Supplementary Information

Delayed Fluorescence from Inverted Singlet and Triplet Excited States for Efficient Organic Light-Emitting Diodes

Naoya Aizawa^{1,2}*, Yong-Jin Pu^{1,3}*, Atsuko Nihonyanagi¹, Ryotaro Ibuka¹, Hiroyuki Inuzuka¹, Barun Dhara¹, Yuki Koyama^{1,3}, Fumito Araoka¹ and Daigo Miyajiam¹*

Table of contents

1. Supplementary synthesis and characterisation

2. Supplementary materials and methods

Supplementary Fig. 1 Electronic configurations for two electrons in three orbitals.

Supplementary Fig. 2 Structures of 186 substituents used for generating the candidate heptazine analogues.

Supplementary Table 1 Singlet–triplet energy gap ($\Delta E_{\rm ST}$) and oscillator strength (f) of HzTFEX₂ and HzPipX₂ calculated by various methods.

Supplementary Fig. 3 Photophysical properties of HzTFEP₂ and HzPipT₂.

Supplementary Fig. 4 OLED performance.

Supplementary Table 2 Summary of OLED performance.

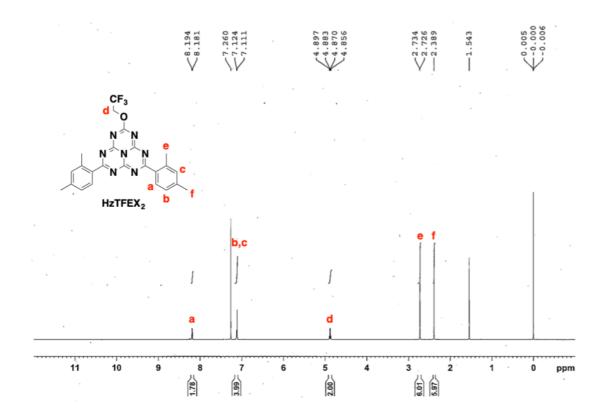
¹ RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

² Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

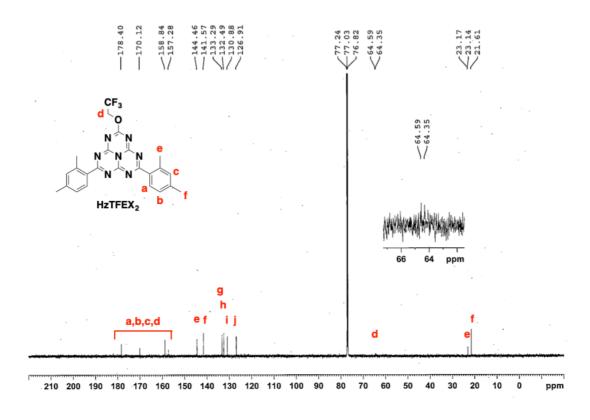
³ Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan. Corresponding Authors: E-mail: naoya.aizawa@riken.jp; yongjin.pu@riken.jp; daigo.miyajima@riken.jp

1. Supplementary synthesis and characterisation

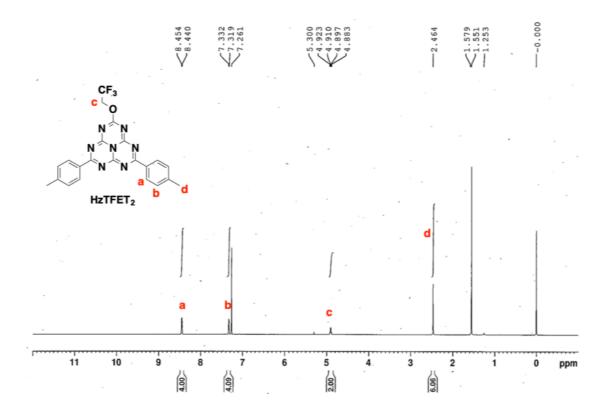
Synthesis of HzTFEX₂ 60% NaH oil dispersion (121 mg, 3.0 mmol) was added to a solution of 2,2,2-trifluoroethanol (199 μL, 2.78 mmol) in THF (10 mL) at 0 °C. After stirring for 30 min, the solution was added dropwise to a solution of 2,5,8-trichloroheptazine (700 mg, 2.53 mmol) in THF (20 mL) at 0 °C. After stirring for 2 h, the mixture was concentrated under reduced pressure to give a yellow solid. The crude products were used in the next step without further purification. The crude products were dissolved in *m*-xylene (12 mL), and AlCl₃ (1.0 g, 7.5 mmol) was added to the mixture at 0 °C. The reaction mixture was stirred for 2 h at 0 °C and then for 17 h at room temperature and quenched with H₂O. After the addition of CHCl₃ and stirring for 30 min, the organic phase was separated, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel (CHCl₃) to give 116 mg (0.242 mmol, 9.6%) of yellow solid.

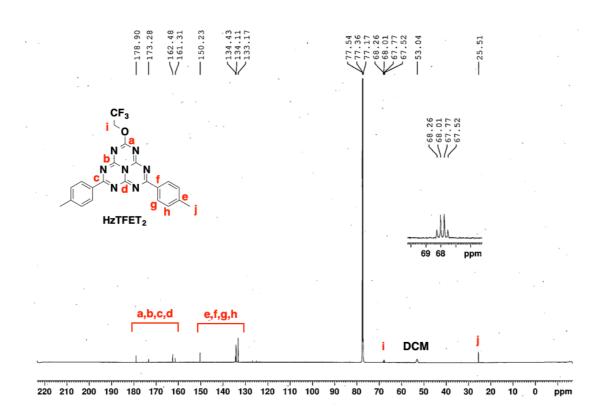

¹H NMR (600 MHz, CDCl₃) δ [ppm] = 2.39 (s, 6H), 2.73 (d, J = 4.8 Hz, 6H), 4.88 (q, J = 8.2 Hz, 2H), 7.11–7.13 (m, 4H), 8.19 (d, J = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 21.61, 23.15, 64.47, 126.91, 130.88, 132.49, 133.29, 141.57, 144.46, 157.28, 158.84, 170.12, 178.40. ¹⁹F NMR (600 MHz, CDCl₃) δ [ppm] = -73.67 (s). MS (FD-TOF): 479.16915 [M]⁺, calcd. for C₂₄H₂₀F₃N₇O (479.16814), error = 2.1 ppm.

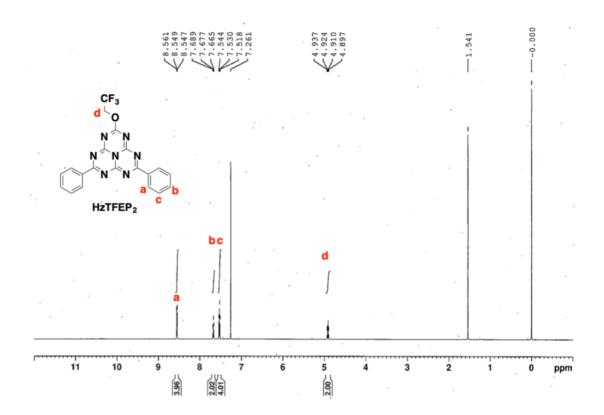
Synthesis of HzTFET₂ The synthetic procedure was the same as that of HzTFEX₂ except that toluene was used in place of *m*-xylene. ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 2.46 (s, 6H), 4.90 (q, J = 8 Hz, 2H), 7.33 (d, J = 7.8 Hz, 4H), 8.45 (d, J = 8.4 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 25.51, 67.89, 133.17, 134.11, 134.43, 150.23, 161.31, 162.48, 173.28, 178.90. ¹⁹F NMR (600 MHz, CDCl₃) δ [ppm] = -74.12 (s). MS (FD-TOF): 451.13667 [M]⁺, calcd. for C₂₂H₁₆F₃N₇O (451.13684), error = 0.37 ppm.

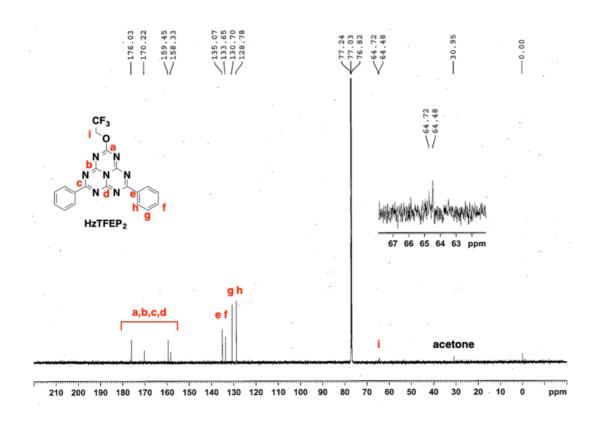

Synthesis of HzTFEP₂ The synthetic procedure was the same as that of HzTFEX₂ except that benzene was used in place of *m*-xylene. ¹H NMR (600 MHz, CDCl₃) δ [ppm] = 4.92 (q, J = 8 Hz, 2H), 7.53 (dd, J = 7.8 Hz, 4H), 7.68 (dd, J = 7.2 Hz, 2H), 8.56 (d, J = 7.2 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 64.60, 128.78, 130.70, 133.65, 135.07, 158.33, 159.45, 170.22, 176.03. ¹⁹F NMR (600 MHz, CDCl₃) δ [ppm] = -73.69 (s). MS (FD-TOF): 423.10465 [M]⁺, calcd. for C₂₀H₁₂F₃N₇O (423.10554), error = 2.1 ppm.

Synthesis of HzPipX₂ To a solution of 2,5,8-trichloroheptazine (100 mg, 0.362 mmol) in toluene (3 mL) was added piperidine (36 μ L, 0.36 mmol) at room temperature. After 30 min of stirring at 100 °C, the mixture was allowed to cool to room temperature, and AlCl₃ (106 mg, 0.795 mmol) was added. The reaction mixture was stirred for 1 h at 100 °C and diluted with H₂O and CHCl₃ at room temperature. The organic phase was separated, dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel (AcOEt/CHCl₃ = 0:100 to 1:20) to give 19 mg (0.044 mmol, 12%) of yellow solid.


¹H NMR (600 MHz, CDCl₃) δ [ppm] = 1.68–1.72 (m, 6H), 2.36 (s, 6H), 2.67 (s, 6H), 3.96 (br s, 4H), 7.05–7.07 (br, 4H), 7.99 (d, J = 8.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ [ppm] = 21.81, 24.32, 26.19, 45.94, 129.16, 130.26, 132.01, 144.76, 156.53, 157.74, 161.11, 174.40. MS (FD-TOF): 464.24440 [M]⁺, calcd. for C₂₅H₂₄N₈ (464.24369), error = 1.53 ppm.


¹H NMR of **HzTFEX**₂ in CDCl3 at 25 °C


 ^{13}C NMR of \textbf{HzTFEX}_2 in CDCl3 at 25 °C


¹H NMR of **HzTFET**₂ in CDCl3 at 25 °C

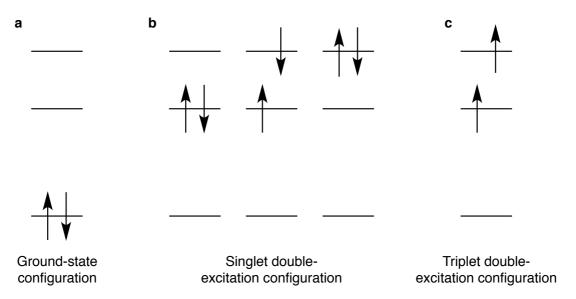
¹³C NMR of **HzTFET₂** in CDCl3 at 25 °C

 1H NMR of $HzTFEP_2$ in CDCl3 at 25 $^{\circ}C$

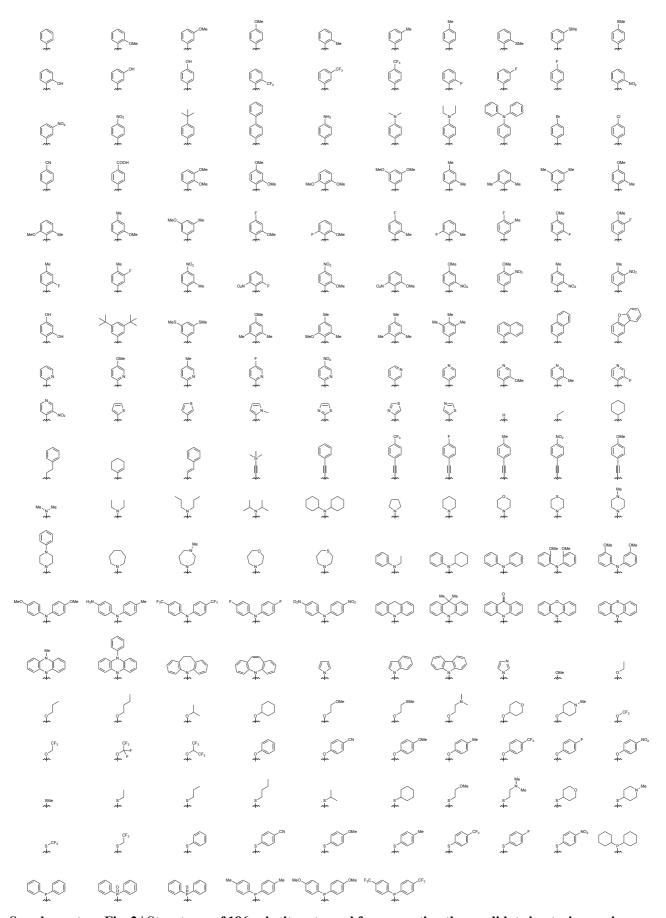
 ^{13}C NMR of $HzTFEP_2$ in CDCl3 at 25 $^{\circ}\text{C}$

2. Supplementary materials and methods

Materials Commercially available reagents and solvents were used without further purification unless otherwise noted. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) aqueous dispersions were purchased from Heraeus. 2,4,5,6-Tetra(carbazol-9-yl)isophthalonitrile (4CzIPN), 4,4"-bis(triphenylsilyl)-1,1':4',1"-terphenyl (BST), bis(4-(dibenzo[b,d]furan-4-yl)phenyl)diphenylsilane (DBFSiDBF), bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF), and 1,3-bis(3,5-di(pyridine-3-yl)phenyl)benzene (B3PyPB) were purchased from Luminescence Technology Corporation. 1,1-Bis(4-di-p-tolylaminophenyl)cyclohexane (TAPC), 4,4'-bis(carbazol-9-yl)biphenyl (CBP), tris(8-hydroxyquinolinato)aluminium (Alq3), 8-hydroxyquinolinatolithium (Liq), and 2-methyl-9,10-bis(naphthalene-2-yl)anthracene (MADN) were purchased from e-Ray Optoelectronics Technology. Molybdenum oxide (MoO₃), lithium fluoride (LiF), and aluminium (Al) were purchased from FURUUCHI Chemical.


General method NMR spectra were recorded on a Bruker Avance III HD spectrometer. The chemical shifts (δ in ppm) were determined using tetramethylsilane as an internal reference. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was performed on a Bruker model AutoflexTM speed spectrometer in reflector mode using dithranol as a matrix. High-resolution mass data were obtained by using a JEOL JMS-T100GCV with field desorption (FD) as an ionization method.

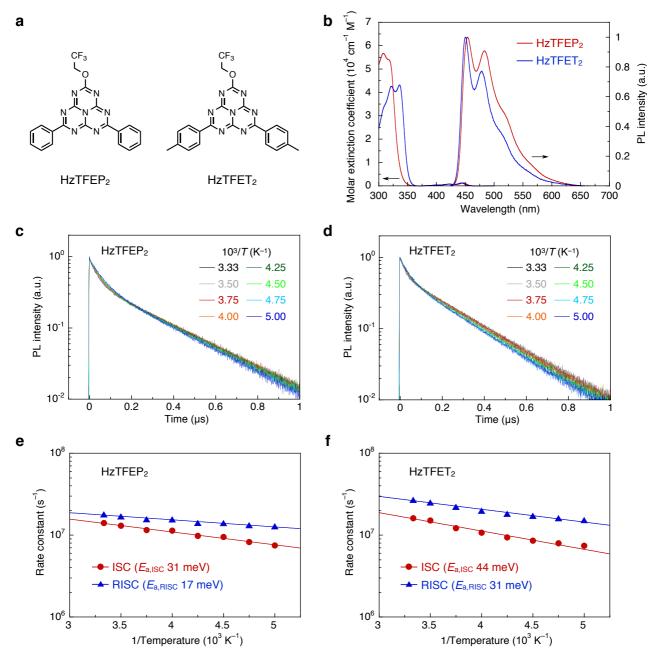
OLED fabrication OLEDs were fabricated on glass substrates covered with indium tin oxide (ITO) (sheet resistance = $15 \Omega \text{ sq}^{-1}$). The substrates were sequentially cleaned by sonication in detergent, deionized water, acetone, and 2-propanol, followed by UV-ozone treatment for 30 min. PEDOT:PSS was spin-coated on the substrates and annealed at 200 °C on a hot plate for 10 min in ambient conditions. The other materials were sequentially deposited on the substrates under vacuum ($< 5 \times 10^{-5} \text{ Pa}$) at a deposition rate of $< 0.3 \text{ nm s}^{-1}$ through shadow masks defining a pixel size of 4.0 mm². The deposition rate and layer thicknesses of each layer were monitored using a quartz crystal microbalance. The devices were prepared for evaluation by encapsulation using epoxy glue and glass lids under a nitrogen atmosphere. The fabricated OLEDs consist of the following layer sequences:


Device I. Glass/ITO (130 nm)/PEDOT:PSS (30 nm)/MoO₃ (5 nm)/BST (3 nm)/DBFSiDBF (10 nm)/PPF:10 wt% HzTFEX₂ (15 nm)/PPF (10 nm)/Alq3 (40 nm)/Liq (1 nm)/Al (80 nm)

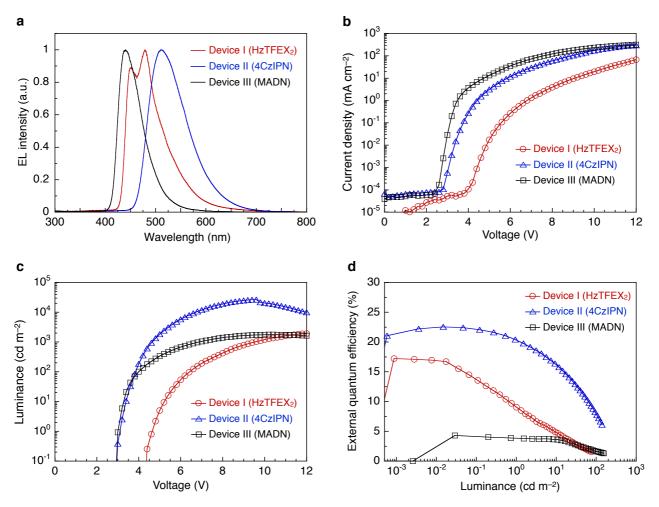
Device II. Glass/ITO (130 nm)/PEDOT:PSS (30 nm)/TAPC (40 nm)/CBP:5 wt% 4CzIPN (20 nm)/B3PyPB (40 nm)/LiF (1 nm)/A1 (80 nm)

Device III. Glass/ITO (130 nm)/PEDOT:PSS (30 nm)/TAPC (40 nm)/MADN (20 nm)/B3PyPB (40 nm)/LiF (1 nm)/Al (80 nm)

Supplementary Fig. 1 | Electronic configurations for two electrons in three orbitals. a, Ground-state configuration. b, Singlet double-excitation configurations. c, Triplet double-excitation configuration. The Pauli exclusion principle precludes the two electrons from occupying a given orbital in (c).



Supplementary Fig. 2 | Structures of 186 substituents used for generating the candidate heptazine analogues.


Supplementary Table 1 Singlet-triplet energy gap (ΔE_{ST}) and oscillator strength (f) of HzTFEX₂ and HzPipX₂ calculated by various methods.

Molecule	Method	$\Delta E_{ m ST}$ (meV)	f
$HzTFEX_2$	$TDDFT^a$	210	0.010
	EOM - $CCSD^b$	-12	0.019
	$ADC(2)^c$	-34	0.018
	$CASPT2^d$	-184	
$HzPipX_2$	$TDDFT^a$	334	0.015
	EOM - $CCSD^b$	10	0.040
	$ADC(2)^c$	-12	0.040
	$CASPT2^d$	-171	-

^aTDDFT LC-BLYP/6-31G(d) at the lowest-energy triplet excited state (T₁) geometry optimised by LC-BLYP/6-31G with a range-separated parameter of 0.18 bour⁻¹. ^bEOM-CCSD/cc-pVDZ at the T₁ geometry optimised by MP2/cc-pVDZ. ^cADC(2)/cc-pVDZ at the T₁ geometry optimised by MP2/cc-pVDZ. ^dCASPT2(12,12)/cc-pVDZ at the T₁ geometry optimised by MP2/cc-pVDZ.

Supplementary Fig. 3 | Photophysical properties of HzTFEP₂ and HzPipT₂. a, Molecular structures of HzTFEP₂ and HzTFET₂. b, Steady-state absorption and photoluminescence (PL) spectra of HzTFEP₂ and HzTFET₂ in deaerated toluene. c, d, Transient PL decays of HzTFEP₂ (c) and HzTFET₂ (d) at varying temperatures in deaerated toluene. e, f, Temperature dependence of the rate constants of ISC and RISC (k_{ISC} and k_{RISC}) of HzTFEP₂ (e) and HzTFET₂ (f). The solid lines in (e) and (f) represent the fits of the plots to the Arrhenius equation.

Supplementary Fig. 4 | **OLED performance.** a, b, c, d, Electroluminescence (EL) spectra measured at 1.0 mA (a), current density-voltage characteristics (b), luminance-voltage characteristics (c), and external quantum efficiency-current density characteristics (d) of Devices I, II, and III.

Supplementary Table 2 Summary of OLED performance.

Device	Emitter	$\lambda_{\mathrm{EL}} \ (\mathrm{nm})^a$	CIE $(x, y)^b$	$V_{\text{on}} $ $(V)^c$	$\eta_{\text{ext,max}} $ $\binom{9}{0}^d$	$\eta_{\text{ext},1/100/1000} \ (\%)^e$
I	$HzTFEX_2$	450, 479	0.17, 0.24	4.8	17.2	17.1/10.3/4.2
II	4CzIPN	512	0.28, 0.56	3.2	22.5	21.4/22.0/19.7
III	MADN	441	0.15, 0.08	3.2	4.3	4.3/3.7/2.0

^aPeak wavelength of EL spectra measured at 1.0 mA. ^bCommission Internationale de l'éclairage (CIE) coordinates measured at 1.0 mA. ^cTurn-on voltage for luminance > 1 cd m^{−2}. ^dMaximum external quantum efficiency. ^eExternal quantum efficiencies at luminances of 1, 100, and 1000 cd m^{−2}.