
Supplementary Note

Genome-wide fine-mapping improves

identification of causal variants

Supplementary Note1. Derivation of estimated
true positive rate using PIP

We show below that the genome-wide true positive rate given a posterior in-
clusion probability (PIP) threshold α can be estimated using the PIPs from
genome-wide PIPs,

ˆTPR(α) = Pr(PIP ≥ α|H1is true) (1)

=
Pr(PIP ≥ α,H1is true)

Pr(H1is true)
(2)

=
Pr(H1is true|PIP ≥ α)Pr(PIP ≥ α)

π
(3)

=

∑
i[PIPi|PIPi ≥ α]

#{PIPi ≥ α}
∗ #{PIPi ≥ α}

M
∗ 1

π
(4)

=

∑
i[PIPi|PIPi ≥ α]

Mπ
(5)

where M is the total number of SNPs, and π is the proportion of SNPs with
nonzero effects on complex trait. One underlying assumption for our derivation
above is Pr(H1is true|PIP ≥ α) = PIP, which has been shown is true in Figure
2 of our main text.

When considering each focal SNP j, we can also compute its corresponding
true positive rate with the genome-wide PIPs by replacing the threshold α with
an observed PIPj ,

ˆTPRj =

∑
i[PIPi|PIPi ≥ PIPj ]

Mπ
(6)
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Supplementary Note2. Prediction of power of
genome-wide fine-mapping

The aim is to develop a method to predict the power of fine-mapping using a
genome-wide Bayesian mixture model (GBMM). From a GBMM, we can esti-
mate the SNP-based heritability (h2

SNP ) and the proportion of variants belong
to each of theK components of the mixture distribution (πk with k ∈ {1, ...,K})
from the data. Given these estimates, we can estimate the required sample size
for achieving a desired power of identifying all causal variants or identifying a
subset that explain a desired proportion of h2

SNP , as described below.

Throughout the derivation below, we assume both genotypes and phenotypes
are standardised with mean zero and variance one.

1 Sampling distribution of PIP

In GBMM, posterior inclusion probability (PIP) is computed for each SNP and
used as the test statistic to test whether the SNP is a causal variant. For ex-
ample, PIP > 0.9 is often regarded as evidence for detecting a causal variant,
assuming all causal variants are observed.

To predict power, our first step is to derive the sampling distribution of PIP.
For each SNP, we assume that its effect follows a mixture of a point mass at
zero and a number of normal distributions. Here, we focus on a mixture model
with 5 components (e.g., SBayesR or SBayesRC), but the theory applies to a
arbitrary number of components (e.g., SBayesC with two components).

βj ∼
5∑

k=1

πkN(0, γkσ
2
g) (7)

where γ = [γ1, γ2, γ3, γ4, γ5]
′ = [0, 10−5, 10−4, 10−3, 10−2]′ are the prespecified

coefficients to constrain the variance in each effect size distribution with respect
to the total genetic variance σ2

g , and πk is the prior probability for the SNP

effect belong to the kth distribution. Let δj be the indicator variable for the
distribution membership for SNP j. The PIP is calculated as

PIPj = 1− Pr(δj = 1|y) (8)

For notation brevity, we will ignore the subscript j in the following derivation,
as it is generic to any SNP. Expanding the posterior probability Pr(δj = 1|y),
we have

PIP = 1− f(y|δ = 1)π1∑5
k=1 f(y|δ = k)πk

(9)

= 1− 1

1 +
∑5

k=2
f(y|δ=k)
f(y|δ=1)

πk

π1

(10)
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When δ = 1, the likelihood function is

f(y|δ = 1) ∝ exp{−y′cyc
2σ2

e

} (11)

where yc is the adjusted y for all other effects except β.

When δ = k, the likelihood function is

f(y|δ = k) ∝
∫

f(β|δ)f(y|δ = k, β)dβ (12)

∝ exp{−y′cyc
2σ2

e

}(γkσ2
g)

− 1
2 (C−1

k σ2
e)

1
2 exp{1

2
rC−1

k r} (13)

∝ exp{−y′cyc
2σ2

e

}λ
1
2

kC
− 1

2

k exp{ r2

2Ck
} (14)

where

λk =
σ2
e

γkσ2
g

(15)

Ck = n+ λk (16)

r = X ′yc = X ′(e+Xβ) = X ′e+ nβ (17)

with n being GWAS sample size and X ′X = n given standardised genotypes.

Putting equations (11) and (14) together, the ratio of likelihood function can
be written as

f(y|δ = k)

f(y|δ = 1)
= λ

1
2

kC
− 1

2

k exp{ r2

2Ck
} (18)

As a result, the summation term in Eq (10) is

5∑
k=2

f(y|δ = k)

f(y|δ = 1)

πk

π1
=

5∑
k=2

πk

π1
λ

1
2

kC
− 1

2

k exp{ r2

2Ck
} (19)

In the equation above, only r is a random variable that depends on y. Given the
true β value, following the normality assumption on y, we have the sampling
distribution for r,

E[r] = nβ (20)

Var[r] = nσ2
e (21)

r ∼ N(nβ, nσ2
e) (22)

Let v = β2 be the variance explained by the SNP, then we have

r2 ∼ nσ2
eχ

2
1(
nv

σ2
e

) (23)
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To simplify the equation above, let

Z = χ2
1(
nv

σ2
e

) (24)

then equation (19) can be expressed as

5∑
k=2

f(y|δ = k)

f(y|δ = 1)

πk

π1
=

5∑
k=2

πk

π1
λ

1
2

kC
− 1

2

k exp{nσ
2
e

2Ck
Z} (25)

Finally, let

Ak =
πk

π1
λ

1
2

kC
− 1

2

k (26)

Bk =
nσ2

e

2Ck
(27)

the sampling distribution of PIP is

PIP = 1− 1

1 +
∑5

k=2 Ak exp{BkZ}
(28)

It shows that PIP is a function of a non-central Chi-square variable with NCP =
nv
σ2
e
. Given the unit phenotypic variance, σ2

g = h2
SNP and σ2

e = 1− h2
SNP .

2 Analytic solution for two-component mixture

When the number of mixture components is 2 (i.e, K = 2), then a point-normal
mixture (i.e., BayesC) is assumed,

β ∼ πN(0, σ2
β) + (1− π)ϕ0 (29)

In this case, the distribution of PIP is

PIP = 1− 1

1 +A exp{BZ}
(30)

where

A =
π

1− π
λ

1
2C− 1

2 (31)

B =
nσ2

e

2C
(32)

For notation brevity, we define P = PIP. Rearraging equation (30) gives

Z =
1

B
(logP − log(1− P )− logA) (33)

= u(P ) (34)
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The derivative of u(P ) with respect to P is

∂u(P )

∂P
=

1

B
(
1

P
+

1

1− P
) =

1

B

1

P (1− P )
(35)

Therefore, the probability density function of PIP is

f(P ) = fZ(u(P ))|∂u(P )

∂P
| (36)

= dchisq(u(P ), 1,
nv

σ2
e

)
1

B

1

P (1− P )
(37)

However, it is not straightforward to obtain an analytical solution for a multi-
component mixture model. Instead, we use numerical integration for the distri-
bution of PIP to calculate the power, shown in Section 5.

3 Power calculation

Given a GWAS sample size, we are interested in the power for identifying the
causal variants. This will, in turn, predict the required sample size to achieve a
certain level of power.

Conditional on a per-SNP variance explained v, when a positive result is claimed
at the PIP threshold of 0.9, the power can be calculated as

Powerv = Pr(PIP > 0.9|v) (38)

=

∫ 1

0.9

f(P |v)dP (39)

To compute the power for identifying any causal variant, we need to further
integrate out v:

Power =

∫ 1

0.9

∫ ∞

0

f(P |v)f(v)dvdP (40)

Since v = β2, then β = v
1
2 = u(v). The distribution of v is

f(v) = fβ(u(v))2|u′(v)| (41)

= fβ(v
1
2 )v−

1
2 (42)

where fβ is the distribution of β, which is a mixture of normal distributions.

4 Proportion of SNP-based heritability explained

Given a set of identified variants, we can estimate the expected genetic variance
explained (GVE) by these variants

E[GVE] = NCV× E[v|P > 0.9] (43)

= NCV×
∫ ∞

0

vf(v|P > 0.9)dv (44)
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where

f(v|P > 0.9) =
f(v, P > 0.9)

f(P > 0.9)
(45)

=
f(P > 0.9|v)f(v)

f(P > 0.9)
(46)

=
f(P > 0.9|v)f(v)∫∞

0
f(P > 0.9|v)f(v)dv

(47)

=
Powerv × f(v)

Power
(48)

Therefore, Eq (52) can be wirtten as,

E[GVE] = m(1− π1)

∫ ∞

0

Powerv × vf(v)dv (49)

The expected proportion of SNP-based heritability explained (PHE) is

E[PHE] =
m(1− π1)

∫∞
0

Powerv × vf(v)dv

m(1− π1)
∫∞
0

vf(v)dv
(50)

=

∫∞
0

Powerv × vf(v)dv∫∞
0

vf(v)dv
(51)

5 Numerical integration for power calculation

The double integral in equation (40) can be computed numerically after being
rewritten to increase the stability of the numerical integration:∫ 1

0.9

∫ ∞

0

f(P |v) f(v) dv dP =

∫ ∞

u(0.9)

∫ ∞

0

f(Z|v) f(v) dv dZ (52)

Note that u(P ) cannot be expressed in closed form but can be easily computed
by dichotomy since u is monotonic.
Let λ be the non-centrality parameter: λ = nv

σ2
e
, then

f(Z|v) = dchisq(Z, 1, λ) (53)

=
1

2
e−(Z+λ)/2

(
Z

λ

)−1/4

I−1/2(
√
λZ) (54)

=
1

2
e−(Z+λ)/2

(
Z

λ

)−1/4

e
√
λZe−

√
λZI−1/2(

√
λZ) (55)

=
1

2
e−(Z−2

√
λZ+λ)/2e−

√
λZI−1/2(

√
λZ) (56)

=
1

2
e−(

√
Z+

√
λ)

2
/2e−

√
λZI−1/2(

√
λZ) (57)
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where Iν(w) is a modified Bessel function of the first kind and we compute
e−wIν(w) to avoid overflow when w is large.

Moreover, the distribution of v follows

f(v) =

5∑
k=2

πk

1− π1
dnorm(

√
v, 0, σ2

k)v
−1/2 (58)

and (52) becomes

Power =

5∑
k=2

πk

1− π1

∫ ∞

u(0.9)

∫ ∞

0

dchisq(Z, 1, λ) dnorm(
√
v, 0, σ2

k) v
−1/2 dv dZ

(59)

=

5∑
k=2

πk

1− π1

∫ ∞

0

dnorm(
√
v, 0, σ2

k)

∫ ∞

u(0.9)

dchisq(Z, 1, λ) v−1/2 dZ dv

(60)

Finally, we proceed to the change of variable w = ln(λ) = ln(nvσ2
e
) to obtain:

Power =

5∑
k=2

πk

1− π1

∫ ∞

−∞
dnorm(

√
v, 0, σ2

k)

∫ ∞

u(0.9)

dchisq(Z, 1, ew)
√
v dZ dw

(61)

with v =
σ2
e

n ew

6 Monte Carlo integration

To check if our numerical integration is correct, we estimate the power and PHE
using Monte Carlo integration.

First, we draw 10,000 samples of βj based on the estimated mixture distri-
bution of SNP effects (Eq (7)) and compute vj = β2

j . For each vj , we draw
1,000 samples from the non-central chi-square distribution (Eq (24)) and com-
pute Pk|vj .

Then, the power to detect vj in Eq (39) can be computed as

Powervj =
1

1000

1000∑
k=1

I(Pk|vj > 0.9) (62)

where I(·) is an indicator function gives 1 if true, otherwise gives 0.
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The power to detect any causal variant in Eq (40) can be computed as

Power =
1

10000

10000∑
j=1

Powervj (63)

The expected proportion of SNP-based heritability explained in Eq (48) is

E[PHE] =

∑10000
j=1 vj × Powervj∑10000

j=1 vj
(64)

We found the results from numerical integration and Monte Carlo integration
are highly consistent.
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