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Abstract— Posterior circulation stroke (PCS) presents
significant diagnostic challenges due to poorly localizing
and non-specific symptoms, such as dizziness, nausea,
and headache, which are often misattributed to benign
conditions. This study introduces an innovative diagnostic
tool that utilizes a machine learning algorithm-driven eye
tracker to enhance early diagnosis of PCS. Our approach
involves analyzing eye movements during three standard
neurological eye examinations: the Dot Test, H Test, and
Optokinetic Nystagmus (OKN) Test. The Discrete Radon
Cumulative Distribution Transform (DRCDT) and nearest
subspace (NS) classification methods were employed to
distinguish between PCS patients and healthy controls
by identifying specific eye movement patterns. Results
demonstrate that the ensemble model combining the three
tests achieved the highest sensitivity and accuracy, with a
sensitivity of 96% and an accuracy of 88%, in diagnosing
PCS. This study’s findings underscore the potential of an
eye-tracker-based diagnostic tool to support a more accu-
rate and efficient diagnosis, particularly for non-neurology
trained providers, which would improve patient outcomes
with more timely and appropriate treatment. The proposed
tool offers a practical solution to the limitations of current
diagnostic methods, such as the need for calibration and
reliance on highly trained specialists, and can be seam-
lessly integrated into clinical settings to support emer-
gency medical services (EMS) and emergency department
(ED) triage.

I. INTRODUCTION

Stroke is a significant contributor to mortality and long-

term disability worldwide, with anterior circulation stroke

(ACS) being the most prevalent type and posterior circulation

stroke (PCS) being less common and often misdiagnosed [1]–

[3]. PCS can have non-specific and variable symptoms, such

as dizziness, nausea and vomiting, and headache, similar to

other more commonly presenting conditions such as migraine,

metabolic disturbances, infections, and peripheral vestibu-

lopathies [4], [5]. In contrast, the symptoms of ACS, including

facial asymmetry, arm weakness, and speech disturbances,

are more specific and easier to recognize as signs of stroke,

particularly for non-neurology trained providers [6].

The HINTS (Head Impulse, Nystagmus, Test of Skew)

examination is a bedside diagnostic approach to help differ-

entiate PCS from an inner ear disorder in patients presenting

with acute vestibular syndrome [7]. However, the accuracy

of the HINTS exam depends a certain level of training and

experience, which is often not the case for lay providers in

the emergency setting [8], [9], [10], [11]. Thus, there is a need

to develop augmented diagnostic tools not reliant on provider

experience and training to help detect PCS in the emergency

setting.

PCS may be differentiated from a peripheral disorder by

abnormal patterns of eye movements, which are often subtle

and difficult to distinguish from benign conditions. Commonly

observed abnormalities in eye movements include nystagmus,

fixed gaze deviation, and dysconjugacy, which neurologists

and ophthalmologists are trained to examine at the bedside.

For an automated diagnostic tool to accurately diagnose PCS,

it would need to replicate the ability of a specialist to correctly

discern these oculomotor abnormalities in real time.

Eye tracking has emerged as a promising tool for diagnosing

neuro-ocular disorders. Eye tracking may be used to character-

ize various neurological conditions, including traumatic brain

injury, Parkinson’s disease, and multiple sclerosis [12]–[17].

Previously, we demonstrated that a non-calibrated eye tracker

can be used to assess eye movement symmetry and variability

in a PCS patients [18]. The calibration procedure posed an

obstacle to the translation of the eye tracker for clinical

settings, as patients affected by stroke and other neurological

conditions may have difficulty fixating on a target or following

a moving object; i.e., the prerequisite for calibrating an eye

tracker.

This study proposes a novel approach to augment the diag-

nosis of PCS using a commercial, off-the-shelf eye tracker. By

analyzing eye movements during computer-adapted versions

of three standard bedside oculomotor tests (i.e., the Dot-Test,

H-Test, and OKN-Test), we aim to identify patterns to aid in

the early and accurate diagnosis PCS. Additionally, acquiring

data from PCS patients is challenging due to the nature

of their illness, which can affect patient compliance during

the examination. To address these challenges, we will use a

custom-built mobile rig equipped with compliance protocols

for data acquisition. The study involves recruiting patients with

PCS and healthy controls and recording their eye movements

using an eye tracker during three oculomotor tests. These tests
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investigate gaze-evoked nystagmus, smooth pursuit, saccades,

and the vestibular-ocular reflex. Given that PCS presents

less commonly than anterior circulation stroke, our machine-

learning algorithms must be data-efficient. The resulting eye-

tracking data will be analyzed using advanced pattern recogni-

tion and machine learning algorithms to identify specific eye

movement patterns characteristic of PCS.

Our approach employs the Discrete Radon Cumulative

Distribution Transform (DRCDT) and nearest subspace (NS)

classification model. The DRCDT is applied to gaze points

from both left and right eye movements to maximize infor-

mation on eye conjugacy while being invariant to deformation

caused by non-calibrated eye tracking data. This method gen-

erates a convex set of gaze point distributions in the DRCDT

space, making them linearly separable and thus suitable for

classification using the NS model. These factors will contribute

to the robustness and applicability of our work.

The overall diagnostic tool comprised an ensemble model

based on three separate DRCDT-NS classifiers for the individ-

ual tests: the Dot-Test, H-Test, and OKN-Test. Each of these

neurological eye examinations interrogates different ocular

motor abnormalities, and a separate diagnosis of PCS per test

may result in the potential for false positives or negatives (see

Fig. 1). Therefore, the ensemble model allows for a more

accurate and efficient diagnosis by combining the diagnostic

power of the three neurological eye examinations. The results

are compared to the final diagnosis of a vascular neurologist to

assess the accuracy and efficiency of the proposed approach.

To summarize, this work makes significant contributions:

• Proposing a novel diagnostic tool that utilizes a non-

calibrated eye tracker combined with machine learning

algorithms to accurately distinguish between posterior

circulation stroke (PCS) patients and healthy controls.

This tool addresses the limitations of current diagnostic

methods, such as the need for calibration and the reliance

on highly trained specialists.

• The systematic validation of the tool on a cohort of

PCS patients and healthy controls demonstrated high

sensitivity (96%) and accuracy (88%) to detect PCS,

underscoring its potential for early and precise diagnosis.

• This diagnostic tool offers a practical solution that can

be seamlessly integrated into clinical settings, support-

ing emergency medical services (EMS) and emergency

department (ED) triage. By enhancing the accuracy and

efficiency of PCS diagnosis, this tool holds promise to

improve patient outcomes through timely and appropriate

stroke treatment.

II. RESULTS

A. Fully Automated PCS Diagnosis Tool Using

Eye-tracker

The validation of the method for early-stage stroke diagnosis

encompassed two sets of results: (1) Cohort 1: Stroke patients

with abnormal eye movement (n = 24) vs. healthy controls (n =

18), (2) cohort 2: Stroke patients with abnormal eye movement

(n = 24) vs. healthy controls (n = 18) and stroke patients

with no abnormal eye movement (n = 3) (see Table. I). The

model for cohort 1 is trained with healthy controls and patients

with central neurological symptoms (i.e., exhibiting abnormal

eye movements). The analysis from the 10,000 bootstrapped

participant-level classification performance of cohort 1 shows

that the ensemble model using data from the eye tracker of all

three neuro-ophthalmological tests reported the highest sensi-

tivity and accuracy in diagnosing posterior circulation stroke,

with a sensitivity of 0.96 and accuracy of 0.88 (see Table.

I). The analysis from cohort 2, trained and validated with

patients with abnormal eye movement as the positive label

and healthy controls along with stroke patients with peripheral

neurological symptoms (no abnormal eye movement) reported

no change in sensitivity for the ensemble model. However,

reported a minor decrease in accuracy and specificity 0.87

and 0.76 respectively.

The path plot and heatmap for the three neurological exams

Fig. 2 (a) and 2 (b) illustrate the contrast in gaze data

from patients with abnormal eye movement and normal eye.

The true positive classification of predicting abnormal eye

movement as positive in a patient Fig. 2 (b), and the true

negative classification of predicting a patient with normal eye

movement as negative. The path plot of the true positive

instance with a high degree of variation in the horizontal

axis with two distinctly different shapes and orientations of

clusters (much pronounced in the H-test) illustrates the cause

of pathology during the eye examinations. The Fig. 2 (c)

illustrates a false negative classification instance of a patient

with abnormal eye movement as negative. The path plot, and

heat map for the three neurological exams showed normal

conjugate eye movement as referenced to 2 (a) and overall

normal eye movement distribution of this study. This led to

the point that the pathology of this patient was not detected by

the eye examinations performed during this study. The false

positive prediction originating primarily from the Dot-test Fig.

2 (d), 2 (e) and H-test Fig. 2 (e). The gaze data from these

exams shows eye conjugacy where both eyes move together.

However, the gaze data from the control and patient did not

follow the overall normal distribution as shown from the

instance Fig. 2 (a). Therefore the classification model classified

the gaze pattern out of the normal distribution as abnormal eye

movement. This probes the question of compliance during the

eye examination.

The overall results irrespective of the participant cohort

indicate that the ensemble model comprising models specific

to each eye examination reported the highest classification

performance. Considering the individual tests, the Dot Test

reported the highest sensitivity and accuracy after the ensemble

model, with a sensitivity of 0.83 and an accuracy of 0.83. The

individual tests reported a higher specificity compared to the

ensemble model. Clinicians often prioritize higher sensitivity

over specificity, as avoiding a false negative diagnosis is more

important than a false positive in the clinical scenario. A false

negative diagnosis may lead to delayed treatment, increased

morbidity, and mortality, while a false positive diagnosis can

be corrected with further testing or follow-up. These results

further underscore that the combination of our proposed pat-

tern recognition approach with the eye tracker has the potential

to provide a more accurate and efficient diagnosis.



3

Fig. 1. Overview of the Proposed Diagnostic Tool Using an Eye Tracker. The upper panel presents the data acquisition process, while the lower
panel outlines the machine learning adaptation for automatic diagnosis from non-calibrated gaze data. Data were collected from patients and
controls either reclined or seated. The Rolling Apparatus to Detect Impairment of the Eyes (RoADIE) is equipped with a screen-based eye tracker
to monitor gaze during computer-adapted neurological eye examinations on an extended screen. Compliance with gaze detection and rig stability
requirements is ensured (as shown in the upper panel, second column). The upper panel’s third column illustrates the digitally adapted bedside
ocular motor tests: H-test, Dot-test, and OKN-test. In the lower panel, the first column displays the gaze path captured by the eye tracker during
the ocular motor tests. The second column shows the transformation of the gaze point data’s ’x’ and ’y’ coordinates to the RCDT space. The third
and fourth columns illustrate the three near-subspace classification models and their predictions for each ocular motor test. Finally, the fifth column
depicts the ensemble model that combines the three individual models to provide a binary diagnosis.
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TABLE I

MEAN WITH 95% CONFIDENCE INTERVAL (CI) OF CLASSIFICATION PERFORMANCE FOR EACH TEST AND ENSEMBLE MODEL FROM 10,000

BOOTSTRAPPED PARTICIPANT-LEVEL SENSITIVITY, SPECIFICITY, AND ACCURACY

Model Accuracy Sensitivity Specificity

Patients with abnormal eye movement vs Healthy controls

Dot 0.83 [0.71 - 0.93] 0.83 [0.67 - 0.96] 0.83 [0.65 - 1.0]

H 0.67 [0.52 - 0.81] 0.5 [0.29 - 0.7] 0.89 [0.72 - 1.0]

OKN 0.71 [0.57 - 0.86] 0.54 [0.33 - 0.74] 0.94 [0.81 - 1.0]

Ensemble Model 0.88 [0.79 - 0.98] 0.96 [0.86 - 1.0] 0.78 [0.57 - 0.95]

Patients with abnormal eye movement vs Healthy controls
and Patients with no abnormal eye movement

Dot 0.82 [0.71 - 0.93] 0.83 [0.67 - 0.96] 0.81 [0.63 - 0.96]

H 0.69 [0.56 - 0.82] 0.5 [0.3 - 0.7] 0.9 [0.76 - 1.0]

OKN 0.73 [0.6 - 0.84] 0.54 [0.33 - 0.74] 0.95 [0.85 - 1.0]

Ensemble Model 0.87 [0.76 - 0.96] 0.96 [0.86 - 1.0] 0.76 [0.57 - 0.94]

B. Ablation study and comparison of model performance

In our ablation study, we examined cohort 1, consisting of

stroke patients with abnormal eye movements, and compared

them to healthy individuals. Our focus was on evaluating

two versions of the proposed DRCDT-NS model: one that

incorporates deformation modeling and one that does not.

Our findings indicate that omitting the deformation vector

from the model’s learning parameters led to a decrease in

the model’s accuracy. Specifically, the version of the DRCDT-

NS model that omitted deformation modeling showed reduced

sensitivity and specificity across tests, with a notably lower

specificity of 0.55 in the combined analysis of the three tests

(i.e., ensemble).

This drop in performance was attributed to a higher occur-

rence of false positives, suggesting that the model struggles

to distinguish between abnormal and normal eye movements

when deformation is not considered. This outcome aligns with

the results from the comparative analysis involving another

deep learning model, which similarly showed low specificity

in its ensemble predictions. However, it’s worth mentioning

that models like the 1D-VGG and 1D-ResNet demonstrated

promising results for individual assessments, such as the H-

test and the Dot-test.

The aggregate prediction is crucial for the accurate detection

of disease, as it leverages the unique ocular motor functions

assessed by each test, which may be affected by the condition

in question. A model that minimizes false positives is key to

developing a diagnostic tool with significant practical utility.

In this context, the DRCDT-NS model, when it includes

deformation modeling, proves to be particularly effective,

offering high classification accuracy.

III. DISCUSSION

Clinically, PCS is three times more likely to be misdiag-

nosed than anterior circulation stroke [2]. In our study, we

demonstrated that a non-calibrated eye tracker, augmented

with ML can effectively diagnose PCS by analyzing eye

movements during neurological examinations. This method

was applied to a population of stroke patients exhibiting

abnormal eye movements compared with healthy controls and

stroke patients without abnormal eye movements. These results

are particularly significant as the requirement for calibration

TABLE II

ABLATION STUDY AND COMPARISON OF MODEL PERFORMANCE FOR

PATIENTS WITH ABNORMAL EYE MOVEMENT VS HEALTHY CONTROLS

Model Test
Accu-
racy

Sensitiv-
ity

Speci-
ficity

1D
VGG

Dot 0.711 0.852 0.500
H 0.738 0.833 0.611
OKN 0.690 0.792 0.556
Ensemble 0.643 0.958 0.222

1D
ResNet

Dot 0.578 0.741 0.333
H 0.714 0.792 0.611
OKN 0.595 0.958 0.111
Ensemble 0.643 0.958 0.222

LSTM

Dot 0.689 0.926 0.333
H 0.643 0.833 0.389
OKN 0.667 0.833 0.444
Ensemble 0.595 1.000 0.056

DRCDT-
NS

Dot 0.711 0.704 0.722
H 0.744 0.721 0.778
OKN 0.786 0.792 0.778
Ensemble 0.733 0.851 0.555

DRCDT-NS
+
Deformation
Modeling

Dot 0.822 0.814 0.833
H 0.622 0.444 0.889
OKN 0.666 0.481 0.944
Ensemble 0.866 0.925 0.778

has traditionally been a major barrier to the adoption of eye-

tracking technology in clinical diagnosis. Previous studies ex-

ploring the application of eye tracking in various neurological

disorders have often had to exclude patients unable to complete

the calibration process, either fully or partially [13], [17], [19]–

[24]. Our approach addresses this limitation, broadening the

potential for eye tracking in clinical settings.

The proposed approach overcomes the calibration by mea-

suring the conjugacy of the eye movement instead of measur-

ing the point of gaze coordinates concerning the screen coor-

dinates. The lack of calibration introduces deformation to the

measurement translation, scaling, rotation, and shearing. These

deformations pose challenges during discriminative analysis.

The DRCDT accounts for these deformations by modeling

them as a deformation vector derived from the probability

distribution of gaze point gradients. Excluding the deformation

vector as a learning parameter degrades the robustness of the

classification model. Augmenting early detection of PCS using

an non-calibrated eye tracker enables paramedics and other

emergency medical providers to more accurately perform early

stroke screening and improve rapid stroke triage and treatment.

Vascular neurologists in our study diagnosed patients with
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Fig. 2. Multifaceted Eye-Tracking Data Visualization for Classification Prediction Analysis. The columns of the figure represent each neurological
eye examination and the rows depict instances of gaze patterns, integrating True Positives, True Negatives, False Positives, and False Negatives in
the context of patient and control characteristics. The first column depicts the path plot from the ’H-test’. Here gaze data is transformed into screen
coordinates measured in pixels (px). The central columns feature heatmaps for the ’Dot-test’, with the left and right eyes’ fixation densities portrayed
through a color spectrum, where warmer colors denote higher fixation densities and cooler colors indicate less frequent fixations. The final column
provides relative angle plots from the ’OKN test’, sequentially plotted over time, to reveal the rhythmic eye movements characteristic of nystagmus.
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a range of signs including impaired convergence, oculomo-

tor palsies, skew deviation, abnormal patterns of nystagmus,

impaired vestibulo-ocular reflex, saccadic pursuits, and acute

hearing loss. Given the complexity of these variable presenta-

tions, with 48% of patients exhibited multiple symptoms with

abnormal nystagmus being the most prevalent, an ensemble

model that combines multiple tests is essential for diagnostic

robustness. The neurological eye examination adopted in this

study assesses both singular deficits and syndromes with

multiple deficits. Relying solely on the results of a single

test could be inadequate due to the need to fully characterize

and localize a PCS syndrome. This is underscored by the

low sensitivity of the H-test and OKN-tests alone, as detailed

in Table I. Furthermore, the classification prediction analysis

illustrated in Figure 2 shows that models based on a single

test may yield false negatives when the manifested symptom

does not align with the specific test used.

The computer-adapted tests provide a controlled, repeatable,

and precise method to assess complex eye movements and

coordination, which are critical in diagnosing and monitoring

the nervous system. The integration of these tests into the

study’s methodology allows for detailed analysis of oculo-

motor function in a way that is not feasible with traditional

bedside tests alone. The examinations included tests for visual

fields and eye movements, such as the ability to maintain a

steady gaze and detecting abnormal patterns of nystagmus.

However, our methodology did not encompass specific tests

for diplopia, or double vision, that often arises from strokes

affecting the cranial nerves or brainstem. We incorporated the

Head Orientation (HO) test, which required participants to

alternately tilt their heads to the left and right. This test is

known to exacerbate vertical misalignment due to an ocular

tilt reaction. Nonetheless, the HO test was ultimately excluded

from our methodology because it showed poor gaze correlation

coefficients among both patients and healthy participants and

exhibited higher variance compared to the other three tests

used [18]. Moreover, our observations indicated that screen-

based eye-tracking technology was inadequate for this test, as

it failed to detect gaze accurately when the head’s orientation

was rotated along the y-axis.

Rigorous quality control measures during data acquisition

required multiple test attempts, especially within the patient

cohort, highlighting the challenges of maintaining consistency

and reliability in a clinical setting. Despite these difficulties,

strict adherence to the protocol was crucial for securing high-

quality data. This underscores the efficacy of the integrated

technological approach employed in our study.

Data efficiency is critical in solving the clinical problem

as clinical data for PCS is challenging to acquire due to its

limited incidence. Furthermore, acquiring a clinical dataset is

more expensive than other domains’ datasets. We evaluated the

data efficiency of the DRCDT-based classification method by

performing a k-fold cross-validation by varying the training

sample. The k-folds are randomly drawn from the original

dataset. The experiment for each k-fold was repeated five

times, and the results were averaged. Fig. 3 highlights the com-

putational efficiency of the classification model as it maintains

classification accuracy over the varying number of training

Fig. 3. Accuracy as a function of a number of training samples used to
evaluate the classifier performance.

samples. This is feasible since the classifier utilizes a transport-

based generative model to define the classification problem

and uses the mathematical properties of the DRCDT to render

the problem more accessible in the transform domain. This

approach allows one to solve nonlinear classification problems

using linear classifiers.

We observed that 81% of participants in our study presented

with dizziness, a non-specific symptom widely manifested

in other conditions. Non-specific symptoms like dizziness,

nausea, and blurred vision increase the likelihood of diag-

nostic errors in PCS [25]. Diagnostic error is exacerbated by

the fast-paced, high-pressure environment of the emergency

department, leading clinicians to rely on heuristics and rapid

decision-making prone to cognitive biases [25]–[27]. Diag-

nostic error rates in PCS can reach up to 52%, with non-

specific symptoms like dizziness and visual disturbances being

common reasons for misdiagnosis [28], [29]. Furthermore,

despite the introduction of more advanced imaging techniques,

diagnostic errors still contribute to significant clinical and so-

cioeconomic consequences, including higher rates of disability,

increased mortality, and longer hospital stays [25], [29]. This

study is proof of concept that a non-calibrated eye tracker

using machine learning techniques could augment detection

of PCS by non-neurology providers and emergency personnel,

improve patient care and outcomes through early recognition,

triage, and more effective stroke treatment.

IV. MATERIALS AND METHODS

A. Human Data Acquisition

The experimental protocol was approved by the University

of Virginia’s Institutional Review Board. As such, the protocol

complies with all national ethical research standards and in

accordance with the Declaration of Helsinki. Written informed

consent was obtained prior to subject enrollment and testing

of hospitalized patients and healthy participants.

Nineteen healthy participants were enrolled initially, with a

mean age (range) of 40 (25-62) years, and 79% were female.

The racial distribution of the healthy participants was 81%
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TABLE III

PARTICIPANT DEMOGRAPHICS, INCLUDING THE NUMBER OF

INDIVIDUALS SCREENED AND ENROLLED, MEAN AGE, GENDER, AND

RACIAL DISTRIBUTION FOR HEALTHY PARTICIPANTS AND PATIENTS

Group Healthy Participants Patients

Screened 19 29
Enrolled 18 27
Mean Age (Range) 40 (25-62) 61.8 (19-96)
Female (%) 79 53
White (%) 81 82
Asian (%) 14 0
American Indian or Alaska Native (%) 5 0
Black (%) 0 12
Other (%) 0 6

White, 14% Asian, and 5% American Indian or Alaska Native.

One healthy control was excluded since the participant failed

to follow instructions during the experiment and moved out

of the required testing position, which prevented eye gaze

capture, resulting in 18 healthy participants included in the

analysis.

Comparatively, twenty-nine patients were screened, and of

those, 27 enrolled. The patients consisted of 53% females with

a mean age (range) of 61.8 (19-96) years. The patients had a

racial distribution of 82% White, 12% Black, and 6% Other.

Two patients were excluded from the analysis (acute ischemic

stroke n=1 and acute vestibular syndrome peripheral origin

n=1) due to malfunction of the hardware/software of RoADIE,

resulting in 27 patients included in the analysis (see Table. III).

Patient enrollment and data collection were completed

within a median of 3 days, ranging from 0 to 37 days of symp-

tom onset. Acute ischemic stroke accounted for 22 patients,

with the rest having a diagnosis of Acute Vestibular Syndrome

of suspected peripheral origin (n=3), Multiple Sclerosis (n=1),

and Vestibular Neuritis (n=1). Diplopia, or double vision, was

the primary presenting symptom in six patients, with nystag-

mus or vertigo being the presenting characteristic in seven

patients. Head impulse testing showed that seven patients

had normal responses, while four had an impaired vestibular-

ocular reflex. The head impulse test was not performed for six

patients (see Table. IV).

None of the patients had acute hearing loss. Only four

patients had impaired smooth pursuit.

TABLE IV

DISTRIBUTION OF PATIENT DIAGNOSES AND PRESENCE OF ABNORMAL

EYE MOVEMENT FOR ENROLLED PARTICIPANTS USED IN THE ANALYSIS

Diagnosis Neurological
Symptoms

Population Abnormal
Eye
Movement

Acute ischemic stroke Central 22 Yes
Hemorrhagic stroke Central 1 Yes
Multiple sclerosis Central 1 Yes
Acute vestibular syn-
drome

Peripheral 3 No

Healthy None 18 No

B. Rolling Apparatus to Detect Impairment of the Eyes

The study employed a custom-built mobile rig designed

to facilitate the integrated acquisition of diverse sensory data

within a clinical environment [18], [30]. The central compo-

nent of this rig was the Tobii Pro Fusion Eye Tracker [31],

which provided gaze estimates at a sampling frequency of 120

Hz. The setup also included a secondary screen for visual stim-

ulation and a RealSense camera that captured RGB, infrared,

depth, and motion data via an integrated accelerometer (see

Fig. 1).

To accommodate different patient conditions, the mobile rig

was designed for easy transportation to a patient’s bedside,

allowing for data collection while the patient was either

reclined or seated. For consistency in baseline measurements,

participants from the control cohort were seated during data

acquisition.

The data acquisition protocol was defined to ensure the

reliability and precision of the collected data. It required the

eye tracker to detect at least one eye and capture at least 90%

of gaze data during neurological eye examination tests. Fur-

thermore, the protocol leveraged the accelerometer to monitor

the rig’s stability, with a directive to halt data collection upon

detecting any significant motion. In post-processing, the series

of gaze points for each exam, xk ∈ R
2, k = 1, · · · , N is

smoothed using a Savitzky-Golay filter with a window size of

30 points to remove artifacts including those caused by blinks

and minor involuntary movement.

C. Computer-adapted Neurological Eye Examinations

To quantitatively assess ocular motor function, three stan-

dard bedside ocular motor tests were adapted into computer-

ized formats: the Dot Test, the H Test, and the Optokinetic

Nystagmus (OKN) Test. These tests were designed to mimic

the visual tracking and coordination tasks typically conducted

by clinicians, with digital enhancements to measure and record

eye movement accurately [18].

Dot Test: This test evaluates the quality of eye coordination

in performing volitional saccades. Participants were instructed

to shift their gaze from one dot to another as these appeared

on the screen. This test replicates the clinical assessment

of saccade accuracy, where a clinician observes if the eyes

move sharply and stop precisely at the target. Key metrics

for analysis include instances where the eyes undershoot or

overshoot the target, or fail to initiate a saccade.

H Test: In this test, eye movements are evaluated as partic-

ipants track a visual target moving in a pattern that resembles

the letter ”H.” This pattern requires the eyes to follow the tar-

get through the four cardinal ocular directions and quadrants,

simulating the movement of following a clinician’s finger

during a physical examination. The test particularly assesses

the smoothness of pursuit and the ability of the eyes to initiate

and maintain motion in all directions. Abnormal findings are

characterized by a lack of motion, delayed initiation, or the use

of compensatory small saccades to maintain target tracking.

OKN Test: Measures the participant’s ability to switch

from a smooth pursuit to a saccade in order to fixate on the

next visual target after the first target disappears. The visual
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stimulus is typically comprised of vertical bars with a high

contrast to the background. The bars move at a quick and

constant pace from right to left. This is done for each opposite

direction. OKN typically remains preserved in individuals

with occipital lobe infarcts, although impairment of a visual

field may limit the amplitude of saccadic fixation. Asymmetry

in the performance of the eyes or poor ability to generate

saccades during the OKN test may suggest damage to the

ocular, brainstem, or cerebellar nuclei or tracts.

D. Discrete Radon Cumulative Distribution Transform

(DRCDT) for Eye Movement Classification

The Discrete Radon Cumulative Distribution Transform

(DRCDT) [32] for pattern recognition and classification of

eye movements using the nearest subspace (NS) classification

approach. By analyzing the gaze points from both the left

and right eyes, DRCDT maximizes the information on eye

conjugacy while being invariant to the deformation caused by

non-calibrated eye tracking data. This invariance allows for the

generation of a convex set of gaze point distributions within

the DRCDT space, which are then linearly separable and can

be effectively classified using the NS model.

1) Mathematical formulation of DRCDT: Let Ω2 refer to a

set of coordinates in R
2 and s : Ω2 → R be a mapping from

Ω2 to a set of real numbers. The discrete point-set distribution

Ps then can be defined as

Ps :=
1

|Ω2|

∑

x∈Ω2

δs(x) (1)

where |·| denotes the cardinality of a set. The DCDT transform

of a distribution Ps is defined as

F(Ps) = P [s(x1), s(x2), · · · ]
T
= [s̃(x1), s̃(x2), · · · ]

T
(2)

where P is a permutation matrix such that s̃(x1) ≤ s̃(x2) ≤
· · · . The Radon transform of a distribution Ps is defined as

Psθ :=
1

|Ω2|

∑

x∈Ω2

δs(x·wθ) (3)

where wθ = (cos θ, sin θ)T is a unit vector in the direction of

θ. The DRCDT transform of a distribution Ps is defined as

P̂s(θ) = F (Psθ) : = Pθ [s(x1 ·wθ), s(x2 ·wθ), · · · ]
T

= [s̃(x1 ·wθ), s̃(x2 ·wθ), · · · ]
T

(4)

where Pθ is a permutation matrix such that s̃(x1 · wθ) ≤
s̃(x2 ·wθ) ≤ · · · .

2) Classification Process: The classification of unknown test

samples of gaze distributions uses the DRCDT space. During

the training phase, the DRCDT transform of each training

sample is calculated and used to approximate the subspace

for each class:
{
P

(1)
s1 , P

(1)
s2 , · · ·

}
(class 1),

{
P

(2)
s1 , P

(2)
s2 , · · ·

}

(class 2) and the subspace can be approximated as,

V
(k) = span

({
P̂ (k)
s1

, P̂ (k)
s2

, · · ·
}
∪ UT

)
(5)

where UT = {µ1(n, θ), µ2(n, θ)} with µ1(n, θ) =
cos θ, µ2(n, θ) = sin θ is the spanning set corresponding to

the deformation modeling.

In the testing phase, the class of an unknown test distribution

Ps is obtained as

k∗ = argmin
k

d
(
Ps,V

k
)

(6)

where d(·, ·) denotes the distance of a test sample from a

trained subspace in the DRCDT transform space, and k refers

to the class index.

E. Evaluation

We evaluated our model’s ability to detect abnormal eye

movement versus health controls and patient sub-cohort that

present with normal eye movement using the following met-

rics: Accuracy, Sensitivity, and Specificity. We did this for each

Neurological eye examination test (Dot, H, and OKN) as well

as the overall classification of abnormal eye movement versus

healthy control using all the information from these tests. This

approached allowed us to determine how much value each

test has in the aim of discriminating between abnormal eye

movement versus healthy controls. Additionally, we studied

the classification performance with several time series neural

network methods: 1D Visual Geometry Group (1D-VGG) [33],

1D Residual Network (1D-ResNet) [33], [34], Long Short

Term Memory (1D-LSTM) [33].
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