Supplementary information
Supplementary methods
Bulk RNA-seq
Total cDC1s and cDC2s (5,000 – 50,000 cells) were sorted directly into RLT Plus buffer (Qiagen; 74034) supplemented with ß-mercaptoethanol (1/100) and stored at -80 °C until further processing. RNA was obtained using the RNeasy Plus Micro Kit (Qiagen; 74034) according to manufacturer’s protocol.
For sequencing, RNA integrity was assessed using a Bioanalyser 2100 (Agilent). Sequencing was performed by VIB Nucleomics Core (www.nucleomics.be) on Illumina NextSeq platforms. 
Preprocessing of the RNA sequencing data was performed by Trimmomatic v0.351 and quality control by FastQC v0.11.4 (Babraham Bioinformatics). Mapping to the reference mouse genome was performed by Tophat2 v2.1.02 , BAM files were created with Samtools v0.1.193 and HTSeqCount v0.6.14 was used for counting. 
The data was split up by cell type, respectively cDC1s and cDC2s, and analyzed separately. Limma v3.42.0 was used to normalize the 2 datasets5. Based on library size and PCA clustering, it was determined that three cDC1 samples ('Xbp1_Ire1_WT_cDC1_1', 'Xbp1_KO_cDC1_2' and 'Xbp1_Ire1_KO_cDC1_4') and two cDC2 samples ('Xbp1_Ire1_KO_cDC2_3' and 'Xbp1_KO_cDC2_4') could be labelled as outliers and these samples were removed from downstream analysis. Genes which did not meet the requirement of a count per million (cpm) larger than 1 in at least the number of samples equalling the smallest group size (3) were filtered out. This resulted in a cDC1 expression table containing 11,059 genes and 9 samples and a cDC2 expression table containing 11441 genes and 10 samples.
edgeR v3.28.0 was utilized to perform differential expression analysis6. DE genes were determined for both cell types for the three pairwise comparisons: XBP1∆DC vs WT, XBP1/IRE1∆DC vs WT and XBP1/IRE1∆DC vs XBP1∆DC. To be labelled as a DE gene, a gene needed to have an adjusted p-value smaller than 0.05 and an absolute log-fold change (logFC) larger than 1.
All the expressed genes in cDC1s were plotted out on a hexagonal diagram called a triwise plot7. This was achieved by converting the expression matrix of the three biological genotypes to barycentric coordinates. This process reduced the data from 3 dimensions to 2 dimensions, but the differential expression information was preserved. The position of the genes on the diagram is given in the form of x and y coordinates as well as angle (in radians) and radius r (distance from center). To show their percentual distribution, the DE genes were plotted out on simplified rose plot. The rose plot is a polar histogram, a round directional histogram showing the percentage distribution of the differentially expressed genes on the triwise plot with pie shaped wedges. It is a way to give an overall sense of the expression changes between the three genotypes. The relative amount of DE genes is shown. This means that the concentric circles are percentage amounts. Labels are not shown. Mostly the concentric circles are per 10%, but it can also be per 5% or 20% depending on the distribution. It is possible to use the radius or the surface area of a wedge to denote the number of differentially expressed genes in the respective direction. In the created plots, the surface area is proportional to the relative number of DE genes. The surface area of all wedges adds up to 100%. This is the reason that the distance between the concentric rings is not equal.
GO analysis was performed in R using the org.MM.eg.db v3.10.0, AnnotationDbi v1.48.0 and GO.db v3.10.0 packages from R/Bioconductor. GO terms were loaded into R and then annotated to the DE genes. The genes annotated with the same GO terms could then be grouped together into gene sets. These gene sets were then used in the testUnidirectionality function of the triwise package to determine if the related GO terms were upregulated in a certain direction on the triwise plot. A "model-based gene set analysis" method8 is used to filter out redundant results by selecting gene sets which adequately explain the DE genes in the dataset. The diffexp statistic, which indicates whether a gene is DE or not (0 or 1), was used to calculate the strength of the upregulation. Significant GO terms needed to have an adjusted p-value smaller than 0.05 and a z-score (strength of upregulation according to diffexp) larger than 0.05. These GO terms can then be plotted as a dot on the triwise plot using the associated q-value and angle. The angle determines the direction, and the q-value determines the distance to the origin (radius). The further from the origin, the more significant the unidirectional enrichment of the GO term. Each concentric circle is a factor 10 difference.
Separate gene lists were created with genes associated with certain biological processes: “Cholesterol  metabolism” (based on GO:0008203); “XBP1 targets”(based on earlier described gene lists9); “ISR”(based on earlier described gene lists10); “RIDD” (based on earlier described gene lists11,12); “Homeostatic DC maturation” and “Common immunogenic and homeostatic DC maturation” (based on earlier described gene lists13). The genes from each list are split up into DE, non-DE and potentially non-expressed (non-Exp) genes. The gene lists are featured on separate tabs in a supplementary excel table (Supplementary Table 10). 
The R package pheatmap v1.0.12 was used for making heatmaps. The heatmaps present the gene expression profile of the DE genes from the list. The displayed gene expression was log2 normalized. The mean expression value per gene over all samples was calculated and then subtracted from each sample's particular gene expression value. The genes shown in the heatmaps feature a logFC larger than 1 in at least one of the comparisons (adj. p-value < 0.05). The genes were ordered according to their angle in the hexagonal diagram and were grouped together based on a similar location on the chart.
Functional annotation of the DE genes in each of the three comparisons in cDC1s was performed in the Ingenuity Pathway Analysis software program (Qiagen). Z-scores, which indicate directionality, were linked to the log2-ratio of the genes. IPA core analysis was performed which leverages the Ingenuity Pathway Knowledge Base (IPKB) to identify affected canonical pathways, diseases and functions, and gene networks.
Bulk miRNA-seq
Small RNA libraries were prepped using the TruSeq small RNA library prep kit (Illumina) according to the manufacturer's instructions. Libraries were size selected using a Pippin Prep device and a 3% Agarose cassette (Sage Science) and sequenced on a NovaSeq500 (Illumina) in single end mode, 75 cycles. 
[bookmark: _Int_VME7hk6B]The miRNA sequencing was first pre-processed. Adapter trimming was performed with cutadapt (v1.8.1) using the options --discard-untrimmed -m 15 -e 0.15 -q 20 -a TGGAATTCTCGGGTGCCAAGG. Further pre-processing was carried out with multiple tools of the FASTX-Toolkit (v0.0.14). Quality trimming (fastq_quality_filter with the options -q 20 -p 80 -Q33) was done to remove low quality reads and afterwards identical reads were collapsed into a single sequence (fastx_collapser with options -v -Q33). Quality control was performed with FastQC (v0.11.3) (Babraham Bioinformatics). Subsequently, reads were mapped with Bowtie (v1.1.2) with the options -f -k 10 -n 0 -l 25 --best. Reference databases miRBase v2114, ensembl v84 and ucsc mm10 were used. Finally, various inhouse perl and R scripts were used to collect further stats and calculate the number of mapped reads. This resulted in a final miRNA count table for all samples.   
Twenty samples were analyzed. The data was split up by cell type, respectively cDC1s and cDC2s (WT only), and analyzed separately. Only data from cDC1s are shown. Limma v3.42.0 was used to normalize the dataset5. miRNAs which did not meet the requirement of a count per million (cpm) larger than 1 in at least the number of samples equaling the smallest group size (4) were filtered out. This resulted in an expression table containing 473 miRNAs and 16 samples.  
edgeR v3.28.0 was utilized to perform differential expression analysis6. DE miRNAs were determined for the three pairwise comparisons: XBP1∆DC vs WT, XBP1/IRE1∆DC vs WT and XBP1/IRE1∆DC vs XBP1∆DC. To be labeled as a DE miRNA, a miRNA needed to have an adjusted p-value smaller than 0.05 and an absolute log-fold change (logFC) larger than 1. A separate analysis was also performed with less strict cut-offs to determine a broader list of affected miRNAs (adjusted p-value < 0.15 and absolute logFC > 0.5).
Principal Component Analysis (PCA) revealed that wild-type littermates from both XBP1∆DC and XBP1/IRE1∆DC mice grouped together.  
All the expressed miRNAs in the experiment were plotted out on a hexagonal diagram called a triwise plot7. This was achieved by converting the expression matrix of the three biological genotypes to barycentric coordinates. This process reduced the data from 3 dimensions to 2 dimensions, but the differential expression information was preserved.  
The miRNAs which are significantly differentially expressed between XBP1/IRE1∆DC and WT are colored red on the triwise and those with a positive logFC are annotated.
CITE-sequencing
Sorting and library prep
DCs were enriched as described above and 4 million cells were stained with FACS antibodies, TruStain FcX Block (BioLegend, 101320) and the mouse cell surface protein antibody panel containing 160 oligo-conjugated antibodies (TotalSeq-A, BioLegend) and 9 TotalSeq-A isotype controls. CD64- CD11c+ MHCII+ XCR1+ CD172a- cDC1s (65% of total), CD64- CD11c+ MHCII+ XCR1- CD172a+ cDC2s (10% of total), CD64- CD11c+ MHCII-/Lo CD135+ CD172adim pre-DCs (15% of total) and  live cells (10% of total) from the spleen of WT (XBP1/IRE1fl/fl) and XBP1/IRE1∆DC mice were sorted. Sorted single-cell suspensions were resuspended at an estimated final concentration of 1000 cells/μl and loaded on a Chromium GemCode Single Cell Instrument (10x Genomics) to generate single-cell gel beads-in-emulsion (GEM). The scRNA-Seq libraries were prepared using the GemCode Single Cell 3’ Gel Bead and Library kit, version NextGEM 3.1 (10x Genomics) according to the manufacturer’s instructions with the addition of amplification primer (3 nM, 5’CCTTGGCACCCGAGAATT*C*C) during cDNA amplification to enrich the TotalSeq-A cell surface protein oligos. Size selection with SPRIselect Reagent Kit (Beckman Coulter) was used to separate amplified cDNA molecules for 3’ gene expression and cell surface protein construction. TotalSeq-A protein library construction including sample index PCR using Illumina’s Truseq Small RNA primer sets and SPRIselect size selection was performed according to the manufacturer’s instructions. The cDNA content of prefragmentation and post-sample index PCR samples was analyzed using the 2100 BioAnalyzer (Agilent).
CITE-seq analysis
Sequencing libraries were loaded on an Illumina NovaSeq 6000 flow cell at VIB Nucleomics core with sequencing settings according to the recommendations of 10x Genomics (28/8/0/91; 135pM + 1% PhiX), pooled in a 70:20:10 ratio for the combined 3’ gene expression, cell surface protein samples and HashTag-Oligo (HTO) data, respectively.
The Cell Ranger pipeline (10x Genomics, v4.0.0) was used to perform sample demultiplexing and to generate FASTQ files for read 1 and read 2 for the gene expression and cell surface protein libraries. Read 2 of the gene expression libraries was mapped to the reference genome (mouse mm10) using STAR. Subsequent barcode processing, unique molecular identifier filtering and gene counting was performed using the Cell Ranger suite. CITE-seq reads were quantified using the feature-barcoding functionality. The mean reads per cell across all expression libraries were 25,967 RNA reads and 3,481 ADT reads respectively, with an average sequencing saturation of 40.8% and 75.7%, as calculated by Cell Ranger. 4 individual single-cell libraries were analyzed for this experiment, totalling 46,490 cells. After individual analysis, the resulting Seurat objects were merged into a WT object and a XBP1/IRE1∆DC object. These objects were further investigated and subsequently subsetted to only cDC1s. The cDC1s of the WT and XBP1/IRE1∆DC object were finally merged into the object featured in the paper.
Pre-processing data
Pre-processing of the RNA UMI matrix of each sample was done by the scater and scran R packages (v1.14.6) according to the workflow proposed by the Marioni lab15. 
Outlier cells were identified based on three metrics (library size, number of expressed genes and mitochondrial proportion) and an initial lenient filtering was performed on these outlier cells according to median absolute deviation (MADs). Log-transformed normalized expression values were then computed from the count matrix.
Subsequently the Seurat R package (v3.1.4)16 was used to create a Seurat object for each sample with both the raw counts and log2 transformed counts. SCTransform was performed on the raw count data to normalize the UMI counts by regularized negative binomial regression. Additionally, highly variable features were found and scaling was performed on the log-transformed count data as a back-up for SCT. Principal component analysis, clustering and tSNE/UMAP dimensionality reduction were performed. DoubletFinder (v2.0.2)17 was performed to predict any remaining doublets in the dataset.
The ADT UMI matrix did not have extensive pre-processing performed. The same cells were filtered as during the RNA pre-processing to keep the columns of the matrices equal. The ADT expression data was processed using the Seurat pipeline, with CLR normalization and scaling of the data performed using the default parameters. Principal component analysis, clustering and tSNE/UMAP dimensionality reduction were performed too.
The number of top PCs used for clustering of the RNA data and the ADT data was determined automatically through Dimension Estimation via Translated Poisson Distributions (maxLikGlobalDimEst function). A standard resolution of 0.8 was used for both assays. Some extra manual clustering was often performed based on marker expression.
Marker genes per identified subpopulation were found using the FindAllMarkers function of the Seurat pipeline and this informed the annotation process of the clusters.
[bookmark: __DdeLink__1781_11733542]The HTO assay was transformed via CLR normalization. Biological replicates in each genotype sample were demultiplexed by running the MULTIseqDemux function included in Seurat. It is based on the classification method from MULTI-seq18. The autoTresh parameter of the probability density function (PDF) was set to True.
After annotating all individual samples, DoubletFinder annotation together with ADT metrics and information on mitochondrial proportion, UMI count and gene count were used to filter doublets and low-quality clusters. 
The remaining clusters from the WT samples were merged into a WT object and the remaining clusters from the XBP1/IRE1∆DC samples into a XBP1/IRE1∆DC object. The same Seurat pipeline was performed as above.
Subsequently for both objects, a cDC1 subset was created and the same Seurat pipeline was performed again. Some further cleaning of the cDC1 objects had to be performed to remove contaminating cells. The WT cDC1 object contains 7 clusters and 11,611 cells and the XBP1/IRE1∆DC cDC1 object contains 7 clusters and 13,367 cells.
Lastly, the cDC1 subsets of WT and XBP1/IRE1∆DC samples were merged into a complete cDC1 subset object and the same Seurat pipeline was performed one last time. In this final object the number of PCs used for dimensionality reduction was decided manually (top 30 PCs for RNA and top 20 PCs for ADT) and the resolution for the RNA assay was increased to 1.4 for clustering.  Doublets identified by the MULTIseqDemux function were now removed so all cells could be assigned with confidence to individual replicates in each sample. Antibodies with low expression in the studied samples were filtered out based on inspection of the density plots and feature plots for each antibody. The final object contains 7 clusters and 23,026 cells.
Relative abundance of cDC1 subclusters
CDC1s were split by sample replicate and cDC1 subcluster into 84 groups and the resulting cell count of each group was divided by the total cDC1 count of their respective sample replicate to calculate percentages. This was performed to take into account the difference in total population size between the replicates. Then the data of the samples were aggregated per genotype. This aggregated percentage data was then used to generate a relative abundance plot of the subclusters in WT and XBP1/IRE1∆DC cDC1s.
Differential State Analysis
The comparison between XBP1/IRE1∆DC and WT cDC1s was performed using the R package muscat (v1.1.0)19. It allows for Differential State (DS) analysis in multi-sample, multi-group, multi-(cell-)subpopulation scRNA-seq data. The SCT data for the two genotypes was aggregated for each cDC1 subpopulation respectively and a "pseudobulk" DS analysis was performed between the two genotypes. The DS analysis performed utilized the DESeq2 method. The DS results were filtered according to local adjusted p-value (<0.05) and absolute logFC (>0.4) to retain the biologically significant results.


Supplementary tables
(Provided separately)
Supplementary Table 1: Lists of DE genes per pairwise comparison in cDC2s. This table features all DE genes present in cDC2s in the experiment across the three pairwise comparisons. DE genes were determined by implementing cut-offs of |logFC| > 1 and adjusted p-value < 0,05. These genes are split up into 3 tabs: XBP1∆DC vs WT; XBP1/IRE1∆DC vs WT; XBP1/IRE1∆DC vs XBP1∆DC. The first column in each tab is the gene name. The subsequent six columns are also displayed: logFC = estimate of the log2-fold-change; AveExpr = average log2-expression value for the gene across all mice in the comparison; t = moderated t-statistic; P.Value = raw p-value; adj.P.Val = p-value adjusted for multiple testing according to the Benjamini- Hochberg procedure; B = log-odds that the gene is DE.

(Provided separately)
Supplementary Table 2: Lists of DE genes per pairwise comparison in cDC1s. This table features all DE genes present in cDC1s in the experiment across the three pairwise comparisons. DE genes were determined by implementing cut-offs of |logFC| > 1 and adjusted p-value < 0,05. These genes are split up into 3 tabs: XBP1∆DC vs WT; XBP1/IRE1∆DC vs WT; XBP1/IRE1∆DC vs XBP1∆DC. The first column in each tab is the gene name. The subsequent six columns are also displayed: logFC = estimate of the log2-fold-change; AveExpr = average log2-expression value for the gene across all mice in the comparison; t = moderated t-statistic; P.Value = raw p-value; adj.P.Val = p-value adjusted for multiple testing according to the Benjamini- Hochberg procedure; B = log-odds that the gene is DE.



(Provided separately)
Supplementary Table 3: Summary GO terms differential expression. GO terms are loaded into R using the GO.db package. Other R packages (org.Mm.eg.db and AnnotationDbi) are then used to annotate the expressed genes with these GO terms and group them into gene sets for each GO term. The “testUnidirectionality” function from the R package triwise is subsequently used to ascertain whether these gene sets are significantly unidirectionally enriched. The diffexp statistic, which indicates whether a gene is DE or not (0 or 1), is used to assess the strength of the upregulation. The results are then filtered based on the strength of the upregulation (z>0.05) and the adjusted p-value (qval<0.05) and ordered according to the adjusted p-value. The unidirectionally enriched GO terms are then split up into 7 lists according to their angle on the triwise plot. See the first tab for all the angles depicted on the triwise plot and subsequent tabs for the separate lists of GO terms for each angle separately. Each tab features a table with 7 columns and a triwise plot with the unidirectionally enriched GO terms for that particular angle: pval = p value for significance of unidirectional enrichment; angle = average angle in radians for the genes in the gene set; n = amount of genes in the gene set; gsetid = GO accession number; z = strength of upregulation according to diffexp statistic; qval = adjusted p-value for significance of unidirectional enrichment; name = GO term.

(Provided separately)
Supplementary Table 4: Muscat Differential State markers between XBP1/IRE1∆DC and WT in cDC1 CITE-seq. Pseudobulk DS analysis results for each cDC1 subpopulation between XBP1/IRE1∆DC and WT as determined by muscat utilizing the DESeq2 method. Benjamini-Hochberg correction was used to adjust the p-values for multiple testing. The DS results were filtered according to local adjusted p-value (<0.05) and absolute logFC (>0.4) to retain the DE genes. The DE genes per cDC1 subpopulation were subsequently split up into separate tabs based on the sign of the logFC.

(Provided separately)
Supplementary Table 5: Non-strict DE miRNAs between WT, XBP1∆DC and XBP1/IRE1∆DC cDC1s.
This table features all the non-strict DE miRNAs present in cDC1s in the experiment across the three pairwise comparisons. Non-strict DE miRNAs were determined by implementing cut-offs of |logFC| > 0.5 and adjusted p-value < 0,15. These miRNAs are split up into 3 tabs: XBP1∆DC vs WT; XBP1/IRE1∆DC vs WT; XBP1/IRE1∆DC vs XBP1∆DC. The last 2 columns in each tab feature the miRNA name and accession number. Six other columns are also displayed: logFC = estimate of the log2-fold-change; AveExpr = average log2-expression value for the gene across all mice in the comparison; t = moderated t-statistic; P.Value = raw p-value; adj.P.Val = p-value adjusted for multiple testing according to the Benjamini- Hochberg procedure; B = log-odds that the gene is DE.

Supplementary Table 6: LNP composition.
	 
	PIC-LNP
	EMPTY LNP

	N/P RATIO*
	5:1
	5:1

	AMOUNT PIC (MG)
	0.75
	/

	IONIZABLE LIPID (MOL%)
	50
	50

	CHOLESTEROL (MOL%)
	38.5
	38.5

	DOPE (MOL%)
	10
	10

	DMG-PEG (MOL%)
	1.5
	1.5



*Target molar charge ratio
Supplementary Table 7: Overview of all antibodies used for flow cytometry and/or FACS.
	ANTIBODIES
	SOURCE
	IDENTIFIER

	Armenian Hamster anti-mouse CD11c (clone N418), APC conjugated
	BioLegend
	Cat# 117310

	Armenian Hamster anti-mouse CD11c (clone N418), eFluor450 conjugated
	Thermo Fisher Scientific
	Cat# 48-0114-82

	Hamster anti-mouse CD11c (clone HL3), FITC conjugated
	BD Bioscience
	Cat# 553801

	Hamster anti-mouse CD11c (clone HL3), BUV737 conjugated
	BD Bioscience
	Cat# 612796

	Rat anti-mouse CD86 (clone GL1), PE conjugated
	BD Bioscience
	Cat# 553692

	Rat anti-mouse CD86 (clone GL1), BV421 conjugated
	BioLegend
	Cat# 105032

	Rat anti-mouse CD40 (clone 3/23), APC conjugated
	BioLegend
	Cat# 124612

	Armenian Hamster anti-mouse CD80 (clone 16-10A1), PE conjugated
	BD Bioscience
	Cat# 553769

	Armenian Hamster anti-mouse CD80 (clone 16-10A1), BUV737 conjugated
	BD Bioscience
	Cat# 612773

	Rat anti-mouse CD197 (clone 4B12), biotin conjugated
	Thermo Fisher Scientific
	Cat# 13-1971-85

	Rat anti-mouse I-A/I-E (clone M5/114.15.2), APC-eFluor780 conjugated
	Thermo Fisher Scientific
	Cat# 47-5321-82

	Rat anti-mouse I-A/I-E (clone M5/114.15.2), FITC conjugated
	Thermo Fisher Scientific
	Cat# 11-5321-85

	Rat anti-mouse I-A/I-E (clone M5/114.15.2), BUV805 conjugated
	BD Bioscience
	Cat# 748844

	Rat anti-mouse I-A/I-E (clone M5/114.15.2), BUV496 conjugated
	BD Bioscience
	Cat# 750281

	Rat anti-mouse CD11b (clone M1/70), BUV395 conjugated
	BD Bioscience
	Cat# 563553

	Rat anti-mouse CD11b (clone M1/70), APC-R700 conjugated
	BD Bioscience
	Cat# 564985

	Rat anti-mouse Ly-6G (clone 1A8), AF700 conjugated
	BioLegend
	Cat# 127616

	Rat anti-mouse Ly-6G (clone 1A8), biotin conjugated
	BioLegend
	Cat# 127604

	Rat anti-mouse Ly-6C (clone HK1.4), PerCP-Cy5.5 conjugated
	Thermo Fisher Scientific
	Cat# 45-5932-82

	Rat anti-mouse Ly-6C (clone HK1.4), BV570 conjugated
	BioLegend
	Cat# 128030

	Mouse anti-mouse CD64 (clone X54-5/7.1), BV711 conjugated
	BioLegend
	Cat# X54-5/7.1

	Mouse anti-mouse CD64 (clone X54-5/7.1), BV421 conjugated
	BioLegend
	Cat# 139309

	Mouse anti-mouse CD64 (clone X54-5/7.1), biotin conjugated
	BioLegend
	Cat# 139318

	Armenian Hamster anti-mouse CD3e (clone 145-2c11), BUV395 conjugated
	BD Bioscience
	Cat# 563565

	Armenian Hamster anti-mouse CD3e (clone 145-2c11), BV605 conjugated
	BioLegend
	Cat# 100351

	Armenian Hamster anti-mouse CD3e (clone 145-2c11), PE-Cy5 conjugated
	Thermo Fisher Scientific
	Cat# 15-0031-83

	Armenian Hamster anti-mouse CD3e (clone 145-2c11), APC-Cy7 conjugated
	BD Bioscience
	Cat# 557596

	Armenian Hamster anti-mouse CD3e (clone 145-2c11), biotin conjugated
	Thermo Fisher Scientific
	Cat# 13-0031-85

	Rat anti-mouse CD19 (clone 1D3), BUV563 conjugated
	BD Bioscience
	Cat# 749028

	Rat anti-mouse CD19 (clone 6D5), BV605 conjugated
	BioLegend
	Cat# 115540

	Rat anti-mouse CD19 (clone 1D3), PE-Cy5 conjugated
	Thermo Fisher Scientific
	Cat# 15-0193-83

	Rat anti-mouse CD19 (clone 1D3), APC-Cy7 conjugated
	BD Bioscience
	Cat# 557655

	Rat anti-mouse CD19 (clone 6D5), BV786 conjugated
	BioLegend
	Cat# 115543

	Rat anti-mouse CD19 (clone 1D3), biotin conjugated
	Thermo Fisher Scientific
	Cat# 13-0193-85

	Armenian Hamster anti-mouse TCR ß (clone H57-597), BV786 conjugated
	BioLegend
	Cat# 109249

	Rat anti-mouse CD135 (clone A2F10), PE conjugated
	Thermo Fisher Scientific
	Cat# 12-1351-83

	Rat anti-mouse CD135 (clone A2F10), APC conjugated
	BD Bioscience
	Cat# 560718

	Rat anti-mouse CD26 (clone H194-112), FITC conjugated
	BD Bioscience
	Cat# 559652

	Mouse anti-mouse XCR1 (clone ZET), BV510 conjugated
	BioLegend
	Cat# 148218

	Mouse anti-mouse XCR1 (clone ZET), BV650 conjugated
	BioLegend
	Cat# 148220

	Mouse anti-mouse XCR1 (clone ZET), PE conjugated
	BioLegend
	Cat# 148204

	Rat anti-mouse CD172a (clone P84), PerCP-eFluor710 conjugated
	Thermo Fisher Scientific
	Cat# 46-1721-82

	Rat anti-mouse CD172a (clone P84), PE-Cy7 conjugated
	BioLegend
	Cat# 144008

	Rat anti-mouse ESAM (clone 1G8), PE conjugated
	Thermo Fisher Scientific
	Cat# 12-5852-82

	Rat anti-mouse ESAM (clone 1G8), PE-Cy7 conjugated
	BioLegend
	Cat# 136212

	Rat anti-mouse CD103 (clone M290), BUV395 conjugated
	BD Bioscience
	Cat# 740238

	Rat anti-mouse CD62L (clone MEL-14), PE-Cy5 conjugated
	BioLegend
	Cat# 104410

	Rat anti-mouse CD62L (clone MEL-14), BV421 conjugated
	BioLegend
	Cat# 104436

	Rat anti-mouse F4/80 (clone BM8), BV786 conjugated
	BioLegend
	Cat# 123141

	Mouse anti-mouse CD45.1 (clone A20), FITC conjugated
	Thermo Fisher Scientific
	Cat# 11-0453-85

	Mouse anti-mouse CD45.2 (clone 104), BUV737 conjugated
	BD Bioscience
	Cat# 612778

	Rat anti-mouse CD45 (clone 30-F11), FITC conjugated
	BioLegend
	Cat# 103108

	Rat anti-mouse CD45 (clone 30-F11), BV480 conjugated
	BD Bioscience
	Cat# 566095

	Rat anti-mouse CD45 (clone 30-F11), BV605 conjugated
	BD Bioscience
	Cat# 563053

	Rat anti-mouse CD45 (clone 30-F11), BUV496 conjugated
	BD Bioscience
	Cat# 749889

	Rat anti-mouse CD45 (clone 30-F11), BUV805 conjugated
	BD Bioscience
	Cat# 748370

	Rat anti-mouse CD4 (clone RM4-5), BUV496 conjugated
	BD Bioscience
	Cat# 741050

	Rat anti-mouse CD8a (clone 53-6.7), BUV395 conjugated
	BD Bioscience
	Cat# 565968

	Rat anti-mouse CD8a (clone 53-6.7), BUV615 conjugated
	BD Bioscience
	Cat# 613004

	Rat anti-mouse CD8a (clone 53-6.7), PerCP-Cy5.5 conjugated
	Thermo Fisher Scientific
	Cat# 45-0081-82

	Armenian Hamster anti-mouse TCRß (clone H57-597), BV785 conjugated
	Biolegend
	Cat# 109249

	Mouse anti-mouse CD161 (clone PK136), biotin conjugated
	Thermo Fisher Scientific
	Cat# 13-5941-85

	Rat anti-mouse TER-119 (clone TER-119), biotin conjugated
	Thermo Fisher Scientific
	Cat# 13-5921-82

	Rat anti-mouse anti-CD16/CD32 (clone 2.4G2), unconjugated (Fc Block)
	Bioceros
	N/A 

	Rat anti-mouse CD16/CD32 (clone 93), unconjugated (TruStain FcX)
	BioLegend
	Cat# 101320



Supplementary Table 8: Overview of all primer sequences used for RT-qPCR.
	Abcg1 (Forward) 5’TCACCCAGTTCTGCATCCTCT’3

	Abcg1 (Reverse) 5’GCAGATGTGTCAGGACCGAGT’3

	ActB (Forward) 5'GCTTCTAGGCGGACTGTTACTGA'3

	ActB (Reverse) 5'GCCATGCCAATGTTGTCTCTTAT'3

	Apoe (Forward) 5’CTGACAGGATGCCTAGCCG’3

	Apoe (Reverse) 5’CGCAGGTAATCCCAGAAGC’3

	Apol10b (Forward) 5’TACGACCACCGTTGTGGAAG’3

	Apol10b (Reverse) 5’GTGATCCCTGAGGATTTTGACTG’3

	Apol7c (Forward) 5’GAAGCTGCCTTGCGAGAGT’3

	Apol7c (Reverse) 5’TTGTGCCACAGGTCATTTTGG’3

	Atf4 (Forward) 5’CTCTTGACCACGTTGGATGAC’3

	Atf4 (Reverse) 5’CAACTTCACTGCCTAGCTCTAAA’3

	Bloc1s1 (Forward) 5'CACCCAGCCAGACTCGAC'3

	Bloc1s1 (Reverse) 5'GCAGCGATAGCTTCTCTCCTC'3

	Cars (Forward) 5'GCTCCGCCTCTATAATAGCCT'3

	Cars (Reverse) 5'CCCGCAACAGTACCACGTC'3

	Ccl22 (Forward) 5'TCTTGCTGTGGCAATTCAGA'3

	Ccl22 (Reverse) 5'GAGGGTGACGGATGTAGTCC '3

	Ccr7 (Forward) 5'TGTACGAGTCGGTGTGCTTC'3

	Ccr7 (Reverse) 5'GGTAGGTATCCGTCATGGTCTTG'3

	Clec2i (Forward) 5'TTCTGGATACCCACGTAACTGG'3

	Clec2i (Reverse) 5'TCCCCCTTGAATCTCTTTAGGAA'3

	Creld1 (Forward) 5'TCTGGTGCTTGAGCCTGTTTC'3

	Creld1 (Reverse) 5'CGGCAGGTATGACACGGATG'3

	Cyp51a1 (Forward) 5'GACAGGAGGCAACTTGCTTTC'3

	Cyp51a1 (Reverse) 5'GTGGACTTTTCGCTCCAGC'3

	Ddit3 (Forward) 5'CTGGAAGCCTGGTATGAGGAT'3

	Ddit3 (Reverse) 5'CAGGGTCAAGAGTAGTGAAGGT'3

	Dgat2 (Forward) 5'GCGCTACTTCCGAGACTACTT'3

	Dgat2 (Reverse) 5'GGGCCTTATGCCAGGAAACT'3

	Dnajb9 (Forward) 5'CTCCACAGTCAGTTTTCGTCTT'3

	Dnajb9 (Reverse) 5'GGCCTTTTTGATTTGTCGCTC'3

	Edem1 (Forward) 5'AAGCCCTCTGGAACTTGCG'3

	Edem1 (Reverse) 5'AACCCAATGGCCTGTCTGG'3

	Ern1 (Forward) 5'TGCTGAAACACCCCTTCTTC'3

	Ern1 (Reverse) 5'GCCTCCTTTTCTATTCGGTCA'3

	Fdps (Forward) 5’GGAGGTCCTAGAGTACAATGCC’3

	Fdps (Reverse) 5’ AAGCCTGGAGCAGTTCTACAC’3

	Fscn1 (Forward) 5'GACTGCGAAGGTCGCTACC'3

	Fscn1 (Reverse) 5'CTGATCGGTCTCTTCATCCTGA'3

	Gapdh (Forward) 5'TGGCAACAATCTCCACTTTGC'3

	Gapdh (Reverse) 5'ACAAAATGGTGAAGGTCGGTG'3

	Hsd17b7 (Forward) 5'ACCCAGAATGACTCGGTCACT'3

	Hsd17b7 (Reverse) 5'CCTTCTTTGCATTGCGAGAGG'3

	Idi1 (Forward) 5'AGCTTCTAGCGGAGATGTGTA'3

	Idi1 (Reverse) 5'CAGCAACTATTGGTGAAACAACC'3

	Ifi47 (Forward) 5'TCTCCAGAAACCCTCACTGGT'3

	Ifi47 (Reverse) 5'TCAGCGGATTCATCTGCTTCG'3

	Ifit1 (Forward) 5'CTGAGATGTCACTTCACATGGAA'3

	Ifit1 (Reverse) 5'GTGCATCCCCAATGGGTTCT'3

	Ifit2 (Forward) 5'AGTACAACGAGTAAGGAGTCACT'3

	Ifit2 (Reverse) 5'AGGCCAGTATGTTGCACATGG'3

	Irf7 (Forward) 5'GAGACTGGCTATTGGGGGAG'3

	Irf7 (Reverse) 5'GACCGAAATGCTTCCAGGG'3

	Isg20 (Forward) 5'GAACATCCAGAACAACTGGCG'3

	Isg20 (Reverse) 5'GTAGAGCTCCATTGTGGCCCT'3

	Itgae (Forward) 5'CCTGTGCAGCATGTAAAAGAATG'3

	Itgae (Reverse) 5'CAAGGATCGGCAGTTCAGATAC'3

	Itgb2 (Forward) 5'CAGGAATGCACCAAGTACAAAGT'3

	Itgb2 (Reverse) 5'CCTGGTCCAGTGAAGTTCAGC'3

	Ldlr (Forward) 5'TGACTCAGACGAACAAGGCTG'3

	Ldlr (Reverse) 5'ATCTAGGCAATCTCGGTCTCC'3

	Oas3 (Forward) 5'TCTGGGGTCGCTAAACATCAC'3

	Oas3 (Reverse) 5'GATGACGAGTTCGACATCGGT'3

	Pparg (Forward) 5'CATAAAGTCCTTCCCGCTGA'3

	Pparg (Reverse) 5'GAAACTGGCACCCTTGAAAA'3

	Rpl13a (Forward) 5'CAGAAAGTTTGCTTACCTGGGG'3

	Rpl13a (Reverse) 5'CCGATAGTGCATCTTGGCCT'3

	Sdha (Forward) 5'AACTACAAGGGACAGGTGCTG'3

	Sdha (Reverse) 5'CTCCCCACAGGCATACAGAC'3

	Sec24d (Forward) 5'GGAGAGGTCTTTGTTCCTTTGTT'3

	Sec24d (Reverse) 5'GTCTCTGTTCTTGAGCTTCCC'3

	Soat2 (Forward) 5'CTCCTAGTGCCCTACCAGACC'3

	Soat2 (Reverse) 5'CGGAAGCTCATGCCTCACTG'3

	Sqle (Forward) 5'ATAAGAAATGCGGGGATGTCAC'3

	Sqle (Reverse) 5'ATATCCGAGAAGGCAGCGAAC'3

	Srebf2 (Forward) 5'GCAGCAACGGGACCATTCT'3

	Srebf2 (Rveerse) 5'CCCCATGACTAAGTCCTTCAACT'3

	Stim2 (Forward) 5'CTTGCGAGAACGGCTTTTTCG'3

	Stim2 (Reverse) 5'GTACAGAGAGGAGGTGAGACTG'3

	Tapbp (Forward) 5'ACCATTCCCAGGAACTCAAA'3

	Tapbp (Reverse) 5'GAGAAGAAGGCTGTTGTTCTGG'3

	Tmem176a (Forward) 5'GCCGGATGCTCATTGCTAAG'3

	Tmem176a (Reverse) 5'ATGGCCTATGTAGAGGGTTCC'3

	Trib3 (Forward) 5'GCAAAGCGGCTGATGTCTG'3

	Trib3 (Reverse) 5'AGAGTCGTGGAATGGGTATCTG'3

	Xbp1 (Forward) 5'CAGCAAGTGGTGGATTTGG'3

	Xbp1 (Reverse) 5'CGTGAGTTTTCTCCCGTAAAAG'3

	Ywhaz (Forward) 5'TGACAAGAAAGGAATTGTGGACC'3

	Ywhaz (Reverse) 5'CCAGTCTGATGGGGTGTGTC'3



Supplementary Table 9: Overview of primers used for miRNA RT-qPCR
	miRNA target
	miRCURY LNA miRNA PCR Assays (GeneGlobe ID)

	mmu-miR-6935-3p
	YP02108183

	mmu-miR-18a-3p
	YP00205174

	mmu-miR-703
	YP02100337

	mmu-miR-92a-1-5p
	YP02117243

	hsa-miR-423-3p
	YP00204488

	hsa-miR-191-5p
	YP00204306



Supplementary Table 10: Lists of genes per GO category. Gene lists were created with genes associated with certain biological processes (different tabs): “Cholesterol metabolism”; “XBP1 targets”; “ISR”; “RIDD”; “Homeostatic DC maturation” and “Common immunogenic and homeostatic DC maturation”. DE and non-DE gene tables showcase the barycentric coordinates of the genes which determine where the genes are placed on the hexagonal diagram. The position on the diagram is given in the form of x and y coordinates as well as angle (in radians) and radius r (distance from center). The table with the non-Exp genes only lists the gene names. DE genes were determined by performing empirical Bayes moderation on the linear model fitted expression data with edgeR followed by implementing cut-offs of |logFC| > 1 and adjusted p-value < 0,05.
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