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S1. SAMPLE GROWTH AND CHARACTERIZATION

Single crystals of FeGe were grown by the chemical vapor transport method (see Methods) and characterized by means of
energy dispersion x-ray (EDX) analysis, Laue diffraction, resistivity and magnetization (figure S1).

FIG. S1. Characterization of FeGe. (A) Powder x-ray diffraction refinement and its LeBail refinement. (B) Temperature dependence of
the heat capacity. (C) Heat capacity divided by temperature, highlighting the CDW phase transition. (D-E) Temperature dependence of
the magnetization for applied magnetic fields of 0.1 T and 1 T, respectively. (F-G) Magnetization versus magnetic field parallel (F) and
perpendicular (G) to the kagome plane.

Figure S1 (A) shows the LeBail refinement of grounded FeGe single crystals. No impurity phases were observed, specially
the presence of the cubic B20 phase. Both the specific heat (Cp), figure S1 (B-C) and the magnetization, figure S1 (D-E), identify
the CDW transition at ∼ 105K. The transport properties are in nice agreement with the reports in the literature [1, 2].

S2. X-RAY DIFFRACTION

This section contains the single crystal structural refinement of FeGe at 80 K. Both P6mm (non-centrosymmetric), Table S1,
and P6mm (centrosymmetric) Table S2 could be equally indexed with similar Goodness-of-Fit. The x-ray refinements were
carried out with SHELXL2018/1 code (see Methods).

(A) (B)

Ge21

Ge42

Ge41

Ge22
Gehc

Fe

Ge11

Ge11

Ge12

Ge12

Gehc

Fe

FIG. S2. (A) CDW unit cell of the space group 183 and (B) space group 191.

Figure S2 displays the low temperature CDW unit cell within the space group 183 (non-centrosymmetric P6mm) and 191
(centrosymmetric P6mmm). The dimerized trigonal Ge in the space group 183 creates 4 in-equivalent trigonal Ge in the kagome
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plane (Ge21, Ge22, Ge41 and Ge42), while the dimerization on the space group 191 splits the trigonal Ge into 2 Ge11 and Ge21.

TABLE S1. Crystal data and structure refinement for 80 K: P6mm symmetry, space group nº= 183. Unit cell dimensions a = b = 9.97740(2)
Å, c = 8.10070(10) Å, α=β= 90º, γ = 120º. Volume =698.3738(20) Å3. R1=0.056

x y z Occ. U Site Sym.
Ge Ge1 0.33333 0.66667 0.60251 1.000 0.012 2b 3m.
Ge Ge22 1.00000 1.00000 0.76210 0.309 0.009 1a 6mm
Ge Ge21 1.00000 1.00000 0.86285 0.691 0.036 1a 6mm
Ge Ge3 0.67051 0.83526 0.10257 1.000 0.013 6e .m.
Ge Ge41 1.00000 1.00000 0.43604 0.378 0.011 1a 6mm
Ge Ge42 1.00000 1.00000 0.36518 0.622 0.025 1a 6mm
Ge Ge5 0.66412 0.83206 0.60263 1.000 0.013 6e .m.
Ge Ge6 0.33333 0.66667 0.10276 1.000 0.012 2b 3m.
Ge Ge7 0.50000 1.00000 0.85698 1.000 0.020 3c 2mm
Ge Ge8 0.50000 1.00000 0.35434 1.000 0.020 3c 2mm
Fe Fe1 0.74954 1.00000 0.34468 1.000 0.012 6d ..m
Fe Fe2 0.50020 0.75010 0.84475 1.000 0.012 6e .m.
Fe Fe3 0.49999 0.75000 0.34241 1.000 0.012 6e .m.
Fe Fe4 0.74963 1.00000 0.84234 1.000 0.012 6d ..m

TABLE S2. Crystal data and structure refinement for 80 K: P6/mmm symmetry, space group nº= 191. Unit cell dimensions a = 9.97750(10)=b
= 9.97750(10) Å, c = 8.10030(10) Å, α=β= 90º, γ = 120º. Volume =698.353(16) Å3, R1=0.056

x y z Occ. U Site Sym.
Fe Fe1 0.25053 0.00000 0.75162 1.000 0.004 12n ..m
Fe Fe2 0.24996 0.49991 0.74843 1.000 0.004 12o .m.
Ge Ge11 0.00000 0.00000 0.83590 0.485 0.004 2e 6mm
Ge Ge12 0.00000 0.00000 0.75170 0.515 0.028 2e 6mm
Ge Ge2 0.50000 0.00000 0.74842 1.000 0.009 6i 2mm
Ge Ge3 0.16844 0.33687 0.00000 1.000 0.005 6l mm2
Ge Ge4 0.83593 0.67186 0.50000 1.000 0.005 6m mm2
Ge Ge5 0.33333 0.66667 0.00000 1.000 0.005 2c -6m2
Ge Ge6 0.66667 0.33333 0.50000 1.000 0.005 2d -6m2
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S3. ANGLE RESOLVED PHOTOEMISSION: ARPES

We observe the following key features in the experimental band structure from ARPES:

1. A clear Dirac crossing appears at K at about -0.65 eV.

2. A V-shaped band centered at Γ with the bottom at about -1.0 eV.

3. A very broad spectrum weight connects Γ and the Dirac crossing at K, which could be the weights from the Dirac bands
and together with other bands.

4. A U-shaped band centered at Γ with the bottom at about -0.28 eV.

The first two features in APRES, i.e., the Dirac crossing at K and the V -shaped band at Γ could be well-matched using the
CDW bulk band structure in DFT, as shown in figure S3. The broad spectrum weight connects Γ and at K is also seen in DFT,
although the energy in DFT is slightly higher. However, the U-shape is not seen in the bulk bands. We argue that it can be
matched using the surface bands in the honeycomb Ge termination, as shown in S3.

Besides the aforementioned features that have a good matching between DFT bands and ARPES, we also observe some
features that cannot be well matched. They include: (i) In DFT, there exists another Dirac-like crossing at K at about -0.4 eV,
which is not seen in the APRES. (ii) The broad weight at -1 eV near Γ in DFT is also not seen in the ARPES. (iii) In the folded
surface bands, there exist many other bands that could not have a good match with the APRES, probably due to the inaccurate
description of surface instructions in DFT.

We conclude that the main features in the experimental ARPES bands could be well-matched by DFT. However, since the
system has a large number of bands near the Fermi level, it shows a heavily broadened spectrum where the discrepancy in the
detailed features between theory and experiments is expected.

FIG. S3. A comparison between ARPES and DFT calculated energy dispersion spectra. Valance band electronic structure of FeGe obtained
with 70 eV incident photon energy along (A)-(B) M−K − Γ − K−M symmetry direction with s-pol and p-polarized incident light,
respectively. (C)-(D) along M − Γ − M symmetry direction with p-pol and s-polarized light, respectively. (E)-(F) Along K−M−K
symmetry direction with circular positive (Cp) and circular negative (Cm) incident light, respectively. (‘DC’ and ‘VHS’ represent the Dirac
cone, and Van Hove singularity, respectively). On top of the VB spectra, DFT calculated bulk folded band structure in the CDW phase (white)
and Ge terminated surface band structure (red) are overlapped.
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FIG. S4. A comparison between ARPES and DFT calculated spectra. The valance band specters of FeGe were obtained with 70 eV incident
photon energy along (A)-(B) M−K− Γ−K−M symmetry direction with s-pol and p-polarized incident light, respectively. (C)-(D) along
M − Γ −M symmetry direction with p-pol and s-polarized light, respectively. (E)-(F) Along K−M−K symmetry direction with circular
positive (Cp) and circular negative (Cm) incident light, respectively. (‘DC’ and ‘VHS’ represent the Dirac cone, and Van Hove singularity,
respectively). Here, the ‘white’ bands are folded bulk bands of FeGe calculated in CDW phase where as the ‘red’ ones are the unfolded surface
bands obtained with Kagome termination.
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S4. FIRST-PRINCIPLE CALCULATION METHODS

The first-principle calculations in this work use the Vienna ab-initio Simulation Package (VASP)[3–7] with generalized gra-
dient approximation of Perdew-Burke-Ernzerhof (PBE) exchange-correlation potential[8]. A 8× 8× 8 (5× 5× 5) k-mesh for
non-CDW (CDW) phase and an energy cutoff of 500 eV are used. The maximally localized Wannier functions are obtained
using WANNIER90[9–12]. A local coordinate system at the kagome site is adopted in order to decompose d orbitals when con-
struct MLWFs, the same as the one used in Ref.[13]. The Wannier tight-binding models are symmetrized using Wannhr symm
in WannierTools[14]. The unfolding of CDW bands is performed using VaspBandUnfolding package[15, 16]. The Fermi surface
is computed using WannierTools[14] and visualized using Fermisurfer[17].

S5. BULK BAND STRUCTURE IN NON-CDW AND CDW PHASES

In this section, we discuss the bulk band structure in both non-CDW and CDW phases.
In Fig. S5(a), the crystal structure of FeGe in the non-CDW phase is shown together with two surface terminations, i.e.,

kagome and honeycomb surfaces. In the 2× 2× 1 CDW phase, the main atomic displacements come from the dimerization of
the triangular Ge. Experimentally, the dimerized Ge atoms have two possible positions as shown in the main text. In DFT, we
fix the Ge atoms at the larger dimerized positions.

In Fig. S5(b)(c), we show the comparison between the non-CDW and (unfolded) CDW bands in the PM and AFM phases. In
Fig. S8 and Fig. S9, the orbital weights in the non-CDW AFM phase are shown, while in Fig. S10, the orbital weights in the
CDW phase are shown. We observe the following features in the CDW bulk bands:

• A Dirac crossing at K centered at about -0.7 eV mainly comes from dxy orbitals, together with some dx2−y2 weights. It
exists in both CDW and non-CDW bands and has little changes, as shown in Fig. S9(a)(b) and Fig. S10(b).

• A V-shaped band centered at Γ from about -0.5 to -1.0 eV mainly comes from the triangular Ge pz orbital, as shown in
Fig. S10(d). This band accounts for the main reconstruction by CDW. In the non-CDW phase, it is located at high energy
with the bottom at about -0.5 eV, as shown in Fig. S9(f).

• A quasi-flat bands at about -1 eV near Γ mainly comes from dz2 orbital, as shown in Fig. S9(c) and Fig. S10(a).

In Fig. S11, we also superimpose the CDW bulk bands with non-CDW bands for better comparison.
In Fig. S6, we show the Fermi surface (FS) of FeGe in the non-CDW AFM phase. It can be seen that there is quasi-2D FS

with a weak kz-dispersion in Fig. S6(c), which is mainly contributed by the dx2−y2 , dxy orbitals of Fe (see Fig. S8). In Fig. S7,
we show the 2D slices of the FS on difference kz planes. On the kz = 0 plane, the smallest circular FS around Γ is mainly
given by the pz orbitals of the triangular Ge (see Fig. S8(f)). In the CDW phase, this band moves down and is far from Ef (see
Fig. S10(d)). However, there are some other bands close to Ef near Γ in the CDW phase, which could contribute to the FSs (see
Fig. S11).

In Fig. S12, we show the nesting function (Im-χ) and total susceptibility (Re-χ) of FeGe in the AFM phase (non-CDW). In
the nesting function, the dominant peak appears at the K point. In the total susceptibility, however, a broad peak appears along
the boundary of the first BZ, with the highest point near K. Thus we conclude that the FS nesting cannot directly account for
the CDW at M point.

S6. SURFACE BAND STRUCTURE IN THE CDW PHASE

In this section, we discuss the surface bands in the CDW phase. In Fig. S13, the folded surface bands for both honeycomb
and kagome terminations are given, together with orbital weights. In Fig. S14, we also give the unfolded surface bands. Here
the folded bands denote the bands in the CDW BZ, while unfolded bands denote those in the non-CDW BZ.

We observe the major difference between folded and unfolded surface bands is a U-shaped band centered at Γ at about -0.3
eV at the honeycomb surface. This U-shaped band only appears in the folded bands, which mainly comes from (dxz, dyz) of
Fe. Since this band is not seen in the unfolded bands near Γ, it is folded from the M point due to the 2 × 2 CDW order. In the
CDW bulk bands, there exist bands with a similar shape from (dxz, dyz) near L = ( 12 , 0,

1
2 ), as shown in Fig. S10(g). Thus this

surface U-shaped band can be seen as kz-projected bulk bands with surface reconstructions.
This U-shaped band matches well with APRES results. We conjecture that there are strong disorder effects near the surface

that break the translational symmetry. Thus the observed bands in ARPES can be explained by the folded surface bands.
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FIG. S5. (a) The crystal structure of FeGe in the non-CDW phase, where Fe atoms form kagome lattices, while Ge atoms form triangular
and honeycomb lattices (denoted as Ge-T and Ge-H, respectively). Two surface terminations, i.e., kagome and honeycomb surfaces are also
marked, where the atoms below the plane define the surface. (b) The band structures in non-CDW (black lines) and CDW (red lines) phases,
where paramagnetic (PM) order is assumed. In the CDW phase, the bands are unfolded to the non-CDW Brillouin zone (BZ). (c) Same as (b),
but in the anti-ferromagnetic (AFM) phase. Spin-orbital coupling (SOC) is neglected for simplicity as SOC is weak in FeGe.

FIG. S6. The Fermi surface (FS) of FeGe in the non-CDW AFM phase, where (a) is the full FS, and (b)-(e) are four parts of FSs contributed
by different bands. The color on the FS denotes the Fermi velocity. A quasi-2D FS is shown in (c) with a weak kz-dispersion.
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FIG. S7. The 2D Fermi surface (FS) of FeGe in the non-CDW AFM phase on different kz planes.
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FIG. S8. The orbital projections in the non-CDW AFM phase, for Fe (a) dxy , (b) dx2−y2 , (c) dz2 , (d) dxz , (e) dyz , and triangular Ge pz
orbitals, respectively. Blue and red lines denote two spin-up and down bands from Fe one kagome layer.

FIG. S9. The orbital projections in the non-CDW AFM phase. It is the same as Fig. S8 but on a different path in the BZ, in order to give a
direct comparison with ARPES results.
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FIG. S10. The unfolded bulk band structures and orbital projections in the CDW AFM phase. (a) The unfolded bulk bands. (b)-(d) The orbital
weights for Fe (dxy, dx2−y2), (dxz, dyz), and triangular Ge pz orbitals, respectively. (e)-(h) in the second row is the same as the first row but
on kz = π plane.

FIG. S11. Comparsion of non-CDW (black) and unfolded CDW (red) bulk bands in the AFM phase, along four different paths in the BZ. The
main difference between CDW and non-CDW bands is the V-shaped bands at Γ, which is mainly from triangular Ge pz orbitals (see Fig. S9
and Fig. S10 for orbital weights). This band moves down in the CDW phase.
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FIG. S12. The nesting function (Im-χ) and total susceptibility (Re-χ) of FeGe in the AFM phase (non-CDW). In the nesting function, the
dominant peak appears at the K point. In the total susceptibility, however, a broad peak appears along the boundary of the first BZ, with the
highest point near K.
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FIG. S13. The folded surface bands in the CDW phase. (a) The honeycomb surface bands. (b)-(d) The orbital weights in the honeycomb
surface bands, for Fe (dxy, dd2−y2), (dxz, dyz), and triangular Ge pz orbitals, respectively. A U-shaped band centered at Γ at about -0.3 eV is
observed at the honeycomb surface which mainly comes from (dxz, dyz) of Fe. This band agrees with ARPES results. (e)-(h): same as (a)-(d)
but for the kagome surface. The definition of the two surface termination is given in Fig. S5.

FIG. S14. The unfolded surface bands in the CDW phase, for both honeycomb surface (a) and kagome surface (b).
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S7. DIFFUSE SCATTERING, DS

Single crystal’s diffuse scattering contains information about local (short-range, pairs of sites) ordering in the sample and the
deviations from the average (different types of disorder), and gives information at scales beyond the average unit cell. In this
section, we present a comprehensive study of the different DS cuts of as-grown FeGe, annealed and Ge-deficient FeGe and FeSn.

First of all, we will give a brief introduction about how to identify substitutional from displacement (phonon driven) disorder
[18]. A system with substitutional disorder can be characterized by a unit cell where a site is occupied by one of several atom
types or a missing atom, thus the chemical environment in neighbouring unit cells is not identical. Figure S15 (A) and (B) shows
an example of a one dimensional substitutional disordered chain with a random occupation per unit cell and two different types
of atom types; i.e. Fe and Ge. If Fe and Ge are present in a fraction mFe and mGe, respectively, then:

mFe +mGe = 1, (S1)

In a system with positive correlated disorder, Fe and Ge coherently cluster together; e.g. neighboring atoms are of the same
type, figure S15 (A). If disorder is negatively correlated if Fe and Ge alternate along the chain, e.g. Fe tends to have Ge as
its neighbor, figure S15 (B). Starting from a toy model, a binary disordered system is commonly characterized by the Warren-
Cowley short-range order parameters αv⃗;

αv⃗ = 1−
PFeGe
v⃗

mFemGe
, (S2)

-where PFeGe
v⃗ describes the probability to find a Ge atom from a Fe atom at a vector v⃗. The positive and negative correlations

in a certain direction are, thus, parametrized by Warren-Cowley short-range order values.

αv⃗ =


> 0 positive correlation,
= 0 no correlation,
< 0 negative correlation.

(S3)

The Warren-Cowley parameters are equivalent to the interaction energies obtained by DFT in the main text.
The diffraction patterns for a positive, negative and uncorrelated one dimensional lattice are displayed in figure S15 (C). The

main observation is a decrease of intensity as a function of the momentum transfer. Moreover, positive correlation gives large
diffraction intensity at integer values of h, while a negative αv⃗ localizes the intensity at half-integer h (in between Bragg peaks).

In a system with pure displacement disorder the atoms are displaced from their average position within the unit cell. This is the
case for thermal disorder or the condensation of a particular phonon mode associated with a CDW phase transition. Therefore, it
is strongly dependent on the phonon eigenvectors and polarization and the electron-phonon interaction. The displacement vector
of an atom in a unit cell t on site i from its average position is given by δ⃗t,i and follows a Gaussian probability with a covariance
matrix u:

p(δ⃗t,i) =
1√

(2π)3det(u)
exp

(
−1

2
(δ⃗t,i)

Tu−1(δ⃗t,i)

)
, (S4)

The displacement disorder is random if the displacement of an atom is independent of the displacement of its neighbouring
sites, positively correlated if the displacement of neighbouring atoms is preferably along the same direction or along opposing
directions (negative correlation). The diffuse diffraction pattern of a positive, a negative and an uncorrelated system driven by
displacement disorder is shown in figure S16.

The signature of diffuse scattering caused by displacement disorder is a decrease of the maximum intensity at h→0, where the
substitutional disorder develops its maximum intensity. Therefore, the momentum dependence of the diffuse scattering allows to
directly distinguish between displacement and substitutional disorder. This is the case observed in FeGe, where the DS follows
the typical trend characteristic of substitutional disorder instead of phonon-driven.
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(A)

(B)

(C)

FIG. S15. (A) 1D-chain of Fe and Ge atoms with substitutional disorder, where (A) the same type of atoms (Fe or Ge) cluster together and (B)
Fe and Ge type of atoms alternate in the chain. (C) Diffuse scattering pattern for substitutional disordered pattern. Note how the DS decreases
with h.

(A)

(B)

FIG. S16. (A) Diffuse scattering form a one-dimensional Ge crystal with displacement disorder. In (A), the arrows stand for the atomic
displacements. (B) Calculated DS for correlated (U positive, atoms move in-phase) and uncorrelated (U negative, atoms move out-of-phase).
The DS is negligible at h→=0, hence differentiating from the substitutional disorder case. Note that positive correlation give maxima of DS at
the Bragg positions, while negative correlation gives DS at half-integer h.
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A. FeGe

In figure S17 (A-C), we show the (h k) DS cuts for L=3, 1.5 and 2.5 planes. Signatures of DS driven by substitutional disorder,
namely hexagonal diffuse rings, are also visible at the (h k 3) plane. Similarly to the (h k 1.5) plane, the (h k 2.5) shows a complex
diffuse pattern, presumably as a result of the small in-plane atomic displacements not considered in the MC simulations.
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FIG. S17. DS maps of FeGe and integrated intensities of CDW peaks. (A) DS map of (h k 3). (B) DS map of (h k 1.5). (C) DS map of(h k
2.5). (D) Temperature evolution of the integrated intensities of the CDW peaks around the position (0 0 1.5). (E) Temperature evolution of
the integrated intensities of the CDW peaks around the position (2 0 1.5). (F) Temperature evolution of the integrated intensities of the CDW
peaks at A, M and L in the h 0 l plane. In the inset of the panels (D-F), the squares are the integrated areas for each plot.

Figures S17 (D-F) display the integrated intensity of the CDW peaks and the corresponding diffuse precursors defined by the
region of interest (ROI) in the insets. The intensities are strongly modulated in reciprocal space surrounding the Bragg points.

B. Annealed FeGe

As-grown single crystals of FeGe (hereafter FeGe(a)) were annealed for 3 days at 300ºC to increase the CDW correlation
length [19]. The spatial correlation of the CDW extends to 30.0 ± 0.7 nm along M, 33.9 ± 0.6 nm along L and 43.3 ± 0.6 nm
along A. As we can see in figure S18 (A), the diffuse scattering, although with less signal to background ratio, is again localized
along the M-L directions and also develops a hexagonal pattern at T>TCDW.

Furthermore, at integer L and half integer L-values, streaks of diffuse intensity, characteristic of orthorhombic domains, are
visible between Bragg peaks. On the other hand, the hexagonal diffuse pattern is no longer visible at low temperature, suggesting
that the annealing reduces the frustration between dimerized and undimerized phases at T<TCDW .

Figure S19 compares the (h k 2) DS of the annealed and as-grown FeGe. Three features are clearly visible: (1) the DS of the
as-grown samples present larger signal-to-noise ratio, (2) streaks of diffuse intensity appear in between Bragg peaks and cross
the CDW DS at M and (3) the as-grown CDW peak width is more anisotropic than the annealed FeGe. We note that due to the
lower intensity of the DS of FeGe(a) and the presence of orthorhombic domains precludes us to reach a reliable comparison the
anisotropic width ratio between FeGe(a) and as-grown crystals.
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FIG. S18. DS maps of the annealed FeGe. The hexagonal diffuse rings are still present at T>TCDW but, nevertheless, absent for T<TCDW.
In addition, no anisotropic DS is observed at the M point.
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FIG. S19. Comparison of the (h k 2) annealed (A) and as-grown (B) FeGe crystals. (A) The DS of the annealed sample is at the background
level and the diffuse signal is isotropic around the CDW reflection.



17

C. FeGe0.9

In this section, we present the results of Ge-deficient FeGe (FeGe0.9). The Ge concentration was estimated from the energy
dispersive analysis (EDX), figure S20. The 10% Ge deficiency slightly modifies the magnetic behavior of the sample, but the
CDW and the AFM canting transition are still visible, figure S21.

FIG. S20. Energy dispersive analysis of Ge-deficient FeGe (FeGe0.9).
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FIG. S21. Magnetic characterization of Ge-deficient FeGe (A) Temperature dependence of the magnetization for applied magnetic field
(H) parallel to the c-axis (B) Magnetic field dependence of the magnetization for H parallel to c. Temperature (C) and magnetic field (D)
dependence of the magnetization parallel to the ab-plane.

The DS maps of FeGe0.9 show similar hexagonal diffuse patterns at integer and half integer L-values as the stoichometric
FeGe. However, the intensity of the CDW peaks sharply drops below the TCDW, see figure S22, with an upturn for some
propagation vectors and even the complete disappearance of the CDW reflection at qA=(0 0 3

2 ). This behavior was not observed
in FeGe1.0. We have carried out energy resolved inelastic x-ray scattering (XS) experiments to disentangle the elastic and
inelastic contributions of the diffuse signal. As shown in figure S23, the drop of intensity is mostly driven by the temperature
dependence of the elastic central peak (CP) of the IXS spectrum.

The temperature dependence of the CP, and in particular the absence of the elastic signal at (0 0 3
2 ) at low temperature,

is reminiscent to the reports charge ordered nickelates [20]. Although not explored in detail, we speculate with the role of
quenched disorder or fluctuating charge order below TCDW that mat hint at a competition between CDW and magnetism.
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FIG. S22. Reciprocal space reconstructions of the Ge-deficient FeGe0.9 diffuse maps.
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FIG. S23. (A-C) Temperature dependence of the CDW peaks A, M and L, respectively, measured at the Fe K-edge, 7.11 keV. (D-F)
Temperature dependence of the DS integrated intensity of three different CDW peaks. (G-L) Temperature dependence of the integrated
intensity of the elastic central peak (CP) of IXS for the Ge-deficient FeGe0.9.
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D. FeSn

We have searched for diffuse scattering in the antiferromagnetic FeSn with the in-plane spin polarization [21]. The absence
of any type of diffuse pattern as a function of temperature demonstrates that the out-of-plane spin polarization of FeGe is
responsible for the out-of-plane displacement of the trigonal Ge.
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FIG. S24. Temperature dependence DS of FeSn. No diffuse signal is observed at either M, L or A points.

The DS around the Bragg peaks at high temperature is a a result of the thermal excitations of phonons; i.e. thermal diffuse
scattering (TDS).
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S8. MONTE CARLO SIMULATION OF DS

In this section, we use Monte Carlo to simulate the DS based on an effective Ising model that describes the dimerization of
triangular Ge.

A. Ising model for Ge dimerization

We first build an Ising model to describe the dimerization of triangular Ge and to achieve a certain microscopic realisation via
the Monte Carlo simulations. We use an Ising variable σi = ±1 to denote the dimerized (σi = −1) and undimerized (σi = +1)
triangular Ge pair in the (non-CDW AFM phase) unit cell Ri. By considering in-plane nearest neighbor (NN) coupling c1, next
NN (NNN) coupling c2, 3rd-NN (3NN) coupling c3, z-direction NN coupling c4, and an effective magnetic field h, we build a
model with the form

H =
∑

⟨ij⟩:NN

c1σiσj +
∑

⟨ij⟩:NNN

c2σiσj +
∑

⟨ij⟩:3NN

c3σiσj +
∑

⟨ij⟩:z−NN

c4σiσj +
∑
i

hσi + E0. (S5)

where E0 is a constant and ⟨ij⟩ means each ij pair counts only once. The magnetic field term h is added because the fully
dimerized and undimerized configurations have different energies.

FIG. S25. The illustration of the coupling parameters used in the effective Ising model in Eq. (S5). In the figure, c1,2,3 are in-plane NN, NNN,
and 3NN coupling parameters. The numbers 1-8 label the eight Ge pairs in a 4 × 2 in-plane supercell of the non-CDW unit cell. The black
lines mark the non-CDW unit cell.

We then fit the parameters from DFT. We choose a 4 × 2 × 2 supercell of the non-CDW AFM unit cell, which contains
4× 2× 2 Ge pairs. As shown in table S3, we consider 7 inequivalent dimer configurations and compute their averaged magnetic
moments and total energies in DFT. The parameters in the Ising model Eq. (S5) are fitted using the DFT data, with their values
summarized in table S4.

Dimer configuration µ̄Fe/µB DFT total energy (meV) Fitted energy (meV)
−+−+,++++, −+−+,++++ 1.44 0.0 0.0
++++,++++, ++++,++++ 1.39 835.4249 772.5727
−+++,−+++, −+++,−+++ 1.44 997.3268 997.3268
−+++,++−+, −+++,++−+ 1.43 667.4307 667.4307
−+++,++++, −+++,++++ 1.41 517.8678 517.8678
−+−+,++++, ++++,++++ 1.41 614.8985 740.6027
−+−+,++++, ++++,+−+− 1.44 771.4848 708.6327

TABLE S3. The computed total energies from DFT for different dimer configurations. For each dimer configuration, + (−) denotes the
dimerized (undimerized) triangular Ge pair. The first 8 ± denotes the 8 Ge pairs marked in Fig. S25 on the first layer in the 4×2×2 supercell,
and the second 8 ± denotes the second layer. The second column of µ̄Fe is the averaged magnitude of magnetic moment on Fe atoms. The
third column is the computed DFT total energy, while the last column is the fitted energy using Eq. (S5). Remark that the configurations with
more dimerized Ge have larger magnetic moments and much higher total energies, and are not used in the fitting.

B. Monte Carlo simulation

With the effective Ising model derived based on DFT, we perform Monte Carlo simulations to obtain simulated diffuse scat-
tering patterns. In the Monte Carlo simulation, moves are accepted if a random number (0-1) is less than exp(−∆E/kBT ) with
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c1 c2 c3 c4 h E0

45.885 25.267 -8.224 -44.290 -330.340 3746.100

TABLE S4. The fitted value of parameters in the Ising model Eq. (S5) based on the ab initio data in table S3. All numbers are given in meV.

(B)(A)

FIG. S26. (A) Converged MC simulation of a supercell of FeGe using the Ising model defined in S5. The circles highlight the 2 typical atomic
arrangement. (B) (h 0 l) calculated DS map of FeGe showing the diffuse signal at the A, M and L points. Bragg peaks are omitted.

T = 80K. The low-temperature unit cell (10× 10× 8 Å) was expanded to a 16× 16× 16 supercell. ∼5% dimers were added
randomly and the MC simulations were run until convergence.

The real space configuration of the minimum energy supercell is depicted in Fig. S26,(A) where the red and grey balls stand
for dimerized and non-dimerized phases. Most of the atoms are highly ordered (circled in black) but there are some defect areas
where the ordering is not complete (circled in blue). These configurations converged to 37.5% non-dimers and 62.5% dimers.

The diffuse scattering calculated from these configurations using DFT parameters (Bragg peaks have been removed) is plotted
in figures S26 (B) and S27 (A). The diffuse scattering is calculated using the program Scatty by Fourier transforming of all the
atomic coordinates of the atomic positions. In figure S27 (A-F), the high intense Bragg nodes at the A point are removed.

The DFT values reproduce the DS at the M and L points, figure S27 (A-B). Moreover, upon manually tuning the c1 and c2
values, we can also simulate the shape of the anisotropic DS at the M point at 80 K and 100 K. This shows that the ci’s parameters
that describe the nearest neighbour interaction between dimerized and undimerized trigonal Ge are temperature dependent.
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(A) (C) (E)

(F)(B) (D)

FIG. S27. Simulated h k 2 and h 0 L DS maps. (A-B) h k 2 and h 0 l DS obtained by minimising the Ising hamiltonian using the ci values
obtained from DFT, c1= 45.885 meV, c2= 25.267 meV, c3= -8.224, meV c4= -44.290 meV, h = -330.340 meV (T=80 K). (C-D) h k 2 and h 0
l DS for c1= 165.886 meV, c2= 25.267 meV, c3= -8.224, meV c4= -44.290 meV (T=80 K). (E-F) h k 2 and h 0 l DS c1= 165.886 meV, c2= 0
meV, c3= -8.224, meV c4= -44.290 meV (T=100 K). The simulations do not include the in-plane atomic displacements, which are responsible
for the absence of DS at l=integer+ 1

2
. See main text.



24

S9. BOND-ORDER CORRELATION FUNCTION ANALYSIS

In this section, we describe the analysis of the bond-order correlation function analysis. For a discrete set of particles in the
real-space, one can define a local ordering between nearest neighbors as

Ψ6(rk) =
1

Nk

Nk∑
j=1

ei6θkj , (S6)

where Nk is the number of nearest neighbors of the k−particle at position rk and θkj defines the angle the k-j bond (fig. 4(I)
in the main text). For a particle at rk, the six-bond order correlation function at a distance |r − rk| is given by

G6(|r − rk|) =
1

N|r−rk|

N|r−rk|∑
j

Ψ6(rk)Ψ
∗
6(rj), (S7)

where the sum goes over all the particle at a distance |r−rk| with respect to rk. Summing over all the particles in the system,
we can define a total G6(r),

G6(r) =
1

Nr

Nr∑
<j,k>

Ψ6(rk)Ψ
∗
6(rj), (S8)

- where Nr goes over any pair of particles which are at a distance r. To compute the G6(r) correlation function, first we
need to get the real-space charge distribution from the diffuse scattering maps. The intensity I of a diffuse scattering map is
proportional to the square of the structure factor,

I ∝ |S (q) |2, (S9)

- where q is a vector in the the reciprocal space. The real-space charge distribution is defined as the real part of the Fourier
transform of the structure factor,

ρ (r) =
1

Vcell

N∑
q

|S (q) | cos (2π (q · r) + Φ (q)), (S10)

- where r is the position vector in the real space and Φ (q) is a random phase S (q) for a given q [22–24].
As Eq.S8 is defined over a discrete set of particles, we make a discretization of the continuous real-space charge distributions

by defining the local maxima as particles. Then, we introduce a Voronoi tessellation in the discrete set of particles to define the
concept of neighbor. Given a set of points (particle’s positions) {p1, p2, ..., pN}, each point pi has a Voronoi cell associated.
This cell consists in any point in the Euclidean space for which pi is the nearest site of the set of points. All the Voronoi cells
together form the Voronoi tessellation and any pair of cells which share a boundary will correspond to a pair of points which are
neighbors. The geometrical construction of this diagram is equivalent to a the one used to get a Wigner-Seitz cell. Once we have
introduced the concept of neighbor in the discrete set of particles, we can compute Eqs. S6,S7,S8.

Figure S28 summarizes the the real space charge density considering different types of CDW peak shape/anisotropy for a
6-fold symmetry. In figure S28 (A,C,E), where the CDW peaks are rather sharp, we can discretize the charge density to perform
a Voronoi analysis, however, at high temperature as is the case of figure S28 (I), the transformation from a continuous field to
a discrete set of particles, where there is no well-defined six-fold symmetry, the charge density is well capture by means of a
discretization analysis. Figure S29 (A,D,G,J) correspond to the experimental maps of diffuse scattering we have used to perform
the G6 analysis in the Figure 4 of main text. For each one of these DS we have performed the Fourier transform to real space
(see Figure (B,E,H,K)) via Eq. S10. After the discretization, we got the Voronoi tessellation and made the bond-order correlation
function via Eq. S8.
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FIG. S28. (A) Simulated DS map by using a Gaussian Lineshape centered at each CDW peak and linewidths [σx, σy] equal to
[0.002, 0.002] r.l.u.. (B) Fourier transform of (A). Each pair from (C-L) are the same varying the linewidths of the Gaussians. (C-D) DS
and its Fourier transform where the Gaussians have a linewidth of [0.01, 0.002] r.l.u.. (E-F) DS and its Fourier transform where the Gaussians
have a linewidth of [0.01, 0.01] r.l.u.. (G-H) DS and its Fourier transform where the Gaussians have a linewidth of [0.05, 0.05] r.l.u.. (I-J)
DS and its Fourier transform where the Gaussians have a linewidth of [0.3, 0.3] r.l.u.. (K-L) DS and its Fourier transform where the Gaussians
have a linewidth of [0.05, 0.1] r.l.u.. For each Fourier transform it was used the same random phase matrix.
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FIG. S29. (A,D,G,J) Diffuse Scattering maps of the plane (H K 2.0) around the point (0 0 2.0) for T = 95, 97, 99, 101K, respectively.
The Bragg point just in the point (0 0 2.0) has been screened by introducing random Gaussian noise with and average and standard deviation
equal to the thermal background. (B,E,H,K) Real-space charge distribution for the diffuse scattering maps of (A,D,G,J), respectively. (C,F,I,L)
Voronoi tessellation of the local maxima of the charge distribution in (B,E,H,K), respectively.
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