamically capture the spatial PAR distribution under PV
panels with a high fidelity. In addition to the validation of PAR distribution, we conducted a
comparative study of PV generation between our solar model and meter readings from Solar
Farm 2.0, as illustrated in Supplementary Figure 1b. Likewise, our solar model demonstrates a
remarkable ability to predict the PV generation of Solar Farm 2.0, with most discrepancies being
less than 6%. This robust performance establishes a solid foundation for developing the AV

system design model.
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Supplementary Note 2
Crop model. Here, the model simulated soybean yield (Y¢yp, a1) as:

Yeropav = AQ, X HI, (S46)
where AQ,. represents the radiation-limited dry-biomass accumulation, and HI denotes the
harvest index. Here, AQ, is a function of the intercepted radiation (I), radiation use efficiency
(RUE), diffuse factor (f,), stress factor (f;), and carbon dioxide factor (f;):

AQ, =1 XRUEX f; X fs X f.. (S47)
Here, the intercepted radiation (I) can be calculated based on the leaf area index (LAI, m?/m?)

and the extinction coefficient k2830:

I=1, (1 — ‘”‘P(—"X—LAIXM), (S48)
fn

where I, signifies the total radiation at the top of the canopy (MJ), and f}, is light interception
modified to give hedge-row effect with skip row, which is set to 1 according to the APSIM
soybean model?®?°. The leaf area index (LAI), a key factor in carbon production, is determined
by the increase in leaf dry weight (AQ.qr) and the maximum specific leaf area (SLA;,qy):

ALAl; . = AQpeqr X SLA 0y - (S49)
Here, AQeqy also represents daily increment in leaf biomass which can be expressed as:

AQiear = AQ X Fieqy, (550)
where the actual daily biomass accumulation (AQ) results from water limitation applied on the
potential radiation-driven biomass accumulation (AQ,.). Hence, when soil water is assumed to be
non-limiting, biomass accumulation will be limited by the radiation:

AQ = AQ,. (S51)

Here, Fjeqr denotes the fraction of available biomass partitioned to the leaf, which is defined as a
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function of the stage code (Supplementary Figure 2a,b). SLA,,,, a function of LAI, can be
calculated by the crop-specific SLA,,4,-LAI curve as shown in Supplementary Figures 2c.
Similar to F.qf, RUE (g/M]) is intricately linked with the stage code (Supplementary Figure 2d).

The diffuse factor f; can be expressed as®®:

£, = Ra (S52)

=
where R; and R denote the daily diffused and global solar irradiance at the surface, respectively.
These values will be accurately determined by our solar model, which operates at an advanced
computing resolution of approximately 0.1 m based on the AV farm scale. Both the stress factor
(f5) and carbon dioxide factor (f;) are set to 1 according to the present assumptions. In addition,
recent field research has established a correlation between the harvest index (HI) and the
seasonal average temperature32:

HI = —0.0072T2 + 0.32T; — 2.96, (S53)
where T represents the growing season average canopy temperature.

Regarding the phenology of soybean (Supplementary Figure 2a), the timing of each
phase, excluding the sowing-to-germination phase driven by sowing depth and thermal time, is
determined by the accumulation of thermal time (TT), adjusted for other factors (like
photoperiod) which vary with the phase considered. The length of each phase is dictated by a
fixed thermal time target which is typically cultivar specific. During the computation of TT, the
daily thermal time (ATT) can be calculated from the daily average of maximum and minimum
)20

crown temperatures (Supplementary Figure 2¢)~° for both Vegetative and Reproductive phases:

T,—10, 10 < T, < 30
ATT = 2(40-T,), 30 < T, <40 (Vegetative Phase). (S54)
0, T,<10orT, =40
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5 10T, <15

54+ (T,—15), 15<T, <30

2(40—-T,), 30<T. <40
0, T.<10o0rT, = 40

ATT = (Reproductive Phase). (S55)
Here, T, is the daily crown mean temperature which can be calculated by the maximum (T ;,45)

and minimum (T, ;) crown temperatures>?:

Tc — Tc,max;'Tc,min ' (856)

Here, T, mqx and T i, can be computed based on the maximum (T, 4,) and minimum (T,;,,) air

temperatures, respectively:

T _ {2 + Tnax (0.4 + 0.0018(Hspow — 15)2), Toax < 0 (S57)
emax Tmax» Tmax =0 '

o {2 + Tpnin (0.4 4 0.0018(Hspow — 15)2), Typin < 0 (S58)
cmin Tmin' Tmin = 0 ’

where Hgy,,,, 1s the snow depth which is set to zero in the present soybean model.
Meanwhile, the rate of thermal time accumulation was further modified by photoperiod modifier
during the phase from end of the juvenile stage to floral initiation:

1
Pmp = 5(21.19 — Dhp) - (S59)

Here, p,, p represents the daily photoperiod modifier, and p, , denotes the duration of the day (in
hours). Finally, the thermal time (TT) can be expressed as the sum of daily thermal times (ATT)
over a specified number of days (n):

TT = Yp=1(ATT *ppmp), (560)

where n is the number of days (D) for the accumulation of the thermal time.

Validation of the soybean model. To validate the simplified soybean model, we conducted a

thorough comparative analysis against USDA NASS county-level historical soybean yields®*
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from three distinct locations: Champaign, [llinois (40.0692° N, 88.2481° W), Faribault,
Minnesota (44.2966° N, 93.2418° W), Bolivar, Mississippi (33.6566° N, 91.0464° W). The
results, presented in Supplementary Figure 2f-h, underscore the robust performance of our
soybean model. Most of our simulation results can be found to fall within +£6% of the actual
field yields over the past 7 years (2016-2022), with a minority of cases exhibiting slight
variances up to £8%. The temporal trends of the simulated yields align closely with historical
data, which underscores the model's capability to predict yields and capture the effects of
variable climate conditions on annual soybean production. This alignment not only confirms the
model's efficacy in forecasting soybean yields, but also highlights its utility in investigating the
impacts of PV panel shading on soybean growth. Whin this context, the validated soybean model
holds promise for applications in assessing the impact of solar installations on soybean
performance, contributing valuable insights to sustainable agriculture practices in varying

environmental contexts based on AV scenarios.
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Supplementary Note 3
Economic model. On the agricultural side, the expected average annual soybean profit per unit
AV farm area (Pop,av) can be expressed as:

P _ Ocrop,AV(PRIcrop_Vccrop)_FCcropAcrop,AV (S61)
crop, AV — )

Apv

Here, Oyop,ay denotes the crop (soybean) output (in bushels) of the AV system, PRI,
represents the crop price (in US$/bushel), VC,,,, indicates the variable cost of the crop (in
USS$/bushel), FC,y, is the fixed cost of the crop (in US$/acre), Ayop av signifies the crop area
(in acres) in the AV system, and A,y represents the overall AV farm area (in acres). Similarly, the
crop profit of a traditional crop farm (Peyop, fqrm, in US$/acre) can be calculated by:

)2 _ Ocrop,farm(PRIcrop_VCcrop)_FccropAcrop,farm (S62)
crop,farm — ’

Acrop,farm
where Ocyop, rarm denotes the crop (soybean) output (in bushels) of a traditional crop farm, and
Acrop,farm tepresents the traditional crop farm area (in acres) equivalent to the AV system area
(Aav)-

On PV energy side, the expected average annual PV profit per unit AV system area
(Pg,av) 1s defined as:

P, 4v = (PPA + REC — LCOE)Epy ;, (S63)
where PPA is the power purchase agreement (PPA) price of PV electricity (in US$/kWh), REC
represents the solar renewable energy credit (in US$/kWh), LCOE denotes the levelized cost of
energy for PV electricity (in US$/kWh), and Epy, ; signifies the annual PV electricity generation
(in kWh) in year i. Here, LCOE serves as a metric gauging the average net present cost of
electricity generation throughout the lifespan of a generator, including PV and AV systems®",

Acting as a valuable tool, LCOE facilitates a comprehensive comparison of the economic
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viability among diverse energy sources. This metric proves instrumental in conducting a cost-
effectiveness assessment for energy generation technologies, especially pertinent to long-term
evaluations of PV and AV systems®“°. The calculation of LCOE involves dividing the
discounted sum of energy generation costs, encompassing capital expenditure, operating

expenditure, land lease, and transmission costs, by the discounted total PV electricity production

over the entire lifespan of the AV system3%4°:
CAPEX+NPV((OPEX;+Lease;+Trans;)+(1+Inf) ~1,vi=1..T|5,T) (S64)
LCOE = —— )
NPV(Epy ;*(1-D)=1vi=1..T|8,T)

Here, CAPEX represents the capital expenditure, OPEX; denotes the annual operating
expenditure, Lease; reflects the annual land lease cost, and Trans; signifies the annual
transmission cost in year i. The variable i designates the specific year under consideration.
Additionally, Inf denotes the inflation rate, D represents the annual degradation rate of PV
modules, 9§ is the real discount rate, T signifies the economic life of the AV system, and NPV
stands for the net present value*'42,

In Supplementary Table 2, a comprehensive depiction of the parameters employed in the
economic model is presented. The current AV system boasts a 25-year lifespan, accompanied by
an annual operating expense (OPEX) of US$15/kW. Leveraging outputs from our solar and crop
models, which compute PV generation and crop yield respectively, these vital data are
seamlessly integrated into our economic model. This meticulous integration facilitates a

systematic modelling procedure encompassing PV generation, crop yield, and economic profit,

thereby enhancing the comprehensiveness of the AV implementation analysis.
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Supplementary Note 4

Optimization model. NSGA-II***® operates on four foundational principles: Non-Dominated
Sorting, Elite Preserving Operator, Crowding Distance and Selection Operator, as illustrated in
Fig. 2c and Supplementary Figure 14.

The Non-Dominated Sorting is the initial step, where the algorithm sorts the population
based on Pareto dominance. During Non-Dominated Sorting, the population members are sorted
using the concept of Pareto dominance. Initially, the algorithm assigns the highest priority (first
rank) to the non-dominated individuals within the population, segregating them into the foremost
front and subsequently removing them from consideration for the current sorting phase. This
procedure iterates, with each cycle identifying the next set of non-dominated members, assigning
them a subsequent rank, and placing them in the next front, until all individuals are ranked, as
depicted Supplementary Figure 14b.

The Elite Preserving Operator ensures the retention of elite solutions across generations,
transferring non-dominated solutions from one generation to the next unless they are
outperformed by newer solutions.

The Crowding Distance measures the solution density surrounding a particular
individual, which is calculated as the average distance between two nearest solutions for each
objective along the Pareto Front Approximation. This metric helps maintain diversity by favoring
individuals in less crowded regions as indicated by large crowding distance. The crowding
distance for an individual is depicted through the average side-length of the cuboid formed by its
neighboring solutions, as demonstrated in Supplementary Figure 14c, and mathematically

represented by the formula in equation (S65):
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K S (S65)

i=1 f]_max_fjmin ’

CD() =

where CD(i) denotes the crowding distance for the i** individual, fi™* and fjmi" are the

maximum and minimum values of the j* objective function across all individuals, and k is the
number of objectives.

The Selection Operator guides the formation of the subsequent generation's population
through crowded tournament selection, leveraging both the ranks and crowding distances of
individuals. The selection criteria prioritize individuals of superior rank; among those of equal
rank, individuals with greater crowding distances are chosen, which ensures both quality and
diversity in the evolving population.

To facilitate the seamless implementation of Multi-Objective Optimization Design
(MOOD) within our AV system, we integrated jMetalPy*®, an open-source Python-based
framework tailored for multi-objective optimization algorithms, into our AV system model. To
strike a balance between computational load and solution diversity, we set the population size to
100, which allows for a broad exploration of solutions while managing computational resources
efficiently. The population size determines the number of solutions (individuals) in each
generation. The same size was applied to the offspring population to ensure a steady population
count across generations. For mutation, we chose PolynomialMutation with its probability set as
the reciprocal of the number of variables. This ensures that the mutation rate inversely scales
with the number of variables, thus enhancing diversity without saturating the search space. We
set the distribution index to 20 to properly control the mutation's spread within the population.
We employed the Simulated Binary Crossover (SBXCrossover) as the crossover operator for
real-valued variables. In SBXCrossover, we set the probability to 1.0, which indicates that
crossover occurs in every pair of selected solutions. The distribution index was similarly set at 20
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for the crossover operator, which influences offspring distribution to favor solutions nearer to
their parents, thus enabling thorough local searches. Finally, we set the convergence condition of

NSGA-II based on the average change in the spread of Pareto solutions (ASPSg)47, which is

calculated by:

ASPS, = (Z—Z(ﬁ_n/z dij) - <ZZ$A)/2 dij) : (560)

n(n-1)/2 n(n-1)/2

(S67)

dij = J(yi —) + (%),

Here, g represents the current iteration number. n denotes the total number of individuals in the
population. i and j signify the indices ranging from 1 to n, with i # jand i <. d;; refers to the
span length (Euclidean distance) between any two solutions i and j along the Pareto-optimal
front. The algorithm aims for convergence when [ASPS | < 1E — 3, which indicates minimal
disparity in Pareto solution spreads between successive iterations and suggesting an approach
towards the true Pareto Front. Our MOOD results demonstrate that the Pareto solutions tend to
converge within 100 iterations. To further explore the evolutionary process of MOOD, we
extended the optimization to run for up to 1000 iterations, as detailed in Supplementary Video 4.
This approach not only demonstrates the convergence behavior of our model but also enriches

our understanding of the MOOD process over a more extended series of iterations.
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Supplementary Figure 1. Validation of the solar model. a, Three-dimensional view of Solar
Farm 2.0, located in Champaign, Illinois (40.0692 ° N, 88.2481 ° W), featuring bi-facial
monocrystalline PV panels equipped with dynamic east-west tracking system. b, Comparison of
monthly (from June 2021 to May 2022) PV electricity generation (Epy, ) between the solar modeling
results (blue circles) and the meter readings (orange diamonds) from Solar Farm 2.0. The shaded
blue area indicates the +6% range around the simulation results, underscoring the model's
accuracy. ¢, Schematic depicting the solar test setup at Solar Farm 2.0. Nine spectrometers (STS-
VIS, 2%, Ocean Insight) are used for the dynamic Photosynthetically Active Radiation (PAR)
capture, with eight installed at an interval (dj) of 0.39 m and a height (d,;) of 0.84 m above the
ground, and one beyond the confines of Solar Farm 2.0 to record the unobstructed PAR. Four
quantum sensors (SQ-215-SS, +5%, Apogee Instruments) are deployed for additional PAR
measurements. Three are mounted at a height (d,,) of 0.69 m, with horizontal distances dj, =
1.20 m and dy3 = 1.52 m, and one is positioned outside Solar Farm 2.0 to record the unobstructed
PAR. d, Comparison of solar irradiance distribution (Igyq ¢o¢) between the solar modeling results
(blue line and orange line) and the test outcomes (blue circles and orange squares). The blue color
represents the Iy, 4., distribution at a height of d,;, while the orange color denotes Igq ¢or

distribution at a height of d,,.
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Supplementary Figure 2. Validation of the crop model. a, Conceptual diagram for phenological
stages in the APSIM model, featuring thermal time target, phenological stage code and stage name.
b, Relationship between F,, and the stage code. Fieqf denotes the fraction of available biomass
partitioned to the leaf. ¢, Relationship between the maximum specific leaf area (SLA,,,,) and the
leaf area index (LAI). d, Relationship between the radiation use efficiency (RUE) and the stage
code. e, Relationship between the daily thermal time (ATT) and the daily crown mean temperature
(T,) for Vegetative and Reproductive Photoperiods, respectively. f-h, Comparison of soybean yield
(Yerop, farm) between the crop modeling results (blue circles) and the county-level historical yields
(orange diamonds) sourced from the National Agricultural Statistics Service (NASS) of the United
States Department of Agriculture (USDA). The sites compared include Champaign, Illinois (f),
Faribault, Minnesota (g) and Bolivar, Mississippi (h), respectively. The shaded blue area denotes
a +8% range around the simulation results.
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404  Supplementary Figure 3. Development of a Graphical User Interface (GUI) for AV system
405  simulation based on python. a, Flowchart illustrating the sequential process of the AV system
406  simulation, including the input parameters, modeling steps, and generated outputs. b, Basic layout
407  of the GUI, featuring distinct modules for input, output, figure output, and simulation control. The
408  input module allows users to specify AV design parameters, such as PV and farm dimensions, and
409 PV technology specifications. The simulation control module, equipped with start and stop buttons,
410  manages the simulation process, and indicates the completion time. The output module provides
411  critical data on solar irradiance, crop yield, PV generation, Land Equivalent Ratio (LER), and
412 overall system profitability. The figure output module visually represents solar irradiance and crop
413 vyield distributions across various pitches, tailored to the configured AV system specifications.
414
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425  Supplementary Figure S. Influence of row-to-row spacing (p*) and PV installation height (H")
426 on solar irradiance distribution (14,4, on AV farms. a-c, Contour of [j,4 o at 10 am on
427  September 22, 2022, for p* = 3 and H* = 0.9 (a), for p* = 5and H* = 0.9 (b), and for p* =5
428  and H* = 1.8 (¢). d-f, Contour of Ijq 1o at 3 pm on September 22, 2022, for p* = 3 and H* =
429 09 (d), for p* =5and H* = 0.9 (e), and for p* =5 and H* = 1.8 (f). The white dashed line
430  represents the PV panel edge at zero tilt. Low Iy4 (o Tegions indicate the shaded areas under the
431 PV panels. x* and y* signify the coordinates of the observation position on an AV farm,
432 nondimensionalized by the PV module length (h). Both the row-to-row spacing (p*) and the PV
433 installation height (H") are nondimensionalized by h.
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Supplementary Figure 6. Sensitivity analysis of design variables to PV and crop outputs
based in an AV system. a, Influence of row-to-row spacing (p*, pitch) on Land Equivalent Ratio
(LER) and shade effect (S*) across various PV installation heights (H*). p* and H* refer to the
row-to-row spacing and PV installation height nondimensionalized by the PV module length (h),
respectively. Blue circles, orange squares and green pentagons, corresponding to H* of 0.90, 1.35
and 1.80, respectively, demonstrate the correlation between LER and p*. Red hexagons, violet
diamonds, and thin brown diamonds, corresponding to H* of 0.90, 1.35 and 1.80, illustrate the
correlation between S* and p*. b-d, Influence of crop buffer (b¢y.op) on crop yield (Y.4,) and crop

profit (P.,p) for varying row-to-row spacings: p* = 3 in (b), 5 in (¢) and 7 in (d), all under the

same PV installation heights (H*) as outlined in (a).
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Supplementary Figure 7. Pareto Front Approximation (PFA) analysis utilizing the Non-
dominated Sorting Genetic Algorithm (NSGA-II) in Faribault, Minnesota. a, Yp;, vs. Y¢.,),
Ypy vs. S*, and Yp, vs. LER, illustrating how PV generation interacts with crop yield, shading
impacts, and overall land use efficiency. b, Ppy vs. Pi.qp, Ppy vs. S*, and Ppy vs. LER, illustrating
how PV profit interacts with crop profit, shading impacts, and overall land use efficiency. ¢, Y¢4p
V8. Plrops Yérop V8. S*, and Yo, vs. LER, illustrating how crop yield interacts with crop profit,
shading impacts, and overall land use efficiency. d, Ypy vs. Ppy, Ypy vs. S*, and Ypy, vs. LER,
illustrating how PV generation interacts with PV profit, shading impacts, and overall land use
efficiency. e, Yirop Vs. Ppy, Yirep vs. S¥, and Yo, vs. LER, illustrating how crop yield interacts
with PV profit, shading impacts, and overall land use efficiency. f, Ypy, vs. Pqp, Ypy vs. S*, and

Ypy vs. LER, illustrating how PV generation interacts with crop profit, shading impacts, and
overall land use efficiency.
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Supplementary Figure 8. Pareto Front Approximation (PFA) analysis utilizing the Non-
dominated Sorting Genetic Algorithm (NSGA-II) in Bolivar, Mississippi. a, Yz, vs. Y7o, Yoy
vs. §*, and Yp, vs. LER, illustrating how PV generation interacts with crop yield, shading impacts,
and overall land use efficiency. b, Ppy vs. Py, Ppy vs. S¥, and Ppy, vs. LER, illustrating how PV
profit interacts with crop profit, shading impacts, and overall land use efficiency. ¢, Yo, VS. Prop,
Yerop v8. 8*, and Yo, vs. LER, illustrating how crop yield interacts with crop profit, shading
impacts, and overall land use efficiency. d, Ypy, vs. Ppy, Ypy vs. S*, and Yp, vs. LER, illustrating
how PV generation interacts with PV profit, shading impacts, and overall land use efficiency. e,
Yrop VS. Ppy, Yérop vs. S*,and Yo, vs. LER, illustrating how crop yield interacts with PV profit,
shading impacts, and overall land use efficiency. f, Ypy vs. P5.qp, Ypy vs. ¥, and Ypy vs. LER,

illustrating how PV generation interacts with crop profit, shading impacts, and overall land use
efficiency.
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Supplementary Figure 9. Analysis of Pareto Set (PS) correlations with Agrivoltaic (AV)
system objectives and key factors in Champaign, Illinois. This figure presents the relationships
between the PS and each of the four AV objectives, including PV generation (Ypy), PV profit (Ppy,),
crop yield (Y¢rop), and crop profit (P.,p), alongside the shade effect (S*) and the Land Equivalent
Ratio (LER) within the optimal AV design variable domain. a, PS vs. Yp,, demonstrating how
variations in PS correlate with PV generation efficiency, guided by the color bar. b, PS vs. Y5,
exploring the relationship between PS and crop yield, with the correlation strength indicated by
the color bar. ¢, PS vs. Ppy, illustrating the correlation between PS and PV profit, as shown by the
color bar. d, PS vs. P.,p, highlighting how PS influences crop profit, with the correlation degree
represented by the color bar. e, PS vs. LER, examining the link between PS and LER, indicated by
the color bar. f, PS vs. §*, analyzing the correlation between PS and the shading effect with the
impact magnitude shown by the color bar.
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Supplementary Figure 10. Analysis of Pareto Set (PS) correlations with Agrivoltaic (AV)
system objectives and key factors in Faribault, Minnesota. This figure presents the
relationships between the PS and each of the four AV objectives, including PV generation (Ypy),
PV profit (Ppy), crop yield (Y¢rp), and crop profit (Pz.op), alongside the shade effect (™) and the
Land Equivalent Ratio (LER) within the optimal AV design variable domain. a, PS vs. Yy,
demonstrating how variations in PS correlate with PV generation efficiency, guided by the color
bar. b, PS vs. Yy, exploring the relationship between PS and crop yield, with the correlation
strength indicated by the color bar. ¢, PS vs. Ppy, illustrating the correlation between PS and PV
profit, as shown by the color bar. d, PS vs. P, highlighting how PS influences crop profit, with
the correlation degree represented by the color bar. e, PS vs. LER, examining the link between PS
and LER, indicated by the color bar. f, PS vs. §*, analyzing the correlation between PS and the
shading effect with the impact magnitude shown by the color bar.
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Supplementary Figure 11. Analysis of Pareto Set (PS) correlations with Agrivoltaic (AV)
system objectives and key factors in Bolivar, Mississippi. This figure presents the relationships
between the PS and each of the four AV objectives, including PV generation (Ypy), PV profit (Ppy,),
crop yield (Y¢rop), and crop profit (P.,p), alongside the shade effect (S*) and the Land Equivalent
Ratio (LER) within the optimal AV design variable domain. a, PS vs. Yp,, demonstrating how
variations in PS correlate with PV generation efficiency, guided by the color bar. b, PS vs. Y5,
exploring the relationship between PS and crop yield, with the correlation strength indicated by
the color bar. ¢, PS vs. Ppy, illustrating the correlation between PS and PV profit, as shown by the
color bar. d, PS vs. P.,p, highlighting how PS influences crop profit, with the correlation degree
represented by the color bar. e, PS vs. LER, examining the link between PS and LER, indicated by
the color bar. f, PS vs. §*, analyzing the correlation between PS and the shading effect with the
impact magnitude shown by the color bar.
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Supplementary Figure 12. Correlation between PV profit and crop profit per land area. This
figure presents the optimal trade-off between the PV profit and the crop profit at various PV costs,
referring to PV capital expenditure (CAPEX). a, PV CAPEX = 1.24 US$/W. b, PV CAPEX =
1.25 US$/W. ¢, PV CAPEX = 1.26 US$/W. d, PV CAPEX = 1.27 US$/W. The orange dotted line
represents the equal-weight boundary between PV profit and crop profit, with the crop-dominant
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535  Supplementary Figure 13. Schematic of the solar model development. a, Schematic of the PV
536  module's orientation in relation to the sun. b, Schematic of direct sunlight collection on the front
537  surface of a PV panel. ¢, Schematic of diffused sunlight collection on the front surface of a PV
538  panel. d, Schematic of direct albedo sunlight collection on the front surface of a PV panel. e,
539  Schematic of diffused albedo sunlight collection on the front surface of a PV panel. f, Schematic
540  of the shade cast by a PV panel under sunlight. g, Schematic of the diffused solar irradiance
541  reaching an arbitrary observation point (x) on the ground or at any elevation within an AV farm.

542

543

S-35



Non-dominated Sorting e e e e oo

[ \
, ' \ 1 1
[ 1 1 1 1 . 1 1
T R - :
! ! ! ! Crowding Distance Sorting | | : * Selection :
1 . ittt i > <o | |
: : : : ) : : p : « Mutation :

1
| ! = SN ¥
1 D 1 1 ( \I 1
| 1 | 1 1 1 .
| | : | : ! b
1 1 1 1 1 , : 1
: Qt : : F4 : <+— Rejected : : : :
I ! 1 ! ! X Do
: 1 : F5 1 1 : ! ]
[ ) ! 1| 1 1 | : 1
| 1 | 1 1 [y ——— !
Rt =Pt+1 U Qe Ri+1=Pts1 U Qpeq
b c
A A
f f2
) © Rank 3
Pareto Front ® Rank 2 Pareto F
Rank 1 areto Front
f1 f1

544

545  Supplementary Figure 14. Illustrative overview of the NSGA-II procedure. a, Flow chart
546  demonstrating key steps of the NSGA-II algorithm, from initialization through to the selection of
547  the next generation. b, Schematic of Non-dominated sorting procedure. ¢, Schematic of Crowding
548  distance calculation.
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Supplementary Tables

Supplementary Table 1. Main PV module specifications used in the solar model.

Electrical Data | STC*

Nominal Max. Power (P4, W) Module Efficiency (%)

Bifacial Module 365 18.2
5% 383 19.1
10% 402 20.0
Bifacial Gain**
20% 438 21.8
30% 475 23.7
Operating Temperature -40°C ~ +85°C
Power Bifaciality™** 70%

Dimensions

Temperature Coefficient (Pq)

Nominal Module Operating
Temperature

2022 x 992 x 30 mm (79.6 x 39.1 x 1.18 in)

-0.36%/°C

41 £3°C

* Under Standard Test Conditions (STC) of irradiance of 1000 W/m?, spectrum AM 1.5 and cell

temperature of 25°C.

** Bifacial Gain: The additional gain from the back side compared to the power of the front side
at the standard test condition. It depends on mounting (structure, height, tilt angle etc.) and

albedo of the ground.

*** Power Bifaciality = Py rear/Pmax,fronts DOth Prgx rear and Ppgy rrone are tested under STC,

Bifaciality Tolerance: + 5%.
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559  Supplementary Table 2. Parameters used in the economic model. CAPEX represents the capital
560  expenditure, and OPEX denotes the operating expenditure.

Parameters Variable Units Value

Solar Component

Expected lifetime of PV/AV system*®#° T years 25.00
Annual degradation rate of PV modules®* D %/year 0.50
Real discount rate*® ) %/year 6.50
Inflation rate*® > Inf %/year 2.50
Raised panel CAPEX*"?! CAPEX US$/w 1.07
Annual OPEX for AV system®2% OPEX; USS$/kW 15.00
Annual transmission cost for PV electricity®  Trans; US$/MWh 3.67
Annual land lease cost for AV system?®4° Lease; US$/acre 1000.00
Powe.r purS%hase agreement price of PV PPA US$/MWh 75.70
electricity
Solar renewable energy credit®® REC US$/MWh 6.60
Agricultural component
Soybean price®’ PRI¢rop US$/bushel 9.69
Soybean Variable Cost™’ VCerop US$/bushel 2.50
Soybean Fixed Cost®’ FCerop US$/acre 136.00
561
562
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