Supplementary Materials
[bookmark: OLE_LINK1][bookmark: _Hlk179124117]Section 1: Experimental settings and technical details
1-1: Bias-dependent atomic-resolution topography
[image: ]The topographic images are collected in a constant current mode (tunneling current setpoint It = 500 pA) with the bias voltage applied to the sample (Vs), using a polycrystalline PtIr tip. The topographic images show setpoint dependence (Fig. S1), as a common feature of the layered materials [S1], with the top-layer Se(001) lattice being imaged at large and the underneath Fe-layer at small tip-sample distances. The Fast Fourier transform (FFT) images consistently show Bragg peaks of the 2-Fe unit cell, i.e., Qa = (2π/a0, 0) and Qb = (0, 2π/b0), where a0 ~ b0 ~ 3.89 Å. Associated with the enhanced tunneling conductance contribution from the Fe-layer under small sample bias , the Bragg peaks of the 1-Fe unit cell, Qx = (2π/a0, 2π/b0) and Qy = (-2π/a0, 2π/b0) are visible (Figs. S1(c,d)). The superimposed red (blue) balls mark α-Fe (β-Fe) sites, and dark (light) orange balls mark upper Se+ (bottom Se-) sites. 
Fig. S1 Bias-dependent atomically resolved topographic images of monolayer FeSe-(1×1), with the corresponding FFT images shown below.
1-2: Atomic-resolution dI/dV (r, V) tunneling spectra
The dI/dV spectra are obtained by a lock-in amplifier technique. The (Vs, It) setpoints give the tunneling resistance Rt = Vs/It, namely, a fixed tip-to-sample distance. Likewise, the small tip-sample distance gives a high tunneling conductance with increased contribution from the underneath Fe layer. After the feedback is interrupted, a small AC-voltage modulation Vmcos(2πft) (Vm =1% Vs and f = 937 Hz) is superimposed on the sample bias Vs, and the corresponding modulation in the tunneling current is measured. Specifically, under small bias setpoints (), the dual-gap coherence peaks are separately resolved. The sublattice dichotomy is discerned directly from the raw spectra displayed in Fig. S2(a). To eliminate the setpoint dependence, the raw dI/dV spectra are renormalized, i.e., divided by the cubic-polynomial background [S1], here, fitting to the spectra for bias  (bottom panel in Fig. S2(b)). The spectra difference between the two Fe sublattices, i.e., g(β-Fe)-g(α-Fe) displayed in the upper panel in Fig. S2(b), discloses striking contrast within the pairing gap () but minor differences beyond that. Moreover, the tunneling spectra weights between the electron and hole sides are complementary, with the extreme contrast at ±Vi, [image: ]which supports the dichotomy effect in pairing states.
Fig. S2 (a) The raw dI/dV tunneling spectra corresponding to the normalized ones presented in Fig. 3(c) (Vs = +50 mV). (b) Exemplification of normalization and difference of tunneling spectra between two Fe sublattices. The raw dI/dV spectra of two Fe-sublattices (solid curves) and their cubic-polynomial background obtained by fitting to the spectrum for bias  (dashed curves, bottom panel), the corresponding normalized dI/dV spectra (middle panel), and the tunneling conductance difference between two Fe sublattices (upper panel).
[bookmark: _Hlk179124275]1-3: g(r,V) mapping images using current-imaging tunneling spectroscopy (CITS)
We conduct current-imaging tunneling spectroscopy (CITS) measurements to obtain the tunneling conductance g(r, V) ≡ dI/dV(r, V) mapping images [S2]. A CITS image is based on a regular matrix of points distributed over the surface. The tip is scanned over the surface with a fixed tunneling resistance Rt = Vs/It, recording the topographic information. At each point of the CITS array, the scan and feedback are interrupted to freeze the tip position (r and z), and dI/dV(r, V), either at a single bias value Vs (Fig. S3(a)) or series bias with step increase over an extended voltage range (Vs, -Vs) (Fig. S3(b-d)), is then measured by use of a standard lock-in technique with a small bias modulation (Vm = 1-2% Vs and f = 937 Hz). The bias voltage is then set back to Vs, the feedback is turned on, and the scanning is resumed. The result is a topographic image [image: ]Top.(r, Vs) and a series of simultaneous g(r, V) mapping images.
[bookmark: _Hlk176415066][image: ]Fig. S3 Tunneling conductance g(r, V) mapping of monolayer FeSe-(1×1) at 4.8 K. (a) Atomically resolved topography and simultaneous g(r, Vs) mapping images at Vs = ± 15 mV. (b,c,d) [image: ]Bias-dependent atomically resolved g(r, V) mapping images obtained simultaneously (Vs = 50 mV). (e) Copy of (d) with Mosaic blocks superimposed on Se sites. (f) Phase-referenced fast Fourier transform g(q, V1, V2) at the energies of ± 5 mV, ± 10 mV (inner gap coherence peaks), and ± 17 mV (around outer-gap coherence peaks).
Fig. S4. Scanning tunneling microscopy/spectroscopy characterization of monolayer FeSe-(1×1) at 78 K (It = 200 pA). (a-c) Atomic resolution topography (a, Vs = +30 mV), g(r, 10) (b, Vs = +10 mV) and g(r, -10) (c, Vs = -10 mV) mapping images, and (d) the corresponding mosaic plots of Z(r, 10) = g(r, +10)/g(r, -10) for Fe sites. (e) The dI/dV tunneling spectra of two Fe sublattices taken at the marked sites in the inset, and the respective averages (in bold) and their ratio for comparison (Vs = +50 mV). 
1-4: Phase-referenced Fourier transform gPR(q,V1, V2)
[bookmark: _Hlk175648570]The Fourier transform g(q, V) of the real space g(r, V) is a complex number comprising of the amplitude and the phase (i.e.,  and , respectively). The phase alone is arbitrary, but the relative phase between g(q, V1)and g(q, V2) has physical consequences [S3]. For example, the phase function  will change the sign between V1 and V2 if there is a contrast reversal in the real space local differential conductance g(r, V) modulation. We define the phase-referenced signal (or relative phase-amplitude) gPR(q, V1, V2) by
.
Tracking the relative phase amplitude of the g(q, V) at coherence peaks of inner-gap and outer-gap provides information about the intensity contrast, i.e., negative phase for reversal intensity contrast and positive phase for otherwise. As shown in Figs. S3(f), the relative phases of both Qb and Qa Bragg peaks between the energies of -10 mV and 10 mV (g(Qb/a, -10, 10)) and between 17 mV and 10 mV (g(Qb/a, 10, 17)) are negative (blue), which means the complete reverse DOS contrast in the two-Fe unit-cell. In contrast, the g(Qb/a, -10, 17) has a positive sign, which means the same trend. As a supplementary, the g(Qb, -17, 17) has a negative sign. The bottom-layer Se sites consistently show the lowest DOS at -17 mV and +17 mV, introducing positive phase contribution, that is, positive g(Qa, -17, 17).
[bookmark: _Hlk179124344]Section 2: Weakened Fe-sublattice dichotomy in monolayer FeSe-(2×1)
[bookmark: _Hlk179036635]The monolayer FeSe films on the SrTiO3(001) surface usually show (2×1) electronic order. Figure S5 summarizes the results for FeSe-(2×1) collected at two regions. Figure S5(a) plots the atomic resolution topography and the normalized dI/dV tunneling spectra taken at the marked Fe sites. The pairing gaps are characterized by a widened zero conductance plateau centered at EF and weakened particle-hole asymmetry in coherence peaks. The sublattice dichotomy feature is still visible, especially for the inner gap coherence peaks at ±Vi. Figure S5(c) summarizes the bias-dependent g(r, V) mapping images, and Fig. S5 (d) the gPR(q, V1, V2) for another (2×1) region displayed in Fig. S5(b). The Qb Bragg peaks show the same signs as the FeSe-(1×1) displayed in Fig. S3, indicating retained Fe-sublattice dichotomy. In contrast, the relative phase of the Qa Bragg peaks is remarkably eliminated, probably due to the electronic [image: ]order along this direction.
[bookmark: _Hlk179124356]Fig. S5 Scanning tunneling microscopy/spectroscopy characterization of monolayer FeSe-(2×1). (a) Atomic resolution topography with the corresponding FFT image inserted (upper panel) and the normalized dI/dV tunneling spectra taken at the marked Fe sites (bottom panel) (Vs = -50 mV). (b) Atomically resolution topography of another large region with the corresponding FFT image inserted and the inverse-FFT image (upper and bottom panels, respectively), (c) bias-dependent differential conductance g(r, V) mapping images of the same field of view (Vs = +50 mV), and (d) the corresponding phase-referenced fast Fourier transform g(q, V1, V2). 
Section 3: Theoretical analysis
[bookmark: _Hlk179124371]3-1: The k · p Model and theoretical calculation
Since the Fermi pockets of monolayer FeSe only appear near the M point, we adopt a k · p model for the description of the normal state. In this model, the basis is chosen as two sets of basis belonging to two representations at M near the Fermi level, i.e.
	,	 (1)
and  measures the deviation from the M point. Note that the subscripts  here point to the Fe-Fe nearest neighbor directions, saving  for later use as the intra-sublattice nearest neighbor directions. The normal state Hamiltonian is expanded up to the first several orders of  and written as . Due to symmetry constraints,  is block-diagonal and reads
	 	(2)
in which the expression for two blocks is
	 	(3)
with
	 	(4)
The values for these parameters in our calculation are presented in Table . The band structure and Fermi surface near M are shown in Fig. S6 (a) and (b), respectively. 
TABLE I. Values for the parameters in the k · p model
	parameter
	
	
	
	
	
	
	
	
	

	Value [meV]
	-180
	-600
	-65.9
	322
	156.8
	-269
	99
	59.1
	6.99


The BdG Hamiltonian in the superconducting state is , where  and
		(5)
The pairing matrix DK is assumed to be a combination of A1g and A1u representations since normal pairing corresponds to A1g and odd parity interband pairing corresponds to A1u. Using the transformation properties of the basis (1), we choose an A1g normal pairing as
		(6)
and an A1u interband pairing as
		(7)
[image: ]In our calculation leading to the result in Fig. 4(b), δn = 14.5 meV and δinter = 16.0 meV.
FIG. S6. (a) The band structure of k · p model. (b) The Fermi surfaces, in which the color represents the main orbital contributions. (c, d) The calculated spectra when there is only (c) normal pairing or (d) interband pairing, and (e) the calculated one with the normal state symmetry breaking.
[bookmark: _Hlk179124392]3-2: Spectra without pairing mixture
While the mixture of normal and interband pairing can induce the sublattice dichotomy, we need to compare it with the cases when only normal pairing or interband pairing is present to validate the necessity of pairing mixture. We calculated spectra without pairing mixture and the results are shown in Fig. S6(c,d), of which (c) is for only the normal pairing case and (d) is for only the interband pairing case. Obviously, neither of these cases shows any sublattice difference. Specifically, the leading normal pairing matrix with respect to the  basis is 
.                       (8)
This can be mapped to the next-nearest-neighbor pairing term coscos(), which is intra-band pairing and is commonly used in iron-based superconductors. We can see that the spectrum is symmetric. The leading interband pairing matrix is Eqn. (7) and can be mapped to the next-nearest-neighbor pairing term coscos(). This term is an inter-band pairing, but the spectra for the two sublattices are still symmetric. Therefore, it is necessary to mix two pairing symmetries. In the calculation inducing the spectra of Fig. 4(b), we used a natural combination: the mixture of the nearest-neighbor normal pairingand the next-nearest-neighbor interband pairing coscos(), of which the  forms are presented in the last section. This result can match well with the experimental sublattice dichotomy feature.
[bookmark: _Hlk179124468]3-3: Symmetry analysis of the pairing mixture
In this subsection, we provide a detailed symmetry analysis of how the mixture of two pairing symmetries induces the sublattice dichotomy effect. The point group of FeSe without symmetry breaking is . This group has 16 symmetry operations, 8 of which interchange two sublattices and thus need to be broken to achieve a sublattice difference in the spectra. These symmetries include , , ,  and . To be broken through a mixture of two different irreducible representations (irrep), they are supposed to give different characters in these two irreps. The character table of  is given in Table. II. For clarity, we have to note that we have used a different convention of the irreps of  for consistency with Ref. [28] where interband pairing in iron-based superconductors was first proposed. In short, the difference is that we regard the  symmetry on iron sites as the principal axis instead of the  symmetry on Se sites, leading to the consequence that an odd-parity irrep is named A in one naming system but B in the other. The correspondence between these two naming systems is listed in Table. III for reference. With the knowledge of the character table, it is clear that there are four kinds of mixtures to break the right symmetries when constrained to one-dimensional irreps, i.e. , ,  and . In our calculation, we used the simplest case: .
TABLE II. Character table of . The symmetries to be broken are marked in red.
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	


TABLE III. Correspondence between two naming systems
	Principal axis
	Irreducible representations

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	


[bookmark: _Hlk179124615]3-4: Symmetry breaking effect from the normal state
In our calculations, we have focused on the symmetry-breaking effect at the pairing channel. There is, however, a possibility that the symmetry breaking is from the normal state. However, the tunneling spectra away from the Fermi level are nearly the same, which means the normal state-breaking effect is weak. But we want to clarify the symmetry-breaking effect from the normal state. Under a full symmetry analysis, we found the up-to-second-order symmetry-breaking terms in the normal Hamiltonian as
.     (9)
These terms break the inversion symmetry and all other sublattice-interchanging symmetries and are thus expected to produce a sublattice difference. We then calculated the spectra with the normal next-nearest-neighbor s-wave pairing that is usual for bulk iron-based superconductors. Fig. S6(e) shows the corresponding spectra. The normal state symmetry breaking indeed induces a sublattice difference, but not the observed dichotomy effect. Specifically, the coherence peaks at -Fe are always larger than -Fe (both at ), while experimentally in Fig. 4, the -Fe and -Fe coherence peak heights switch at the positive and negative voltage ( vs ), which is highly unusual. We noted the preprint (arXiv: 2404.10046) from Kong et al., which reported such behavior, i.e., similar height differences of coherence peaks at electron and hole sides between two Fe sublattices, in exfoliated thin FeSe flake.
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