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Supplementary Materials

In these Supplementary Materials, we explore the slow, energy-dependent nonlinearities of the
system and explain how these are the critical phenomena that allow the system to start-up into
the desired soliton regime in a spontaneous way. As shown in the main manuscript, we
experimentally observe the natural formation and robust preservation of laser cavity-solitons in
our system, which indicates that they behave as dominant attractors. Very interestingly, such
behaviour occurs also for continuous waves (CW) and Turing patterns. Although it is typical for
Turing patterns to emerge from noise, the capability of the system to switch between the two
families of states (Soliton/Turing) suggests the presence of a different stabilisation mechanism
between the two regimes, which we control with the EDFA pump power.

Section S1 presents a new modelling that captures this physics and, centrally, the role of the slow
nonlinearities. This requires a new approach since the system of equations for the laser cavity-
solitons of Refs1-3 does not contain the physics of the slow phenomena. Here, we introduce a
greatly expanded theoretical framework by adding a thermal nonlinearity in the microcavity as
well as the gain nonlinearity in the amplifier, as obtained through a standard Maxwell-Bloch
derivation. We show that these two energy-dependent nonlinearities effectively change the
system'’s start-up diagram, permitting the generation of soliton states from noise - which is
another way of saying spontaneous generation. This type of emergence occurs in this new system
over an extensive range of initial phase detunings, highlighting the strong independence of the
start-up process from initial phase conditions, in agreement with what we observe in our
experimental characterisations.

In Section S2, we experimentally study the balance between the slow nonlinearities in the
microcavity and that of the fibre laser. Starting from the state diagrams in Fig. 4 of the main text,
we extract the variation in refractive indices for both the microring and laser cavities within the
operating regime. These measurements show that the refractive index variations of the two
resonators are of the same sign and within the same order of magnitude, confirming that their
nonlinearities are both focusing and within the same range.

Finally, we study the temporal response of the system when regaining a stable stationary state
after a disruptive event. These measurements highlight the difference in recovery times between
the blue-detuned, pattern-like states and the red-detuned soliton states. The blue-detuned states
recover within the timescale of action typical of the thermal effect in the microcavity,
approximately hundreds of microseconds. Conversely, the soliton states recover over the
characteristic timescale of the Erbium gain dynamics, which is several milliseconds long. In
agreement with the theory that we present in Section S3, these measurements confirm that the
slow microring nonlinearity dominates the system when it converges to a blue-detuned pattern.
At the same time, the amplifier nonlinearity governs the regime leading to in red-detuned soliton
states.



S$1. Modelling

The theoretical analysis of this paper starts from the mean-field model used in Refs1-3, consisting
of a coupled system of dissipative nonlinear equations*-8, which we expand here by adding the
description of the slow, energy-dependent nonlinearities.

The complex variable a represents the field in the microcavity. A lossy nonlinear Schrodinger
equation models the evolution of this variable in the time and space coordinates t and x. The
spatial coordinate x is normalised to the microcavity length, and the equation has periodic
boundary conditions for x € [0,1]. The temporal propagation coordinate is, for convenience,
normalised to the fibre cavity roundtrip time. The field in the main amplifying loop is described
as a superposition of ZN+1 supermodes b, which are periodic with the microcavity length and are
modelled with a set of lossy linear dispersive equations for every supermode b,. In this way, both
a and b, are defined in terms of the microcavity normalised spatial coordinate x € [0,1].
Neglecting the group velocity mismatch for simplicity, we have
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The parameters 4, and 4, represent the normalised frequency detuning of the two cavities, g is
the normalised gain (from 0 to 1) while the group-velocity-dispersion coefficients are {, 5, and
the loss dispersion coefficient is o, with values of {, = 1.25 x107%,{, =3.5 x107%, ¢ =
1.5 x 10™*. The coupling coefficient k represents the physical number of amplifier modes which
fall within the microcavity resonance, with k¥ = m representing one mode per line, and k = 2%
two modes per line. Details on the derivation and normalisation of the system are in Refs!-3, with
further information in the footnote™.

To this basic model, we now introduce the effect of the slow nonlinear variables, which are
generally dependent on the energies
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For the fibre amplifier, we describe the gain evolution using a standard laser rate equation
derived from the Maxwell-Bloch model under the standard fast polarisation decay and long-scale
approximations that enable using an energy-dependent relationship 7. Under these assumptions,
the dynamics of the saturable gain g are governed by the slow constant 7, (normalised to the
fibre cavity roundtrip T}) and the pumping gain gp as follows:

74 0:9 = —(1+ nEyL)g + gp, (3)

where 77 is a normalised inverse of the saturation energy. The variable 7 is used here as a control
parameter for the effective energy saturation within the gain cavity. In practice, this parameter is

* We denote the cavity roundtrip times and free-spectral ranges, for the microcavity (A) and amplifying cavity (B)
respectively, with Ty = F(;’lb) , F, = 50 GHz and F;, = 80 MHz. The normalised dispersions used here are {, =
—BagTpTa 2 =125 x 1074, = —BpvpTpT, 2 = 3.5 x 1074, and o = (2w AF:T,) 2 =15 x 10~* Here B, ~
—20 ps?km~! and B, ~ —60 ps>’km~(see Ref%) are the second-order anomalous dispersions for the waveguide and
the fibre, respectively, AFr =650 GHz is the band-pass filter bandwidth, and v, = v, ~ 2 X 108 ms™! are the group
velocities. In the Methods, to numerically fit the spectral soliton shapes we have used a sixth order dispersion to
reproduce our flat top filter, with g5 = (2w AFzT,)™® = (1.5 x 10™)3. Note that the outpt port, as indicated in the

Methods section, with the full system Eqs (1-2) reads c(t) = g:_,\, be(t) — Vi a(t).



affected experimentally by any energy imbalance between the microcavity and the fibre cavity,
which can be directly impacted by the main cavity losses. The variable gp is directly determined
by the optical pump: in practice, any variation in the parameter gp accounts for experimental
variations in the optical pump power.

The general evolution of the refractive index is taken into account by setting the two detuning
variables in Egs. (1,2) as

Ay = Agg, Ay =4+ A7, +0g.

Here the variable 4 is a quantity corresponding to the initial relative detuning. The dependence
on the gain occurs through the variable 0, which is the atomic polarisation detuning scaled by the
polarisation time decay Tp. As described, e.g., in Refs.1011 this quantity is obtained from the
standard Maxwell-Bloch equations as © = (f; — f,)Tp, i.e., as the scaled detuning between the
carrier frequency f; (in our experiments approximately the centre of the soliton, 1; = cf{ !
~1545 nm, where c is the speed of light) and the atomic resonance frequency f, (1, = cfy *
~1530 nm for Erbium). For an Erbium dopant, T, varies in the range of 100 fs to 10 ps. In our
experimental conditions, then, @ is within the range |@| = [0.2, 20]. Regarding the sign, we note
that the refractive index decreases for wavelengths longer than the atomic resonance, implying a
negative sign in our experimental conditions.

Following standard approaches12-18, we model the thermal dependence of a cavity through a
first-order equation with a direct dependence on the intracavity energy,

T70tArq = —Arq + I7 E,. (4)

We consider a focusing thermal nonlinearity with a positive sign. Here I is an effective nonlinear
coefficient normalised to the microcavity Kerr nonlinear coefficient, and 7 is a thermal time-
decay constant. For the thermal nonlinearity in the fibre A;, we can use a relationship analogous
to Eq. (4). In practical terms, the relevant quantity is the detuning between the two cavities,
namely

Ay — A, =A4+0 g+ Ay — Apg. (5)

From Eq. (5), we see that a focusing thermal effect with a positive coefficient in the amplifier
counteracts the (also) positive, focusing thermal effect in the microcavity (due to the minus sign
in front of Ag,). To simplify the analysis, and because the ratio between energies E, and E,, is
approximately constant in the stationary regime!-3, we can compact the thermal modelling into a
single first-order equation by imposing A7, = 0. The physical, thermal coefficient of the
microcavity is about two orders of magnitude larger than the Kerr nonlinearity. The cumulative
I is, however, primarily compensated by the thermal nonlinearity in the amplifier. On this point,
see the experimental analysis of section S2.1: we detect the presence of a thermal nonlinearity in
the amplifiers, which largely compensates for the thermal nonlinearity of the microcavity. Hence,
we expect that a physically relevant value for the cumulative I will be within the range of a few
times the Kerr nonlinearity.

For the thermal time decay constant, we use 7 ~ 8 X 103, which in our experiments corresponds
to the dominant timescale ~0.1 ms for the microcavity normalised to the roundtrip frequency of
80 MHz. The gain decay constant for Erbium? is ~ 10 ms resulting in 7, = 8 X 105. In our
numerical propagations, we set this constant to 7, ~ 4 X 10*, which is four orders of magnitude
larger than the main cavity roundtrip time and is sufficient to observe the same kind of dynamics
seen in the experiments.

$1.1 Effect of nonlocal nonlinearities on the soliton stability map: start-up strategies

The inclusion of Egs. (3,4) does not change the nature of the stationary states of Egs. (1,2). The
latter can be readily recovered by using the steady-state detunings A, (t - ©) = I}E, and gain
g(t > ©) = (1+ nEy) 1gp. In particular, if we consider a steady-state solution for Egs. (1,2)



given the detuning 4, = 0, 4, = 4, and gain g,, the same solution can also be used for Egs. (1-4)
if the pumping gain

gp = (1 + nEp)go (6)
is used, and the initial detuning is set to the value
A = AO - G) gp + 2_17T_11—'TE61' (7)

Note that such a remapping preserves the stationary states but not necessarily their stability
properties. We have verified numerically that stable states are preserved for the set of parameters
employed here, with the same techniques used in Refs®2.

Similar to Fig. 2a in the main text, Fig. S1a shows the soliton stability region (in orange) as a
function of the parameters 4, and g,, obtained from Eqgs. (1,2) without including the slow
variables. In this paragraph, we use ¥ = 1.25 7, which models the experimental settings of Figs.1-
3. The zero-energy state is a (trivial) solution of the system, and its instability regions are marked
in blue (unstable) and white (stable), respectively. As discussed in the text, the zero-state
instability region is particularly significant as it defines the set of parameters where the start-up
is allowed. Stable, single solitons fall outside this region. Strictly speaking, this is mainly due to
the tails of the temporal pulses sharing the instability properties of the zero state.

To understand the effect of Egs. (3,4) on the system, the most straightforward method is to
numerically integrate all the dynamical Egs. (1-4) and observe the evolution of the parameters g
and 4, — 4, given by Egs. (3,5). A typical trajectory for a system evolving into a stable soliton
state is shown in Fig. 2a of the main text, which we will discuss at the end of this section. However,
an alternative, more effective approach to the problem, is to look at stability regions of the
stationary states for the whole system of Egs. (1-4) against the new, global variables of the system,
i.e., the pumping gain gp and the initial cavity detuning 4.

Let us start from the trivial state. Since the energy of this state is zero, its stability region is directly
remapped into gp = gg,and 4 = 4y — O g,. The thermal I and gain saturation n variables do not
play any role in such a remapping. Conversely, these variables directly affect the solitons, as
discussed previously for Egs. (6,7). Those relationships imply that we can modify the stability
region boundaries and move them within the unstable region of the zero-state. It is important to
note that, for Egs. (1-4), the zero state no longer shares the stability properties with the soliton
tails. Here we have separated the instability of the zero state at the start-up and at regime, where
the background is again strictly stable, as needed for stable solitons. Such a situation is very
different to the start-up approaches based on affecting the modulational instability spectrum of
the trivial state, which allows only soliton crystals to be formed®.19.20, In that case, the background
always remains modulationally unstable; hence, only a periodic solution can exist, as we
discussed in Ref>.

Figure S1b shows such a remapping for the typical parameters of our experiments. For the
thermal detuning, we choose a positive coefficient, here I = 5, implying that the thermal
nonlinearity of the microcavity dominates the system. This effect is usually detrimental to soliton
formation, as it pushes the soliton region further into the stability region of the zero-state.
However, we show that gain dynamics can compensate for it, thanks to two fundamental
mechanisms. First, at high gain, it projects the stable soliton state into the unstable region of the
zero-state, enhancing the possibility of a spontaneous start-up. Second, it pushes the soliton
states into the red detuning region for a negative value of the coefficient 0. Figure S1b shows such
effect on the soliton stability region, where we used n = 0.4 and ® = —13 (as well as ' = 5),
which are within our experimental range (see footnote™). Eventually, the gain dynamics allows
controlling the magnitude of the nonlinear refractive index by acting on the pump gain. In Fig. S1,

** For this set of parameters, single soliton states have normalised energy E;, =~ 0.9, with slight variations across the
stable area Hence, a value n = 0.4 allows saturating the gain with around one to two solitons, as we observe
experimentally.



the orange-filled area represents the stability region of the single soliton state. Since the
remapping is energy-dependent, the stability regions vary with the number of solitons. The
stability boundaries for two and three solitons are shown in dark blue and green lines,
respectively.

As we noted above, in practice, the effective energy saturation coefficient 7 depends on the system
losses. The parameter O is also affected by the spectral position of the bandwidth filter. Therefore,
the gain evolution provides a set of independent control parameters that allow to establish a
condition where the desired single soliton state mainly covers the start-up region of the system.
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Figure S1 Stability region of the solitons and the zero state. The instability region of the zero-state is shown in blue
and corresponds to the start-up region of the system. The stable regions for the zero and single soliton states are shown
in white and orange, and a violet dashed line denotes the single soliton stability boundary. The dark blue and green
lines indicate the stability region boundaries for the two and three soliton cases. Note that the stability region of the
solitons are periodical with 4 integer. Here, for simplicity, we depict the stability regions only in the base band. a
Diagram for Egs. (1,2) without any slow saturation. b Diagram for the full system, Eqs. (1-4). Here we use a
predominantly focusing thermal nonlinearity in the microcavity and gain dynamics (I' = 5,7 = 0.4,0 = —13). The x
axis is shifted by a factor O gp for better visualisation. The yellow star indicates the coordinates used in the simulation
of Fig. S2.

These considerations confirm that the solitons, including single soliton states, are compatible
with an unstable zero state and can occupy a large part of the start-up region, accounting for the
phase independence of the start-up that we observe experimentally. This configuration is a
fundamental prerequisite for spontaneous start-up and is the most important result of this
analysis. However, there may be other states that are allowed to start for a given set of
parameters. These states may compete with the soliton state and eventually overcome it. The
soliton’s most obvious competitors are the CW solutions, but pulsed oscillations (e.g., relaxation
oscillations) may also appear!s. Besides, solutions with a different number of solitons may
compete as well. The type of solution eventually produced by the system is the dominant attractor
of the system for a given set of parameters. The competition among different states will also
depend on the time constants 77, 7,. A final answer to these questions requires a detailed stability
study that will be the subject of a future theoretical work. Here, we restrict the discussion to the
case of Fig. S1b, which summarises the main dynamics of our experiment, where we tested the
behaviour of the system for gp = 0.25. As predicted by the remapping of Fig. S1b, here, all cases
initiating with a detuning falling within the single soliton range (here A + 0gp € [—0.28,—0.05])
converge to a single soliton solution. Figure S2 shows the propagation of a typical solution, which
corresponds to the attractor shown in Fig. 2a of the main text, where we converted the units of
the detuning axis to the experimental units.

Figure S2a shows the spatio-temporal propagation of |a|?, which is the intensity of the optical
field in the microcavity. Figure S2b shows the temporal evolution of the peak intensity, while Figs.
S2c and d depict the total detuning 4, — 4, given by Eq. (5) and the gain g, given by Eq. (3),
respectively. In the numerical integration, we superimposed a small white noise for the whole
propagation to verify the robustness of the soliton. The attractor resulting from the latter two
quantities is depicted by the two-dimensional graph in Fig. S2e, in the variables 4, — 4, and g.



We plot the progressing timescales with colours changing from blue to yellow and superimpose
it on the soliton and the zero-state stability region for the local parameters A, — A, and g (which

corresponds to Fig. S1a).

We observe that the system starts up purely from noise. The detuning moves towards the soliton
region (positive values, which corresponds here to a red-detuning) while the energy in the system
builds up, passing through a chaotic stage and forming three solitons. For this set of parameters,
however, three solitons are not admitted as stationary states. Hence, the laser oscillation is lost.
While dropping energy, the system falls again into the region where the zero background is
unstable and, therefore, it can start up again. This cycle appears several times until the system
enters the stability region with a single soliton, which is allowed and stably formed.
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Figure S2 Start-up in the presence of gain-induced nonlinearity and thermal nonlinearity: single soliton
formation. Numerical propagation for Egs. (1-4), modelling a microresonator-filtered fibre laser with the inclusion of
a saturable gain and gain-induced nonlinearity in the amplifying cavity, and a thermal nonlinearity in the microcavity.
The system parameters are I'yr = 5,77 = 8 X 103,77 = 0.4,7, = 4 x 10%,0 = —13,g = 0.25,and A+ Ogp = —0.21. a
Pseudo-colour map of the electric field intensity in the microcavity, in the normalised units of Egs. (1-4), as a function
of the position in the microresonator x (which is normalised against the microcavity roundtrips) and time ¢ (which is
normalised against the main-cavity roundtrips). b Temporal evolution of the peak intensity. The colours varying for
increasing times matches with the plot inside panel e (showing the attractor). ¢ Temporal evolution of the effective
detuning 4; — 4,. The colours varying for increasing times matches with the plot in panel e. d Temporal evolution of
the gain. The colours varying for increasing times matches with the plot in panel e. e Map of the attractor for the peak
intensity, detuning and gain, as in panel c-d, following the colour code of panel b as a function of time. The attractor is
superimposed to the soliton (orange) and zero state (blue) stability regions, as in Fig. 2a of the main text.



S2. Experimental investigation for variations in the global parameters

This section presents a detailed experimental investigation of the types of attractors in the system
and their dependence on a set of the system'’s global parameters (laser cavity length, EDFA pump
power, losses). Extending the results of Fig. 4 in the main text, we experimentally map the
microcomb states against EDFA pump power and main cavity length while maintaining an
environmental temperature variation of +1 °C around the microcavity photonic chip and a fixed
intracavity loss in the laser cavity. Specifically, we repeated the set of measurements four times
in Fig. 4 e,f, (Section S2.1) keeping the intracavity losses at 16 dB, and then performed a second

set at lower intracavity losses of 14 dB (Section S2.2).
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Figure S3 Summary of laser scanning-spectroscopy measurements. a Power spectral density (PSD) of optical and
radio-frequency spectra (left inset) with autocorrelation (right inset) for an EDFA pump power of 367 mW, for the
system with 16 dB losses. b Same as panel a, for an EDFA pump power of 398 mW, for the system with 14 dB losses. ¢
Same as panel a, for an EDFA pump power of 354 mW. d Same as panel b for an EDFA pump power of 391 mW. e Same
as panel a, for an EDFA power of 342 mW. f Same as panel b for an EDFA power of 373 mW. g The insets show three
typical laser scanning spectroscopy measurements for a red-detuned oscillating line (right), blue-detuned line (centre),
and coexistence of two oscillating modes (left). From these measurements, it is possible to extract the absolute
frequency position of the oscillating line and the centre of the microcavity resonance. We define their difference as the
frequency detuning of the lasing states in operating conditions. The distribution of the individual mode detunings
across the wavelength span highlighted by the grey dashed lines for 16 dB intracavity losses and EDFA pump powers
of 342 mW, 354 mW and 367 mW are shown in blue, yellow, and red, respectively. h Same as panel g, for the system at
14 dB intracavity losses, and for EDFA pump powers of 373 mW, 391 mW and 398 mW.

Figure S3 summarises the type of stable states that we observed for these two different
intracavity losses, with the cases on the left corresponding to the high loss condition (16 dB) and
the case on the right corresponding to the low losses condition (14 dB). The general observation
in these two sets is that, by reducing the losses, it is possible to reach a higher nonlinear regime.
For the case of 16 dB, we observe CW states, as well as single and two soliton states, illustrated in
Fig. S3a,c,e by the optical spectra together with the radio-frequency (RF) spectra (left inset) and
autocorrelation (right inset). The RF spectra demonstrate excellent stability, and the
autocorrelation shows a coherent, low background solution. For a loss of 14 dB, the typical, blue-
detuned states that we observed featured Turing patterns (Fig. S3b), which appear from the
modulational instability of a CW state and, hence, corresponds to a higher nonlinear regime



compared to the CW states of the case at 14 dB losses. When we further increased the pump
energy, we observed red-detuned states, here three soliton states (Fig. S3d,f).

Figure S3g,h show three examples of laser scanning spectroscopy!2! measurements within the
microcavity resonances corresponding to the examples in Fig. S3a-f. Direct experimental
measurements of the laser scanning spectroscopy depicting the lasing modes within the
microcavity are shown as insets in Fig. S3g. The right inset represents a red-detuned state,
typically found in the spectral lines of the solitons, while the central inset shows a blue-detuned
state, typically found in the spectral lines of the CW and Turing pattern cases. The left inset shows
a typical case of coexisting blue and red lasing modes, which were observed in some soliton states
and analysed in the following discussion.

Starting from a low Erbium-doped fibre amplifier (EDFA) pump power, in both Fig. S3g and Fig.
S3h, we first find blue-detuned states corresponding to CW and Turing patterns. Note that the
blue-detuned cases of Fig. S3h generally have more power and show a larger blue-detuning than
those in Fig. S3g.

The soliton states have red-detuned oscillating lines. High energy soliton states, appearing at high
EDFA pump powers, are entirely red-detuned. Interestingly, some single soliton cases show the
coexistence with a few blue-detuned modes close to 1540 nm. This coexistence occurs in a
spectral region where the system’s gain has a strong and narrow peak. There, we observe a local
maximum of the amplification due to the combined effect of the gain shape and intracavity
spectral filtering. In this region, the EDFA exhibits a substantial dispersion of the nonlinear
refractive index, which also decreases. We attribute to such two effects the presence of those
modes superimposed to the red-detuned soliton modes.

We can now look at the complete experimental state diagrams of the system stationary states. We
collected the measurements once the system stabilised after increasing the EDFA pump power
for a fixed cavity delay. The stationary state diagram produced by compiling these measurements
describes the system’s final state, naturally reached for each parameter setting. Hence, this
approach differs from typical measurements of transient states obtained during the sweeping of
system’s variables, such as the driving laser frequency detuning in externally driven
configurations2223 or the gain current in self-injection locking?°.

We will first look in detail at the case of high losses (16 dB) in Section 2.1. There, we will also
present a detailed study of the microcomb laser line frequency positions, highlighting some of the
system’s critical nonlinear properties. These include the measurement, under operating
conditions, of the refractive indices for both the microring and laser cavitiy. These measurements
show that the nonlinearities in the two cavities are of the same sign and order of magnitude. This
is an important indication that the two nonlinearities are close to a balance point.

In Section S2.2, we present the stationary state diagram for the low losses (14 dB) case, which
shows blue-detuned Turing patterns and red-detuned solitons. Within this range of parameters,
we study the temporal response of the system when regaining a stable stationary state after a
perturbation. These measurements highlight the difference in recovery times between the blue-
detuned, pattern-like states and the red-detuned soliton states. The recovery times of the blue
detuned states are compatible with the time of action of the thermal nonlinearity in the
microcavity, confirming that this is the dominant effect in the system. The recovery time of the
red-detuned solitons, conversely, is compatible with the response time of the Erbium gain in the
amplifier, confirming that the gain-induced nonlinearity is dominating this regime.



$2.1 Experimental diagram of states at 16 dB losses: analysis of the laser scanning
spectroscopy measurements.

Figure S4a shows a typical map highlighting the existence regions of the different states, here for
intracavity losses of 16 dB. We identify two distinct zones that permit stable states - either
continuous wave (CW) (blue) or broadband, soliton states (red to yellow region), appearing at
low and high EDFA pump powers, respectively. In Fig. S4b, we report the optical spectra for all
EDFA pump powers at a single relative cavity length setting (as indicated by the grey line in Fig.
S4a). Specifically, we mark with a black dot the frequency position relative to the maximum value
of each comb mode, and we report the resulting plot in Fig. S4b. Figure S4c reports three further
repetitions of the same map, which show an impressive consistency. The map highlighted by the
red background is labelled ‘State diagram 2’ and will be used in the following analysis to
demonstrate the repeatability of the states obtained in our laser system.
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Figure S4. Repetitions of experimental state diagrams for the microresonator-filtered fibre laser with
intracavity losses set to 16 dB. a Optical spectral bandwidth (calculated as the bandwidth at -40dB from the
maximum) of the laser states, as a function of the cavity length and EDFA pump power. The soliton states are found in
the yellow to red region with the broadest bandwidths, while CW states are in blue. Outside these regions, roughly
defined by the black lines, the lasing regime is unstable. During the 10-hour experiment performed to acquire the data,
the temperature was maintained at 40° C to within a fluctuation of a few degrees. b Optical spectra of the states along
with the 92 pm delay position, identified by the grey line in panel a. The black dots represent the frequency position
relative to the maximum value of each comb mode. ¢ Repetition of the same experimental map, with two further
repetitions on the insets, acquired immediately after the map in panel a, over subsequent 10-hour long experiments.

In Fig. S5, we show a set of additional measurements to supplement the maps in Fig. S4. Figure S5
depicts the gain (a,b), and EDFA output power (c,d), respectively.

We directly calculate the EDFA gain by measuring the intracavity losses and the microcavity
output power (Fig. S5a,b). The latter generally increases as a function of the EDFA pump power
before saturating in the upper region of the map when the system is outside the soliton region.
There is also a discrete step in the EDFA gain level noticeable at the lower limit of the soliton
region, corresponding to the boundary into the stable CW region.

We observe that the amplifier's output power or, equivalently, the input power to the
microresonator, is roughly increasing with the EDFA pump power and has a negligible
dependence on the free-space delay. It is also interesting to note that larger intracavity energies
do not necessarily provide a state with a broader spectrum: the unstable states at the top of the
map, as evident from Fig. S4, have a narrower bandwidth than the solitons, which appear to be
the solutions with the broadest spectrum that the system can provide.

From the laser scanning spectroscopy measurements, we extract information about the refractive
index of the two cavities. The quantities specifically shown here are the average frequency
position of the comb mode around 1543 nm (Fig. S6a, b), the distribution of the average detunings
(Fig. S6c, d), and the change in free-spectral range (Fig. S6e ,f).
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Figure S5 Additional measurements for the ‘State Diagram 1 and 2’ presented in Fig. S4a and c, respectively. a Optical
gain of the EDFA for the ‘State Diagram 1'. b Same as panel b, for the ‘State Diagram 2’. € Intracavity power measured

at the output of the amplifier or, equivalently, at the input of the microcavity, for the ‘State Diagram 1’. d Same as panel
¢, for the ‘State Diagram 2’.

The frequency f of a selected mode of the microresonator (around 1543 nm) shown in Fig. S6a,b
is extracted from the microcavity resonances detected via laser scanning spectroscopy. Figure 4c
of the main text depicts a typical example where the shift of the microcavity resonance is clearly
visible. Since the shift of the microcavity resonance dominates the variation of this frequency, it
allows evaluating the change of the microcavity refractive index n, under operating conditions.
We can use the general resonance frequency formula f = M ¢ L;* n;', where M is an integer, Lq
is the microcavity length and c is the speed of light. This formula allows one to obtain a rough
monitoring of the refractive index change én, for the microcavity. Assuming that the dominant
change is via the refractive index and not the length, such a change is proportional to the variation
of the frequency —6&f f~! = én,nzt. For the range in Fig. S6ab (6f =[0,6] GHz) this
corresponds to a relative refractive index variation in the range of |6n,nz'| = 2 x 10~° across
the soliton region. Such a change is induced by the variation of the power in the comb light, as
evidenced in Fig. S5¢,d that depict the optical comb power coupled to the microring. Across the
soliton region, the power variation is about 10 mW. Thermal effects in the microcavity dominate
such a refractive index change, which increases proportionally to the optical power.

To calculate the average detuning shown in Fig. Sé6c,d, we extract the detuning distributions for
all the valid points on the map (similar to those in Fig. S3g,h) and take the average value. Fig. S6c
reports, for convenience, the same data of Fig. 4f in the main text. These measurements confirm
the clear locking of the soliton and CW states on the red-detuned and blue-detuned slopes that
we discussed in the main text. Such a locking occurs despite the strong thermal detuning of the
microcavity resonances, as we also commented in the main paper, due to the presence of another
nonlinear phenomenon in the amplifier. Evidence of such a nonlinearity can be found in the
variation of the free-spectral range of the soliton states that we discuss in the analysis of Fig. S6e,f
and Fig. S7.



We extracted the free-spectral range of the soliton states shown in Fig. Sée,f by fitting the
frequency position of the soliton modes versus the mode numbers, as also done in Refs.13. Here,
we consider the repetition rate of a single soliton as = 48.9 GHz. The change of free-spectral range
under operating conditions spans about 2 MHz, which accounts for the group velocity mismatch
that the soliton solutions admit?-3.
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Figure S6 Analysis of the frequency positions of the stable states. Datas extracted from the laser scanning
spectroscopy. Black lines mark soliton and CW region boundaries. a Variation of the frequency position of a selected
resonance of the microcavity (here, we choose the mode centred approximately at 1543 nm). The colour code in the
map follows the inset (right) showing the values of the frequency shift for the microcavity resonance. b Same as a, now
for the ‘State Diagram 2’. ¢ Variation of the average detunings, calculated as the mean frequency difference between
each oscillating microcomb laser line and the corresponding microcavity resonance centre across all microcomb lines.
The colour code in the map follows the colours of the inset (right), where the values of the detunings versus EDFA
pump power are shown. d Same as panel c, but for the ‘State Diagram 2’. e Free-spectral range (FSR) variation
associated with the soliton states (FSR~48.9 GHz) obtained across the mapped values. The colour code in the map
follows the inset (right) showing the free-spectral range variation values. f Same as panel e, but for the ‘State Diagram
2.

The free-spectral range variation allows us to evaluate the refractive index change in the
amplifying cavity indirectly. The position of the oscillating lines dominates such a variation.
Hence, we can assume that the relative deviation of the free-spectral range of the soliton solutions



8F F~1,is equal to the relative variation of the amplifier cavity free-spectral range, F, ~ 77 MHz,
with F, = ¢ L, nj. The variation of F;, under operating conditions is dependent on the changes
in the amplifier cavity length L, and refractive index n;, with —§F F~! = —§F, F; ! = én,n;* +
8L,L,". From this relationship, we can extract the relative refractive index change én,n;?,
because the variation §L; is known, it is indeed the relative cavity length variation that we are
reporting in the abscissa of all the maps. Figures S7a,b show such relative refractive index
change én,nj* that we have extracted from the free-spectral range variation maps in Fig. S6e,f.
Here, we observe a variation in the order of |6nbn51| ~1x107%.

The most important result of Figs. S7a,b is that the refractive index increases with the EDFA pump
power, as we observed for the microcavity in Fig. S6a,b. This indicates that the amplifier has a
dominating focusing thermal nonlinearity™, in accordance with the literature of EDFAs24. The
variation of refractive index within the amplifier is |5nbn;1| ~ 1x107* is larger than the
variation in the microcavity (|6ngnz!| = 2 X 107%). In the amplifier, however, such a change is
induced by both the EDFA pump variation (of about 30 mW) and the amplified signal variation
(10 mW). Given that the power variations of these two fields are within the same range, it is
reasonable to assume that the comb contribution to this change is at least in the order of 1075,
comparable with the microcavity refractive index change. When the intracavity optical comb
power varies, hence, the amplifier and the microring experience a refractive index change of the
same sign and of a similar amount. We recall that, by definition, a nonlinear coefficient measures
the refractive index variation as a function of the optical power. These measurements, hence,
show that in the soliton regime the slow nonlinearities of the amplifier and the microcavity have
the same sign. The results also suggest that these nonlinearities are in the same order of
magnitude.
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Figure S7 Analysis of the relative refractive index variation in the amplifier cavity. Here we show the relative
refractive index variation of the amplifier under operating condition calculated as dnyn,* = —6F F~* — 6L, L. a

Relative change of the refractive index for the soliton states obtained across the mapped values, extracted from the
free-spectral range variation of the ‘State Diagram 1'. The colour code in the map follows the inset showing the
refractive index change. b Same as a for the ‘State Diagram 2’.

**The other relevant physical phenomenon is the gain-induced change of refractive index. This decreases the refractive
index for increasing gain and, accordingly, increasing EDFA pump power. For this reason, this cannot be the dominating
effect in these measurements.

It is important to stress that, in terms of nonlinearity, the gain dependency still results in a focusing nonlinearity for
the comb field, because the gain saturates (and hence decreases, effectively leading to a larger refractive index) for
increasing comb powers.

In our modelling, we take this into account with the term © gp in the detuning. Indeed, we use a negative value for ©
which results in a decrease of the refractive index for increasing gain gp. This terms results in a focusing nonlinearity
when the gain g saturates with the field b.



$2.2 Experimental diagram of states at 14 dB losses and system dynamic response

In the previous section, we saw that the experimental state diagram remained almost unchanged
for fixed intracavity losses. Soliton and CW states are repeatable, i.e., they appear in independent
runs for same EDFA pump power and laser cavity length settings, with very similar refractive
index variations (within the accuracy of our estimation), and minor differences in the intracavity
energies.

We now discuss what happens to the system when the intracavity losses are varied. Blue-detuned
and red-detuned types of attractors still appear; however, this generally occurs for different
pump power values and relative cavity lengths. In addition, by varying the losses, the intracavity
saturation energy is also affected: this typically allows reaching different nonlinear regimes.

Figure S8 shows the resulting state diagram obtained for an intracavity loss (14 dB) lower than
the one considered in the previous section (16 dB): blue-detuned states take the form of Turing
patterns. The output drop power for these states is about 15 mW here. At these powers, the
microcavity Kerr nonlinearity is strong enough to induce modulational instability; hence the CW
states naturally evolve into patterns. At higher EDFA pump powers, we observe red-detuned
soliton states again. Here two and three soliton states appear, with output drop powers of about
20 mW. The global parameters (in this case, losses) can control the number of solitons by
operating the system at different intracavity energies.
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Figure S8. Experimental state diagram for a microresonator-filtered fibre laser with intracavity losses set to
14 dB. The delay axis uses the same zero definition as Fig. S4. a Spectral bandwidth (calculated as the bandwidth at -
40dB from the maximum), in colour code, of the laser state as a function of the cavity length delay and EDFA pump
power. Soliton states are found in the red region with the broadest bandwidths, while Turing patterns appear at the
lowest EDFA values (in blue). The lasing regime is unstable outside these regions, which are roughly defined by the
black border lines. During the experimental acquisition, the temperature was maintained at 40 °C within a fluctuation
of a few degrees. b Optical spectra of the states at the delay 240 pm, identified by the vertical grey line in a. The black
dots represent the frequency position relative to the maximum value of each comb mode. ¢ From top to bottom, power
spectral densities (PSDs) of the optical spectra for EDFA powers of 398 mW, 391 mW and 373 mW, respectively, as
indicated by the corresponding coloured highlights in panel b.

Across all maps, we consistently observe a clear transition between blue-detuned and red-
detuned dominant attractor states determined by the EDFA pump power level. For appropriate
values of losses and main cavity length, the EDFA pump power appears to control an equilibrium
point between the two types of states. Moreover, the analysis of the previous section shows that
the refractive indices of the two cavities vary within a similar range across the maps. We interpret
this as evidence of a similar order of magnitude between the nonlocal nonlinearities of the two
cavities.

The change in their equilibrium induces in the system two different families of attractors. These
two families are characterised by microcomb lines locked on the blue-detuned and red-detuned
sides of the microcavity resonances, respectively. Attractors with microcomb lines locked on the
blue-detuned side of the microcavity resonances (blue-shifted detunings as shown in Fig. S3e-h
and Fig. S6¢,d, blue values) result in CW states or Turing states. Such blue-detuned states appear



when the dominating nonlinear effect takes place in the microcavity. Across our maps, we observe
this behaviour at lower EDFA powers.

On the other hand, attractors with microcomb lines locked on the red-detuned side of the
microcavity resonances (red-shifted detunings as shown in Fig. S3a-d,g-h and Fig. Sé6c,d, red
values) lead to soliton states. Such red-detuned states appear when the dominating nonlinear
effect takes place in the amplifier cavity. Across our maps, we observe this behaviour athigh EDFA
powers.

In agreement with the literature about EDFAs?24, increasing the EDFA pump power also raises the
nonlinearity in the amplifier. This phenomenon, also according to the physics described in our
modelling in Section S1, is induced by the nonlinear gain response of the EDFA. Typically, the
latter provides a small variation in the system focusing nonlinearity, primarily dominated by the
large focusing thermal effect?4 that we observed in Fig. S7. To identify the change of balance
between the two nonlinearities, we use, then, a different approach. Since the two slow
nonlinearities of the microring and amplifying cavity have different physical natures and
timescales, we verify our hypothesis about the operating regimes by studying the recovery time
of the attractors. For blue-detuned Turing states, we expect a recovery dynamic dominated by the
thermal nonlinearity of the microcavity. For red-detuned soliton states, conversely, we expect a
recovery time compatible with the gain nonlinearity of the amplifier.
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Figure S9 Perturbation recovery. The stationary state is perturbed with a steep variation in the voltage driving the
EDFA pump power. a Recovery of a Turing pattern state. The power associated with the state is shown in blue, while
the black shaded region indicates the time at which the EDFA pump power is modified to perturb the state. The system
recovers to a state with similar average power and spectral shape after 0.1ms, which is in the temporal scale of the
microcavity thermal nonlinearity response. b Corresponding optical spectrum of the recovered state in a. ¢ Same as
panel a, for a multi-soliton state. Note that the recovery time is on the order of 10 ms, dictated by the Erbium gain. d
Corresponding optical spectrum for the recovered state in panel c.

Figure S9 shows the laser output while abruptly changing the EDFA pump power for a Turing
pattern and a soliton state. Here we explicitly show the transitory state that we observe when we
abruptly decrease the EDFA pump power (of about 8 mW for the two cases). In both cases, the
microcomb regains a state with very similar physical properties, despite the strong variation in
output power following the perturbation. For a low EDFA pump power leading to Turing states
(Fig. S9a), the system recovers on a timescale of 100 ps which is governed by thermal changes in
the microcavity. In contrast, for soliton states (Fig. S9b), the system recovers in a timescale of 10
ms - the Erbium-doped fibre gain response time. These measurements confirm that the system is
dominated by two different nonlinearities when it converges to the two different attractors. The
microcavity thermal nonlinearity dominates at low pump powers and induces blue-detuned
states. In contrast, the amplifier nonlinearity, which increases with the EDFA pump power,
prevails in the high-energy soliton region.



$3. Numerical analysis of the dynamic system response.

In this Section, we show that the formation of blue-detuned patterns and red-detuned solitons
are respectively dominated by the time constants of the microcavity thermal nonlinearity and of
the amplifier gain nonlinearity also in our theory.
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Figure S10 Start-up in the presence of gain-induced nonlinearity and thermal nonlinearity. a Stability region
and a selection of steady states for the system. The colour of each marker represents the type of steady-state solution
reached by the system after start-up from the noise for different values of the rescaled detuning A + ©gp and gain g. b
Pseudo-colour map of the electric field intensity in the microcavity as a function of the position in the microresonator
x (normalised against the microcavity roundtrips) and time ¢ (normalised against main-cavity roundtrips). The system
parameters are I+ = 2,7, = 8 X 10%,7 = 0.1,7; = 4 X 10%,0 = —15,g = 0.03,A + 0g,, = —0.0909. c Enlarged view
of panel b for the first 10* main-cavity roundtrips, highlighting the start-up of the pattern-like solution within a
timescale compatible with the thermal time constant 7, = 8 x 10%. d Output power spectral density (PSD) of the a
field. e-g Same as panels b,c and d, but for parameters I'; = 2,77 = 8 X 103,77 = 01,7y =4X 10%,0 = —-15,g =
0.135,A + ©g, = —0.1342. Panel f illustrates the start-up of the two-soliton state from noise within a time-frame
compatible with the slower timescale 7, = 4 X 10*. h Temporal evolution of the effective detuning 4, — 4, for the low-
gain pattern-like states (blue line) and the two-soliton states (orange line).

In our theoretical modelling, Eqs. (1-4), the thermal refractive index of the microcavity is
accounted for in Eq. (4). The laser refractive index dependence on the pump power, conversely,
is described by the term © g in the equation for 4,, with the gain term given by Eq. (3). As the
gain saturates, this term induces a red-detuned nonlinearity controlled by the pumping term gp,
modelling the EDFA pump, and in turn, the gain saturation induced nonlinearity - see, e.g., Ref.24.
Using the same parameters as in Section S1 but with constant k = 2m, I = 2,7 = 0.1,0 = —15, we
numerically investigated the dynamic evolution of the complete system of Egs. (1-4) for different



initial detuning A and with two different time constants. As discussed in Section S1, we set the
thermal decay time of the microcavity to 7, = 8 x 103 and the saturation time of the gain to Ty =
4 x 10%.

We start by calculating the start-up region in terms of the global parameters gp and the initial
detuning 4 in Fig. S10a. Figure S10a summarises the results for this series of simulations. Here
we use a series of coloured markers denoting the type of final steady-state (grey dots - slow
pulsing, blue triangles - pattern, orange stars - soliton) for different initial detuning and gain
values.

As it can be seen from this graph, at low pump gain (e.g., gp = 0.03) the start-up region does not
admit soliton states. Here, we observed the emergence of pattern-like (blue triangle markers),
blue-detuned types of states due to the presence of a focusing microcavity thermal nonlinearity
induced by the term 'y = 2 in Eq. (4). These types of states are the dominant attractors. In Fig.
S10b-d, we illustrate the formation and evolution of a typical pattern-like solution (panels S10b,c,
pseudo-colour plot of the temporal evolution of the microcavity field a; panel S10d, output
spectrum).

At higher gain (gp=0.135), the system dramatically changes its dynamics. Looking at the map in
Fig. S10a, we see that the start-up region admits soliton states. We verified by numerical
propagation (orange stars) that they appeared for 4 + 0 gp € [-0.3132, 0.2237]. We show the
formation of a typical two-soliton state for A + @ gp =0.1342 in Fig. S10e-g.

Figure S10h includes the evolution of the effective detuning 4, — 4, for both the low (gp=0.03,
blue line) and high (gp=0.135, red line) gain cases. At lower gains, where the dynamics converge
to a pattern-like solution (blue line), the focusing thermal nonlinearity squeezes the effective
detuning values 4;, — 4, into a smaller value. In the high-gain case (orange line), conversely, the
effective detuning 4, — 4, moves initially towards the blue, but then it settles for a sharp red-
shift, enabling the soliton state formation.

Our numerical simulations also well reproduce the experimentally observed temporal dynamics.
The low gain dynamics of Fig. S10b-d, in particular, compares well with the observation of a
pattern state formation in Fig. S9a. The experimental and numerical spectra show very good
qualitative agreement. Most importantly, we measured a recovery of the pattern on the thermal
timescale of the microcavity 7. This is consistent with our simulations, where we found that the
main pattern forms indeed in the first 7, = 8 X 10 main-cavity roundtrips. In this specific
example, the pattern continues to evolve slowly. As discussed in Ref.3, our system produces stable
patterns by including the group velocity mismatch, which we have constrained to be zero for
simplicity. Experimentally, we do not expect this restriction to happen in the region where we
measure the patterns.

More significantly, the results depicted in Fig. S10 are in excellent agreement with the
experimental recovery of the multi-soliton state displayed in Fig. S10b. This shows a long
timescale dynamic, clearly dominated by the gain recovery time constant 7, = 4 X 104, in close

analogy with Fig. S9b, which is also dominated by the Erbium time constant.

Finally, we note that the model moves from a pattern to a soliton dynamic when incrementing the
gain by about 1 dB, which roughly provides the gain change necessary to move from the pattern
region to the soliton region, as visible from Fig. S10a. This value is compatible with the
experimental gain variation we observed across the maps (see also Fig. S5a,b), between the blue-
detuned and red-detuned regions.
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