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Fig. S2| Comparative characteristics of monomeric and multimeric POIs 
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 1.35 kDa 1.24 kDa 12 kDa 17 kDa 27 kDa 34 kDa 36 kDa 60 kDa 66 kDa 52 kDa 39 kDa 43.7 KDa
     PI of protein 7.8 8 8.3 4.8  5.80  6.30 5.86 6.69 5.67 4.63 4.3  6.33 

Molucular Volume 1116 A3 1116 A3 15615 A3 32509 A3 : 41198 A3 41198 A3 43585 A3 70007 A3 80426 A3 64545 A3 46001 A3 52819 A3

    Charge at pH 7.0 0.8 1 3.5 -5.5 -6.2 -1.2 -13.4 -1 -15.7 -38.6 -22.6 -3.3
 Disulfide (#) 2 2 3 7 0 4 0 0 17 2 0 4
 Optimal tES tES(-) tES(-/+) tES(-) tES(+) tES(+) tES(+) tES(+) tES(-/+) tES(+) tES(+) tES(+) tES(+,-/+)

 tES:POI encapsulation (max ratio)   N/A N/A 1:3 N/A N/A 1:1 1:2 N/A N/A N/A N/A N/A
 tES:POI (max stabilization) 60:150 60:150 60:15 60:15 60:10 60:10 60:10 60:5 60:5 60:5 60:5 60:10

 tES:POI (max fxnl yeild) 1:60 1:60 1:6 1:6 1:4 1:4 1:4 1:8 1:8 1:8 1:8 1:4
 POI multimer No No No No No No No No No Yes Yes Yes

 Source Molluscs Molluscs Reptiles Reptiles Cnidarians Plants Cnidarians Arthropods Human Arthropods Bacteria Human

 Percentage Secondary Structure N.A N.A
α helix : 20.9
β strand : 14.9

α helix : 40.3
β strand : 5.9

α helix : 6.7
β strand : 45

α helix : 58.2
β strand : 1.9

α helix : 51.6
β strand : 16.5

α helix : 31.6
β strand : 19.3

α helix : 76.2
β strand : 0

α helix : 38.2
β strand : 16

α helix : 0
β strand : 55.6

α helix : 14.9
β strand : 20.6

 Cysteine Density (%) 33 40 9 10 0.8 2.5 1 0.9 6 0.8 0.6 2.5
 pI 8.89 7.18 8.58 5.42 5.8 5.66 5.76 6.72 5.67 4.63 4.57 6.42



Fig. S3| Analysis of encapsulation process with increasing POI concentration using Analytical Ultracentri-
fuge (AUC): Residuals plots (a,b,c) and absorbance profiles of (d) tES(+)F116H, (e) tES(+)F116H:HSA, (f) 
tES(+)F116H:rLuc, (g) tES(-)F116H:rFasxiator, (h) tES(+)F116H:λ conotoxin  at optimal molar ratios 
registered at 280 nm , in time intervals of 7 min for total experimental time of approximately 7 h. AUC 
profile for λ conotoxin shows decreasing sedimentation of tES encapsulated conotoxin and increasing 
presence of free conotoxin as the run progresses.  
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Fig. S4 | Chromatographic profiles of α conotoxin folded in presence and absence of tES: 
Chromatographic profiles for α conotoxin folded in-vitro without tES or within 
tES(+)F116H, tES(+/-)F116H or tES(-)F116H respectively with different molar ratios of 
tES subunits:α conotoxins from (a) 60:37.5, (b) 60:75, (c) 60:112.5, (d) 60:150, (e) 60:225 
and (f) 60:300 respectively. Relative yield of globular (active) conformation when cono-
toxin is folded in presence and absence of tES is shown as a histogram.  
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Fig. S5| Chromatographic profiles of λ conotoxin folded in presence and absence of tES: 
Chromatographic profiles for λ conotoxin folded in-vitro without tES or within 
tES(+)F116H, tES(+/-)F116H or tES(-)F116H respectively with different molar ratios of 
tES subunits:λ conotoxins from (a) 60:37.5, (b) 60:75, (c) 60:112.5, (d) 60:150, (e) 60:225 
and (f) 60:300 respectively. Relative yield of ribbon (active) conformation when conotox-
in is folded in presence and absence of tES is shown as a histogram.  



Fig. S6 | Optimization of molar ratios of tES subunits to POI: Size-exclusion profiles (upper panel) of 
(a) tES(+)F116H:HSA (b) tES(+)F116H:rLuc (c) tES(-)F116H:rFasxiator with different molar ratios 
of tES subunits and POI. Each fraction of size-exclusion chromatography was analysed for POI activi-
ty for all molar ratios tested (lower panel). POI activity coincides with tES peak, suggesting its encap-
sulation inside tES assembly. All experiments were performed in triplicates, error bar represents ± 
standard deviation. (d) Charge matching of tES-F116H and the measured zeta potential of the POI 
predict optimal folding. Combinations with rank order highest functional yield are shown for nine 
monomeric POI’s. tES-F116H(+), tES-F116H(+/-), tES-F116H(-) and POI-alone are indicated as (+), 
(+/-), (-) and h6, respectively.
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Fig. S7 | Characterization of tES nanoparticles using Dynamic Light Scattering (DLS): DLS exper-
iments of tES nanoparticles showed no change in the hydrodynamic diameter (12 nm approx.) of 
POI encapsulated tES suggesting internalization of POI within tES.



Fig. S8 | Characterization of tES nanoparticles using Transmission Electron Microscopy 
(TEM): TEM experiments of tES nanoparticles showed no change in the morphology 
and hydrodynamic diameter (12 nm approx.) of POI encapsulated tES suggesting inter-
nalization of POI within tES.
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Fig. S9 | Mass spectrometry profiles of globular conformation of α conotoxin folded in 
presence and absence of tES: Raw mass/charge spectrum (m/z) (upper panel) and decon-
voluted mass spectrum showing inferred molecular masses (lower panel) of α conotoxin 
folded in-vitro in presence of (a) tES(+)F116H, (b) tES(+/-)F116H and (c) tES(-)F116H 
and in (d) absence of tES were determined by QTOF. The protein is predominantly +3 
charged, appearing with m/z of 451 amu. Protein has inferred molecular mass of 1350.48 
amu which closely matches with the predicted molecular mass of 1350.92 amu. In all 
cases, molecular weight of the oxidized α conotoxin shows a reduction of four mass units, 
reflective of the formation of the two disulfide bridges. m/z at 121 and 922 were from 
mass calibrant. All experiments were performed in triplicates.
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Fig. S10 | Mass spectrometry profiles of ribbon conformation of λ conotoxin folded in presence and absence of 
tES: Raw mass/charge spectrum (m/z) (upper panel) and deconvoluted mass spectrum showing inferred molec-
ular masses (lower panel) of λ conotoxin folded in-vitro in presence of (a) tES(+)F116H, (b) tES(+/-)F116H and 
(c) tES(-)F116H and in (d) absence of tES were determined by QTOF. The protein is predominantly +3 charged, 
appearing with m/z of 413 amu. Protein has inferred molecular mass of 1236.46 amu which closely matches 
with the predicted molecular mass of 1236.90 amu. In all cases, molecular weight of the oxidized λ conotoxin 
shows a reduction of four mass units, reflective of the formation of the two disulfide bridges. m/z at 121 and 
922 were from mass calibrant. All experiments were performed in triplicates.



Fig. S11 | Determining yield of in-vitro folded POI in presence and absence of shells: SDS-PAGE gel of 
in-vitro folded POI in absence of tES, in-vitro folded POI in presence of tES and POI released and purified 
from tES after in-vitro folding for (a) rFasxiator, (b) PLA2, (c) GFPuv, (d) HRPc, (e) rLuc, (f) FFL and (g) 
HSA. 
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Fig. S12 | Analysis of encapsulation process with different internal charge of tES-F116H using 
Analytical Ultracentrifuge (AUC): Absorbance profiles (upper panel) and residuals plots (lower 
panel) of (a) HSA, (b) rLuc and (c) rFasxiator encapsulated within (i) tES(+)F116H, (ii) 
tES(+/-)F116H and (iii) tES(-)F116H respectively at optimal molar ratios registered at 280 nm , in 
time intervals of 7 min for total experimental time of 7 h approximately.
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