Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Towards LLMCI - Multimodal Al for LLM-Vision Ul
Operation

Husam Barham
hbarham®@uop , edu, jo

University of Petra

Mohammed Fasha
University of Petra

Research Article

Keywords: Al, HCI, LLM, Computer Vision, Multi-Modal Al, User Interface, Human-Computer Interaction,
LLMCI, Multi-Agents

Posted Date: July 22nd, 2024
DOI: https://doi.org/10.21203/rs.3.rs-4653823/v1

License: € ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-4653823/v1
https://doi.org/10.21203/rs.3.rs-4653823/v1
https://doi.org/10.21203/rs.3.rs-4653823/v1
https://creativecommons.org/licenses/by/4.0/

Towards LLMCI - Multimodal Al for LLM-Vision
UI Operation

Husam Barham!™ and Mohammed Fasha?"

"Department of e-Business, University of Petra, Amman, 10181, Jordan.
Z*Department of Business Intelligence and Analytics, University of
Petra, Amman, 10181, Jordan.

*Corresponding author(s). E-mail(s): hbarham@uop.edu.jo;
mohammed.fasha@uop.edu.jo;

Abstract

Human-computer interaction (HCI) has evolved significantly, yet it still largely
depends on visual communication through screens and manual input devices.
While this paradigm is likely to remain dominant for the foreseeable future, this
research suggests that existing user interfaces (UI) can also be leveraged by Large
Language Models (LLMs) to interact with computers. By integrating vision mod-
els into a multimodal framework, LLMs can gain the ability to understand and
operate Ul elements, enabling them to retrieve information, run functions, and
perform various tasks just like humans. The framework utilizes a vision model
to communicate Ul components and information to the LLM, which then lever-
ages its language understanding capabilities to retrieve information, and operate
keyboard and mouse inputs. This paper introduces a new element to Human-
Computer Interaction (HCI), called LLM-Computer Interaction (LLMCI), which
combines Large Language Models (LLMs) with computer vision via intelligent
agents. These agents process user text commands and use visual perception to
recognize visual and textual elements of computer interfaces. This allows the Mul-
timodal AT to independently perform complex tasks and navigate applications in
a way that resembles human behavior. We present a proof-of-concept framework
that illustrates how the agent uses LLMs and computer vision to handle inter-
face elements, complete tasks, and support users according to their instructions.
This strategy closely imitates human interactions and suggests a path forward
for enhancing HCI practices.

Keywords: Al, HCI, LLM, Computer Vision, Multi-Modal AI, User Interface,
Human-Computer Interaction, LLMCI, Multi-Agents

1 Introduction

Human-computer interaction (HCI) has evolved significantly over the past few decades,
transitioning from command-line interfaces to graphical user interfaces (GUIs) and
now to more natural and intuitive interfaces such as voice and gesture recogni-
tion [1]. However, despite these advancements, HCI still largely depends on visual
communication through screens and manual input devices [2].

While this paradigm is likely to remain dominant for the foreseeable future, recent
advancements in artificial intelligence (AI), particularly in the field of large lan-
guage models (LLMs), offer new possibilities for HCI. LLMs, such as GPT-3 [3] and
LaMDA [4], have demonstrated remarkable capabilities in understanding and generat-
ing human-like text, raising the question of whether they can also be used to interact
with computers through existing user interfaces (UT).

This research explores the potential of employing LLMs to understand and operate
UT elements, paving the way for a new era of LLM-Computer Interaction (LLMCI). By
integrating vision models into a multimodal framework, LLMs can gain the ability to
”see” and interpret Ul elements, enabling them to retrieve information, run functions,
and perform various tasks just as humans do.

This paper proposes a novel multimodal framework for LLMCI and demonstrates
its capabilities through an applied example. The framework leverages a vision model
to identify and analyze Ul elements [5], and an LLM to understand the context and the
intent of the user’s request. The LLM then uses this information to generate instruc-
tions for the vision model, which in turn interacts with the Ul elements to complete
the task. This research builds upon existing work in multimodal AT [6, 7Jand LLM-
based interaction [8, 9]. However, it differs from previous work by focusing specifically
on the use of LLMs to understand and operate Ul elements. The proposed frame-
work employs a dedicated visual perception module to accurately locate and interpret
UI components using only screenshots from the computer screen. This eliminates the
dependency on underlying Ul layout files and enables the LLM to operate effectively
and leverage the vast amount of existing UI design functionalities, potentially enabling
LLMs to interact with a wide range of applications and websites.

LLMCIT builds upon the existing foundation of HCI by recognizing the importance
of vision as the highest-bandwidth channel for information transfer to humans. Uls
are specifically designed to convey information and facilitate control of computers
through visual elements. LLMCI allows LLMs to tap into this existing infrastructure,
enabling them to ”see” and understand Uls just like humans do. This opens up new
possibilities for human-computer collaboration, where LLMs can assist humans in a
more integrated and seamless manner.

Recent advancements in multimodal large language models (MLLMs) have shown
remarkable progress in visual comprehension capabilities, making the realization of
LLMCT increasingly feasible. However, as highlighted by Zheng et al. (2024), even
state-of-the-art MLLMs like GPT-4V [10] though possess great ability to analyze User
Interface, and appropriate what buttons needs to be clicked based on tasks, but still
lack sufficient visual and spatial perception capabilities to decide the exact location for
an element on user interface, and the capability to click on it, operate user interfaces
effectively, particularly on mobile devices. Existing approaches attempt to address this

limitation by leveraging user interface layout files (Yang et al., 2023d; Zheng et al.,
2024). However, these methods are often hindered by the lack of access to such files
in many real-world scenarios.

This paper presents a purely vision-based solution to this challenge: a novel LLMCI
framework that enables LLMs to operate computer interfaces through visual under-
standing of UI elements. The framework utilizes a dedicated visual perception module
to accurately locate and interpret UI components using only screenshots from the
computer screen. This eliminates the dependency on underlying UI layout files and
enables the LLM to operate effectively in a wider range of scenarios.

1.1 Related Work

Multimodal Machine Learning (MML) is a rapidly growing field that combines data
from multiple modalities, such as text, images, audio, and sensor data, to solve com-
plex problems. MML has been successfully applied to a wide range of tasks, including
image captioning [11], speech recognition [12], and sentiment analysis [13]. One of the
key challenges in MML is how to effectively represent and fuse data from different
modalities. Several approaches have been proposed to address this challenge, includ-
ing early fusion, late fusion, and hybrid fusion [14]. Early fusion combines data from
different modalities at the feature level, while late fusion combines data at the decision
level. Hybrid fusion combines both early and late fusion techniques. Another challenge
in MML is the aligning of data from different modalities. This is particularly challeng-
ing when the data is unaligned, such as in the case of image captioning, where the
images and captions are not paired. Several approaches have been proposed to address
this challenge, including canonical correlation analysis (CCA) [15] and dynamic time
warping (DTW) [16]. LLM-based interaction is a relatively new field that explores the
use of LLMs to interact with computers. LLMs have been used to develop chatbots
[17], generate code [18], and even control robots [19]. This research builds upon exist-
ing work in MML and LLM-based interaction by proposing a multimodal framework
that enables LLMs to interact with computers through user interfaces. The frame-
work leverages a vision model to identify and analyze Ul elements, and an LLM to
understand the context and intent of the user’s request. The LLM then uses this infor-
mation to generate instructions for the vision model, which in turn interacts with the
UI elements to complete the task.

This paper is organized as follows: Section 2 describes the LLMCI framework
and its key components, including the visual perception module, the self-planning
capabilities, and the self-reflection methods. Section 3 presents several test use cases
that were performed using the framework, showcasing its flexibility and potentials.
Finally, Section 4 discusses the benefits and limitations of LLMCI, as well as future
research directions.

2 Multimodal-Vision Framework for LLMCI

This section describes the proposed multi-modal framework for LLM-Computer Inter-
action (LLMCT). The framework consists of two main components: a vision model and
a LLM.

2.1 Vision Models:

The vision model is responsible for identifying and analyzing UI elements on the
screen. It uses a combination of object detection and optical character recognition
(OCR) to extract information about the UI elements, such as their type, location, and
text content. In the implemented framework, the vision model uses the YOLO object
detection algorithm [20] to identify UT elements. In the context of LLMCI, YOLO is
used to identify and locate various UI elements on the screen, such as buttons, text
boxes, images, and other interactive components. Here’s how YOLO contributes to
the framework:

1. Real-time Detection: YOLO can process images in real-time, making it suitable for
dynamic Ul environments where elements might change or move. This allows the
LLM to receive up-to-date information about the UI state.

2. Accurate Localization: YOLO provides bounding boxes for detected objects, which
define the element’s location and dimensions on the screen. These bounding boxes
are crucial for subsequent OCR and interaction tasks.

3. Class Identification: YOLO can classify detected objects into predefined categories,
such as "Button”, ”Text View”, or "Image View”. This information helps the LLM
to understand the type of Ul element and its potential functionality.

Once the Ul elements have been identified, the framework utilizes EasyOCR model
[21] to extract text content from within the bounding boxes. This text content pro-
vides additional context and meaning to the Ul elements, allowing the LLM to better
understand their purpose and function. Here’s how OCR complements YOLO in the
framework:

1. Text Extraction: EasyOCR is a capable OCR library that we use to recognize
and extract text from the cropped regions of the screenshot defined by the bound-
ing boxes provided by YOLO. This extracted text is then associated with the
corresponding Ul element.

2. Contextual Understanding: The extracted text, along with the element’s type and
location, are fed to the LLM. This combined information allows the LLM to infer
the element’s functionality and understand the overall context of the UI.

3. Actionable Instructions: Based on its understanding of the UI, the LLM can then
generate specific instructions for interacting with the elements. For example, it
might instruct the vision model to click on a button with a specific text label or
enter text into a particular text box.

Additionally, we used a multi-modal captioning model IMP-v1-3b-2024 [22] image
to text for describing the screen based on the LLM prompt input, and to provide a
visual feedback loop to the LLM for the results of operations on screen. IMP-v1-3b is
able to understand and generate natural language, and it can also reason about the
relationships between text and images.

Multimodal-Vision Framework for LLMCI

Large Language Model

Provides output
Pravides input

Call functlons end
generates instructions

Auto Execute Code

|
[Provides visual
| description ta LLK e ar HED o PuAUOGUT

fravizstan 1o DALS or Sends PuAutoBUI Code

searches Google

Chrome Brouser keyboard/Mouse

mouse/keuboard input

YOLO Object Detection

Controls keyboard/Mouse

TIdentifi the UT and allows
r interaction

Fig. 1 LLMCI Visual-Interaction framework

2.2 Large Language Model:

In the implemented framework, the LLM used is GPT-3.5 [3], which is a large lan-
guage model that has been trained on a massive dataset of text, additionally Autogen
framework [23] has been used to design the interaction between the different elements.
The LLM is responsible for understanding the context and intent of the user’s request.
It uses its knowledge of the world and its ability to understand natural language to
interpret the user’s request and generate responses that can be be divided into 2 main
parts as shown in (refer Figure 1) which are instructions for desired system functions
calling including function input arguments, and natural language responses to the

user, as follow:

2.2.1 Function calling and instruction generation

LLMs have shown adequate ability in calling specific functions by generating JSON
format responses [24] that include information for the requested function which pro-
grammatically facilitates running specific functions with the desired input arguments
based on LLM interpretation of user requests. In the LLMCI framework, there are 4
main functions available for the LLM to choose and call from as required:

1. Navigate to URL or search Google: This function provides for LLM the abil-
ity to open Chrome window and navigate to a specific URL or to input

a search term in Google search engine. The JSON format that the LLM
generates to run this function follows this LLM system message structure:

Listing 1 System Message to generate JSON format response thus navigate internet

"name” : ” gaddressbar” ,
”description”: ”function.to.navigate URL, .or.search._.Google” ,
"parameters”: {
"type”: ”object”
"properties”: {
7url_or_search_term”: {
"type”: 7"string”,
"description”: ”Write.only._.the <URL>_or._the.search.term” }},
"required”: [?url_or_search_term”]},}

. Execute Code: This function auto-executes the code generated by LLM
to control the mouse/keyboard. the JSON format that the LLM gen-
erates to run this function follows this LLM system message structure:

Listing 2 System Message to generate JSON response thus control mouse/keyboard

{”name” : ”auto_execute_code”

”description”: ”Write.in.python_pyautogen.code.” ,
"parameters”: {”?type”: ”object”,

"properties”: {”language”: {

"type”: "string”,

"description”: ”language.script._type”,},

"code”: {"type”: ”string”,

"description”: Code to interact with screen elements” },},

"required” :_[”language” ,.”code”],},}

. Capture screen: Capture screen is a form of two functions, one is showscreen(), this
function describes the screen to the LLM using imp multimodal vision model [22],
and the other function is getelements() function which identify the elements in the
screen, their classes and spatial locations along with text extracted associated to
them, this function uses 2 models first YOLO for object Identification [20], then
EasyOCR to extract text within each object [21]. The framework then returns
extracted information as an organized list to the LLM, following this structure [h,
v, object class, text found in element based on OCR/], where h is the center
horizontal constraint of the element, and v is the center vertical coordinate of the
element, extracting the center coordinates of each element and feeding them to
the LLM offers advantages in terms of data efficiency and certainty, and clicking
location certainty instead of providing the LLM the complete coordinates of the
bounding box for every object (refer Figure 2). Here’s how OCR complements
YOLO in the framework:

(a) Text Extraction: EasyOCR is used to recognize and extract text from the
cropped regions of the screenshot defined by the bounding boxes provided
by YOLO. This extracted text is then associated with the corresponding Ul
element.

(b) Contextual Understanding: The extracted text, along with the element’s type
and location, is fed to the LLM. This combined information allows the LLM to
infer the element’s functionality and understand the overall context of the UI.

(¢) Actionable Instructions: Based on its understanding of the UI, the LLM can then
generate specific instructions for interacting with the elements. For example, it
might instruct the vision model to click on a button with a specific text label or
enter text into a particular text box.

2.3 Interaction Loop:

The vision model and the LLM work together in an interaction loop to complete the
user’s request. The interaction loop begins with the user providing a request to the
LLM. The LLM then interprets the user’s request and generates instructions for the
vision model. The vision model then executes the instructions and provides feedback
to the LLM. The LLM then uses this feedback to refine its understanding of the user’s
request and generate new instructions for the vision model. This process continues
until the user’s request is completed.

1. LLM Code Generation:

® Input: The LLM receives information about the UI elements, including their
type, location (center coordinates), and text content, from the vision model.
Additionally, the LLM has access to the user’s request or desired action.

® Code Generation Process: The LLM leverages its understanding of natural lan-
guage and its knowledge of PyAutoGUI [25], a generic python library that allows
control of mouse and keyboard based on a Python script, the LLM generates
Python code that performs the desired action on the specified Ul element in the
screen such as clicking, typing, drag/drop, etc.

2. IPython for Code Execution:

e Integration: The generated Python code is then passed to IPython for execution.
IPython provides an interactive environment for executing Python code, allowing
the LLM’s instructions to be carried out in real-time.

e Execution and Feedback: IPython executes the code, controlling the mouse and
keyboard to interact with the UI elements as specified by the LLM. After execu-
tion, the vision model can capture another screenshot and analyze the updated Ul
state. This feedback is then provided to the LLM, allowing it to verify the success
of the action and make any necessary adjustments for subsequent interactions.

This framework enables the LLM to dynamically interact with the Ul based on the
user’s requests and the current state of the interface, The use of PyAutoGUI provides
a wide range of functions for controlling the mouse and keyboard, allowing the LLM to
perform various actions on the Ul, while [Python facilitates real-time execution of the

Screen Capture Framework

Chrome Browser

Capture Hindow Screenshot
_ Praovide screenshot

0t of the
Jow

he UT and allo
nteraction

Run descriptive visual
model aon the
screenshot, prompted

with an LLM guerry

Run aobject
identification on the
window screenshot

get lements() showscreen()

run abject

identification then OCR prompt

- | visual Models |
[Sustem]

IMP Vision Model

wides contesxtual
nding of UI elements

FProvide bounding boxes

EasyOCR |
Provide identified Prokide contextual
t from objects understanding

|

FProvide extracted text
for objects

Combine with contextual

textual spatial location understanding

Provide Yisual
description to LLM

Large Language Model
Int

: in

wision model, and pr

system boundary cdashed)

Fig. 2 Screen Capture Framework

generated code, making the interaction between the LLM and the UI more responsive
and efficient.

Example 1. Consider the following example: the user asks the planner to “draw a
triangle at the center of the AutoDraw web app.” The LLM interprets the user’s request
and generates the following instructions for the vision model:

Open the AutoDraw web app.

Identify the drawing area.

Calculate the center coordinates of the drawing area.

Draw a triangle at the center coordinates. The vision model then executes these
instructions and provides feedback to the LLM. The LLM then verifies that the triangle
has been drawn correctly and provides feedback to the user, note: video for this example
is provided in the Annez.

3 Implementation and Results

This section presents an applied example of the Multimodal-Vision Framework for
LLMCI in action, specifically focusing on the LLM’s ability to generate and execute
PyAutoGUI code to interact with Ul elements.

Scenario: The user provides the following instruction to the LLM:

”Go to this website https://getsitecontrol.com/p/Oewjmxr6 then type a message
saying you are doing good then click on submit”

P x

Rate your experience

How easy or difficult was it to use
our website?

Message

Email

SEND

Fig. 3 Sample website form for testing LLMCI-Vision interaction,
https://getsitecontrol.com/p/Oewjmxr6

Steps:

1. Navigate to Website: The LLM interprets the user’s request and identi-
fies the need to navigate to the specified website. It calls the gaddress-
bar (https://getsitecontrol.com/p/0ewjmxr6) function with the URL as an
argument.

2. Analyze UI Elements: The framework takes a screenshot of the webpage. The
YOLO object detection algorithm analyzes the screenshot and identifies the Ul
elements, including their type, location (bounding boxes).

3. Extract Text: The bounding boxes are passed to the EasyOCR library, which
extracts the text content from each element. extracted elements and texts for
provided screenshot: Mapped extracted text with class and coordinates:

lo==o Il =3

Text view

|Rate your experience|
Text View

How easy or difficult was it to us
our website?

EAAAA]

Message

EXT Wiew

You are doing good

Button

SEND

Fig. 4 Bounded boxes for detected elements and their coordinates

[[258, 714, 'Button’, 'SEND’], [247, 169, 'Tmage View’, 'Dark’], [80, 168, "Text
View’, '36’], [223, 237, 'Text View’, 'Rate your experience’], [478, 168, 'Tmage But-
ton’, 7], [240, 304, 'Text View’, "How easy or difficult was it to use our website?’],
[185, 364, 'Tmage View’, "], [115, 585, "Text View’, 'Email’], [130, 414, *Text View’,
"Message’], [124, 168, 'Image View’, 7], [259, 631, "Edit Text’, ’Enter your email’],
[36, 168, 'Tmage Button’, 7], [339, 169, 'Tmage View’, *Take it’], [37, 168, 'Tmage
View’, 7], [258, 491, 'Tmage View’, 'Rate your experience How easy or difficult was
it to use our website? Message Enter your message Email Enter your email SEND’],
258, 520, "Edit Text’, ”]]

4. Image Description: The image and extracted information are sent to the IMP
vision model along the initial prompt for contextual understanding. The IMP vision
model provides a summary of the relation of image to the user prompt, and poten-
tial functions, and then the combined information is sent to the LLM as follows:

10

[The image shows a screenshot of a website or app that asks the user to rate their
experience. The user is required to enter their rating and provide a message explain-
ing their feedback. The rating is displayed in the top left corner of the image, and
the message box is located in the bottom right corner. The overall layout sug-
gests that the website or app values user input and encourages them to share their
thoughts on their experience.”, "Here are the elements inside the webpage with
x,y locations and object identification/OCR content of elements: 'Mouse Position:
x=966, y=563’, "Window title is:Rate your experience’, [80, 168, "Text View’, ’36],
[247, 169, 'Tmage View’, 'Dark’], [339, 169, 'Tmage View’, 'Take it’], [223, 237, "Text
View’, 'Rate your experience’], [240, 304, "Text View’, "How easy or difficult was it
to use our website?’], [130, 414, 'Text View’, Message’], [258, 491, 'Tmage View’,
"Rate your experience How easy or difficult was it to use our website? Message Enter
your message Email Enter your email SEND’], [115, 585, *Text View’, 'TEmail’], [259,
631, 'Edit Text’, 'Enter your email’], [258, 714, 'Button’, 'SEND’]]]

. Type Message: The LLM analyzes the UI information and identi-
fies the message box element based on its location and text content
(e.g., "Enter message”). It generates PyAutoGUI code to «click on
the message box and type the message ”You are doing good”,

Listing 3 Generated python script

{?language” :” python” ,

”code” :”import.pyautogui\n
import._time\n
#.Click_on.the._message._box\n
pyautogui.click (130,.414)\n
#.Type_.the_message\n

pyautogui.write (’You.are._.doing.good’)”}

The autoExecuteCode() function executes this code, and the message is typed into
the message box.

. Click Submit: The LLM identifies the submit button based
on its location and text content (e.g., "SEND”). It gen-
erates PyAutoGUI code to click on the submit button:

Listing 4 Generated python script

{”language” :” python” ,

” COde” :77

#.Click _on_the_submit_button
pyautogui.click (258,.714)"}

The autoExecuteCode() function executes this code, and the submit button is
clicked.

. Feedback and Confirmation: After each interaction step (typing and clicking),
the vision model re-analyzes the Ul to capture any changes. The LLM receives

11

Multimodal-Vision Framework for LLKCI Sequence Diagram

L_sustens

suston suseen susten sexternal_suste suston suston suston
Large Language Model [l YOLO Object Detection IMP Vision Model [Ghrome Brouser il Capture Window Screenshot [GAddress Bar [l Auto Execute Code

Fig. 5 LLMCI-Vision scenario sequence diagram

feedback from the vision model and confirms that the actions were performed suc-
cessfully. The LLM provides output to the user, confirming that the message was
typed and the feedback was submitted [?The message ”You are doing good” has
been successfully typed in the message box, and the ”Submit” button has been
clicked. The feedback has been submitted. Is there anything else you would like to
do on this website?”]. The complete sequence diagram is presented (refer Figure 5),
and a video record of the scenario is in the Annex.

This example demonstrates the LLM’s ability to understand the user’s request,
analyze the Ul elements, generate appropriate PyAutoGUI code, and execute the
code to interact with the website. This showcases the potential of the Multimodal-
Vision Framework for LLMCI to enable LLMs to perform complex tasks that
involve interacting with computer interfaces.

4 Conclusion and Future Work

In conclusion, this paper introduces a groundbreaking framework for Large Language
Model-Computer Interaction (LLMCI), which integrates computer vision and language
understanding to enable LLMs to interact with user interfaces (Uls) in a manner
resembling human behavior. By combining vision models with LLMs, the proposed
framework facilitates the understanding and operation of Ul elements, empowering

12

LLMs to retrieve information and execute tasks across a wide range of applications
and websites.

Our multimodal framework leverages object detection, optical character recogni-
tion (OCR), and natural language understanding to enable LLMs to interpret user
requests, analyze Ul elements, generate PyAutoGUI code, and execute interactions
with the UI. This approach eliminates the dependency on underlying UT layout files
and enables dynamic interaction based solely on screenshots, thereby enhancing the
versatility and adaptability of LLMCI. And allowing LLM to interact with the UI
through simulated mouse and keyboard clicks.

The implemented framework utilizes YOLO for object detection, EasyOCR for text
extraction, and IMP-v1-3b-2024 for image-to-text description which work together.
Furthermore, the LLM can generate Python code using PyAutoGUI to interact with
the UI elements based on the user’s request.

The applied examples demonstrated the efficacy of the framework in performing
complex tasks such as filling out forms on websites, showcasing its potential to revo-
lutionize human-computer interaction. However, there are still areas for improvement
and future research directions. Future work could focus on enhancing the accuracy and
efficiency of Ul element detection and classification, optimizing the vision-captioning
model to provide more informative feedback to the LLM, and further refining the inter-
action loop between the LLM and the UI. Additionally, noise reduction techniques
for captured image information and reinforcement learning for PyAutoGUI outputs
could be explored to improve the robustness and adaptability of the framework across
diverse Ul environments.

In summary, the proposed LLMCI framework represents a significant advancement
in the field of LLM-computer interaction, offering a promising path toward seamless
collaboration between humans and Al agents in interacting with computer interfaces.
Further research and development in this area hold the potential to transform the
way we interact with technology in the future. And enabling LLMs to perform more
complex tasks on our behalf.

5 Declarations

The dataset used and GitHub code repository would be provided by the corresponding
author upon a reasonable request.

5.1 Funding and/or Conflicts of interests

The authors have no relevant financial or non-financial interests to disclose.

References
[1] Rogers, Y.: HCI Theory: Classical, Modern, and Contemporary. Springer

[2] Dix, A.: Human—computer interaction: A stable discipline, a nascent science, and
the growth of the long tail. Interacting with computers 22(1), 13-27 (2010)

13

3]

[14]

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P.
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models
are few-shot learners. Advances in neural information processing systems 33,
1877-1901 (2020)

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-
T., Jin, A., Bos, T., Baker, L., Du, Y., et al.: Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239 (2022)

Chen, J., Xie, M., Xing, Z., Chen, C., Xu, X., Zhu, L., Li, G.: Object detection
for graphical user interface: Old fashioned or deep learning or a combination? In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, pp.
1202-1214 (2020)

Baltrusaitis, T., Ahuja, C., Morency, L.-P.: Multimodal machine learning: A
survey and taxonomy. IEEE transactions on pattern analysis and machine
intelligence 41(2), 423-443 (2018)

Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion
for multimedia analysis: a survey. Multimedia systems 16, 345-379 (2010)

Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E.M., Roller, S., Ung, M., Chen,
M., Arora, K., Lane, J., et al.: Blenderbot 3: a deployed conversational agent that
continually learns to responsibly engage. arXiv preprint arXiv:2208.03188 (2022)

Roller, S., Dinan, E., Goyal, N., Ju, D., Williamson, M., Liu, Y., Xu, J., Ott, M.,
Shuster, K., Smith, E.M., et al.: Recipes for building an open-domain chatbot.
arXiv preprint arXiv:2004.13637 (2020)

Yang, Z., Li, L., Lin, K., Wang, J., Lin, C.-C., Liu, Z., Wang, L.: The
dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421 9(1), 1 (2023)

Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image
caption generator. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3156-3164 (2015)

Palaskar, S., Sanabria, R., Metze, F.: End-to-end multimodal speech recogni-
tion. In: 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5774-5778 (2018). IEEE

Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.-F.; Pantic, M.: A
survey of multimodal sentiment analysis. Image and Vision Computing 65, 3-14
(2017)

Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: An overview of methods,

14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

challenges, and prospects. Proceedings of the IEEE 103(9), 1449-1477 (2015)

Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321-377
(1936)

Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing
26(1), 43-49 (1978)

Shuster, K., Chang, M.W., Lapedriza, A.G.: BlenderBot 3: a Deployed Conver-
sational Agent that Continually Learns to Responsibly Engage (2022)

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto: Evaluating Large Language
Models Trained on Code (2021)

Ahn, S.; Shridhar, M., Hajishirzi, H.: Do as I Can, Not as I Say: Grounding
Language in Robotic Affordances (2022)

Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOvS. https://github.com/
ultralytics/ultralytics

Vedhaviyassh, D.R., Sudhan, R., Saranya, G., Safa, M., Arun, D.: Comparative
analysis of easyocr and tesseractocr for automatic license plate recognition using
deep learning algorithm. In: 2022 6th International Conference on Electronics,
Communication and Aerospace Technology, pp. 966-971 (2022). https://doi.org/
10.1109/ICECA55336.2022.10009215

Shao, Z., Ouyang, X., Yu, Z., Yu, J.: Imp: An Emprical Study of Multimodal
Small Language Models (2024). https://huggingface.co/MILVLG /imp-v1-3b

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li, B., Jiang, L.,
Zhang, X., Wang, C.: Autogen: Enabling next-gen llm applications via multi-agent

conversation framework. (2023)

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng, H., Ji, H.: Executable
code actions elicit better llm agents. arXiv preprint arXiv:2402.01030 (2024)

Sweigart, A.: Pyautogui documentation. Docs 25 (2020)

15

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/ICECA55336.2022.10009215
https://doi.org/10.1109/ICECA55336.2022.10009215
https://huggingface.co/MILVLG/imp-v1-3b

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

e Video1l.mp4
e Video2.mp4
e Video3.mp4

https://assets-eu.researchsquare.com/files/rs-4653823/v1/7e9a74abf5708cfa5c2920bc.mp4
https://assets-eu.researchsquare.com/files/rs-4653823/v1/ba4b1514a4f34b91e96b9612.mp4
https://assets-eu.researchsquare.com/files/rs-4653823/v1/72ff7f597d87bed35d4e0d5b.mp4

	Introduction
	Related Work

	Multimodal-Vision Framework for LLMCI
	Vision Models:
	Large Language Model:
	Function calling and instruction generation

	Interaction Loop:

	Implementation and Results
	Conclusion and Future Work
	Declarations
	Funding and/or Conflicts of interests

