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Abstract—Advances in natural language processing (NLP) have 
made several technological interventions and services available to 
people in different languages. One such service is the Google Maps 
direction narration which provides real-time oral assistance to 

tourists, and visitors in a new or unknown location. Like most related 
assistive technologies, this service is primarily developed in the 
English language with support for some other Western languages 
over time, and the African languages are largely neglected. This paper 
seeks to leverage advances in NLP techniques and models in the 
design of a speech-to-speech (STS) translation of the Google Maps 
direction narration in English to the Yoruba language, one of the most 

widely spoken languages in Western Africa. We begin with an 
exploration of various state-of-the-art NLP techniques for Automatic 
Speech Recognition (ASR), Machine Translation (MT), and Text-to-
speech (TTS) models that make up the designed system. We 
presented the performance of the models we explored towards the 
design and implementation of a robust STS translation of the Google 

Maps direction narration in the Yoruba language. 
Index Terms—Natural Language Processing, Speech-to-Speech 

Translation, Yoruba Language, Machine Translation, Low- 
Resourced Languages 

I. INTRODUCTION 

The applications of natural language processing, especially 

in real-time translation have significantly increased over time, 

offering profound capabilities to make life and living better. 

One such application is the Google Map Direction narration for 

immigrants, tourists, visitors, and strangers who can access 

both the direction and voice narration provided by Google 

Maps in a language of choice to ease navigation. This 

automatic navigation service with advanced features such as 

street view, location of landmarks and significant locations as 

well as the calculation of best route, determination of traffic 

congestion, and prediction of the estimated time of arrival [1] 

to a predetermined route has made traveling arguably 

universally more interesting. The voice narration offered by 

Google Maps makes the navigation experience seamlessly 

pleasant or close to it. This navigation service and many such 

related assistive technologies however have one major 

drawback, they are primarily designed in English language with 

support for only a handful of languages thereby cutting off a 

significant number of users who do not have the command of 

the supported languages as the case is in Africa. Getting a 

translation of the service is dicey as well, as [2] submits that 

publicly available voice translation models (provided by 

Google) only support a range of 21 to 113 source languages. 

Of the 133 languages supported by Google, only 32 are 

available in voice or conversation mode. Of these 32 

languages, only 4 are African languages, namely, Afrikaans, 

Amharic, Hausa, and Swahili. 

Yoruba is one of the most popular languages in Africa. It is 

native to the southwestern region of Nigeria (the most 

populous African country), with more than thirty million 

speakers [3]. Yoruba dialects are also spoken in countries like 

Togo and Benin Republic. Outside Africa, Yoruba speakers are 

found in countries such as Trinidad and Tobago, Cuba, and 

Brazil. Advances in the field of natural language processing, 

particularly speech translation can be leveraged to widen the 

reach of assistive technologies such as navigation services 

narration in a language such as Yoruba. 

Translation, which plays an indispensable role in 

globalization, is simply the art of making a sentence or speech 

in a source language available in another language (a target 

language) in a manner comprehensive enough for the 

intended audience. Speech Translation thus seeks to automate 

the process of translating spoken words from one language 

into another, which in effect bridges the language divide 

among the identified 7168 living languages globally [4]. The 

process of speech translation involves taking information 

about conversational speech in one language and using it to 

understand speech phrases in another language. There are 

three distinct methods involved in automatic speech 

translation technology: the ability to detect (speech 

acknowledgment), the ability to interpret (language 

interpretation), and the ability to integrate (speech union) 

one’s speech into another language. Today, Speech 
Translation often involves an automatic recognition of a given 

speech, the automatic translation of the speech to a text form 

which is then automatically read out (spoken) by a machine. 

This paper ultimately aims for a Yoruba-speaking Google 

Map system, by seeking an effective translation of the Google 

Map direction narration, which is primarily generated in 

English, to the Yoruba Language. 

II. REVIEW OF RELATED WORKS 

The ability to communicate and pass on information is a 

primary feature of the human race and arguably the pivot 

on which human existence stands. Over time, there has been 

a serious effort to enhance seamless verbal communication 



among humans of different races and origins. Speech-to-

Speech Translation (STST) models greatly facilitate such 

efforts. STST originated from a series of interconnected 

(cascade) systems comprising Automatic Speech Recognition 

(ASR), Machine Translation (MT), and text-to-speech (TTS) 

synthesis [5], [6]. 

There have been significant improvements in research on 

direct STST which eliminates the dependency on MT-

generated texts and the attending constraints. The 

applications of direct STST are however still limited hence the 

exploration of a cascaded system for this translation of English 

narration to a Yoruba narration. 

A. ASR 

The utilization of ASR has significantly boosted the 

development of translation. ASR is the method by which a 

continuous stream of speech is transformed into a text 

sequence composed of individual words. A specialized form of 

digital signal processing that involves the application of fields 

such as statistics, and linguistics, ASR is the process of 

converting speech or audio waves into machine-readable texts 

by analyzing and processing speech signals using various 

techniques [7]. An ASR system therefore can detect provided 

verbal or speech input accurately, recognize the uttered words 

with precision, and subsequently utilize the recognized words 

as input for another machine to execute a certain operation 

[8]. 

ASR reinforces the human need for verbal communication 

which has been the most innate, effective, and best method of 

interaction among individuals until the advent of computers 

which necessitates providing input and commands 

nonverbally into diverse technological devices. With ASR, 

speech input into computing devices has become possible. 

ASR has been in development for years but has made 

notable significance over the past decade. [9], [10] submit that 

conventional ASR models were built on the Gaussian mixture 

model-hidden Markov model, a fundamentally generative 

model through which speech signals are generated using 

Bayesian inference to determine the uttered words. There 

were several modifications to this model over time with 

varying degrees of success. In recent times, deep learning 

techniques such as Deep Neural Network Hidden Markov 

Model and End-to-End (E2E) models have become popular, 

showing remarkable achievements in the field of ASR. 

Today, ASR, particularly for high-resourced languages, has 

made substantial advancements in performance and is 

leveraged in various applications and fields such as voice 

assistants, robotics, education, and search engines, to name a 

few. The same, however, cannot be said of low-resourced 

languages. 

Applying natural language processing to low-resource 

languages is hindered by numerous constraints. The first, and 

perhaps the most significant, is the divergent morphological 

setup of different languages. The predominant language used 

as the foundation for most natural language processing 

techniques is English. English is regarded as having a simple 

morphology 

[11] in stark contrast to many other languages that possess 

complex morphological structures with extensively inflected 

and polysemic words [12], [13]. Therefore, the methods that 

have been used successfully in English cannot adequately 

handle languages that have rich morphology structure. 

Numerous studies, such as those by [14], [15], [3] and others, 

have focused on ASR for tonal languages, and African 

languages. 

There has been an increasing interest in ASR for low 

resource languages to make NLP capabilities available for 

these less-represented languages [16], and E2E models have 

shown remarkable results, although the results are still far 

from perfect. E2E models require extensive resources and 

substantial amounts of labeled speech data, (especially 

transcribed speech) which most spoken languages lack, to 

achieve excellent performance. 

The transfer learning paradigm which involves the training 

of a model on labeled speech data from one or more high 

resource languages, and subsequently adjusting or refining the 

model using speech data from a low-resource language has 

been greatly explored [17]. The various nuances and 

complexity in the grammar formation and vocabularies of 

these divergent languages however affect the output of these 

E2E low-resource ASR models such that [18] submits that the 

most advanced ASR models are constrained when it comes to 

low-resourced languages. [19] identified limited availability of 

speech and text data, absence of standardization with 

variations in pronunciation as well as the unique properties 

each language possesses as shown in their linguistic and 

phonetic composition as the three primary challenges ASR for 

low-resourced languages face. To produce accurate transcripts 

from speech patterns identified in a specific input language 

speech, ASR models require a substantial amount of training 

data. Addressing these challenges has been the focus of much 

research lately. 

B. Machine Translation 

In this cascaded model of STST, speech recognition is often 

followed by the translation of the transcript to a target 

language which is then utilized in subsequent speech 

generation. This translation process, referred to as “Machine 
Translation” (MT) is a completely automated process that 

transforms a source language into the desired target language, 

a significant endeavor that seeks to utilize computers in the 

translation of sentences in natural language. 

[20] stratified modes of machine translation into four: Rule 

based, corpus-based, Hybrid, and knowledge-based MT 

models. The initial methodology for machine translation 

mainly depends on manually created translation rules and 



linguistic expertise [21]. Due to the intrinsic complexity of 

natural languages, it is challenging to account for all linguistic 

inconsistencies using manual translation methods [22], this is 

in addition to the exorbitant cost of maintenance and updating 

[23], all of which underscores the limitations of rule-based MT 

models. Knowledge-based MTs are made up of a vast 

repository of parallel texts and an inference engine. The 

knowledge-based MT models are however fraught with the 

complexity of representing knowledge and establishing its 

level of detail. The hybrid approach to machine translation 

combines two or more MT techniques. While this approach is 

adjudged to produce considerably optimal results, it is costly 

to implement [20]. 

The availability of extensive parallel corpora led to a rise in 

interest in data-driven methods that extract linguistic 

information from the data from which Statistical Machine 

Translation (SMT) and Neural Machine Translation (NMT) were 

birthed. SMT differs from rule-based machine translation in 

that it acquires hidden structures, such as word alignments or 

phrases, directly from parallel corpora. The efficacy of SMT 

systems is directly influenced by the number of parallel 

sentence pairs accessible for training [24]. The translation 

quality of SMT is reported in [22] as unsatisfactory due to its 

inability to represent long-distance connections between 

words. Today, NMT is the dominant approach in the field of 

machine translation. NMT, designed to significantly depend on 

the use of encoders and decoders, is a translation system that 

uses a completely automated neural network [25]. Instead of 

translating individual words separately, NMT achieves a higher 

level of accuracy by taking into account the surrounding 

context in which the words are utilized. NMT aims to construct 

and train a single, extensive neural network that can 

accurately translate a sentence [23]. 

Many NMT models are available that generate translations 

for sentences in high-resourced languages (such as English, 

German, and Spanish) inputted efficiently. Some of these 

models are developed by global technological giants including 

Google with Google Translate, Meta with the No Language Left 

Behind model, IBM with IBM Watson, etc. Noting that the 

many real-world uses of MT position it as the most prominent 

NLP application, [26] submits that when it comes to low-

resource languages, MT systems continue to fall short. In 

corroboration, [27], [28] accede that the translation accuracy 

of MT models for low-resource languages which often have 

complex morphology remains inadequate. NMT models 

operate on the assumption that there is an ample amount of 

bilingual training data (between a high-resource language and 

a targeted low-resource language), however, this is rarely the 

case in real-world scenarios [29]. Therefore, the output of the 

models built remains far from being desirable. Indeed, the 

majority of widely used translation engines do not even 

support a large number of low-resource languages. 

Improvements in translation quality for native languages 

spoken by a large portion of the world’s population would 
bring the impact of MT to bear. 

C. Text to Speech Translation 

Using written text as input, Text to Speech Translation also 

known as speech synthesis is the process of generating 

artificial accents that closely resemble human speech. The 

advent of deep learning has enabled the most sophisticated 

speech synthesis systems to produce speech that is 

exceptionally natural-sounding and straightforward to 

comprehend [30]. 

Deep Neural Network [31], [32] revolutionized TTS, 

producing remarkable results in human speech synthesis, a 

huge leap from the once popular statistical parametric speech 

synthesis models [33]. Deep learning however relies heavily on 

a substantial quantity of training data [34], [35] such that it 

was stated in [33], [36] that DNN is not a suitable technique for 

TTS in low-resource languages. In [37] however, techniques 

such as monolingual transfer learning, cross-lingual transfer 

learning, multi-speaker models, multilingual models, and data 

augmentation have been proposed as means of augmenting 

TTS for low-resource languages. 

D. Limitations of Cascaded Speech to Speech Translation 

Approach 

There are several drawbacks to cascaded STS systems, even 

though they can be constructed on top of the current 

concurrent components. The most notable of the downside of 

the cascaded STS translation is dependency on intermediary 

textual outputs which constitutes constraints for these 

cascaded models in facilitating efficient inference and 

unwritten languages. [38] noted that there is an increase in 

latency in cascaded STS models due to the pipeline of many 

models. This latency originates either from the time it takes for 

numerous models to compute or the delay that results from 

their processing not being in sync with one another. 

To mitigate the constraints posed by cascaded STS systems, 

many research focuses have turned to direct methods for 

speech translation that do not require written texts. Two 

distinct models of STS translation were developed: the first, a 

Sequence-to-Sequence Translation (S2ST) of the source to the 

target language, and the translation of the source to the target 

language as a discrete unit. Google’s Translatotron [39] and 
Translatotron2 [40] employ the end-to-end (S2ST) model [41] 

to produce target spectrograms via multitask learning. 

Another avenue of investigation is substituting the desired 

spectrograms in S2ST modeling with distinct units that are 

acquired through extensive analysis of unannotated speech 

[42]–[44]. Discrete units have been shown to demonstrate a 

superior ability to capture language content compared to 



spectrograms. Although there have been advancements in 

direct S2S translation, a 

major obstacle that remains is the scarcity of parallel speech 

data. 

III. PROPOSED SYSTEM 

This section describes the setup of the proposed English-to-

Yoruba narration translation system. 

The STS Translation model proposed is made up of three key 

components: an ASR model to get the voice from the Google 

Maps direction narration, an MT model for translating the 

voice to the desired language (Yoruba), and a TTS model for 

producing the desired narration in the target language. In this 

setup, state-of-the-art models for each of the three stages of 

the cascaded speech-to-speech translation system were 

thoroughly explored to measure their suitability for the task 

before coalescing the different models together into a single 

system. A pictorial representation of the proposed model is 

given in Figure 1. 

 

Fig. 1. The translation model 

Several publicly available models for each of the three 

cascaded stages in this translation exercise as specified in the 

methodology (ASR, MT, and TTS) were explored. In addition to 

being publicly available, the models were chosen based on 

their popularity and widely reported performance. The models 

were then assessed based on the Word Error Rate (WER) 

performance. 

WER is a widely used measure to evaluate the accuracy of 

an automatic speech recognition system. It calculates the 

combined number of words that are deleted, substituted, or 

inserted in given sentences by a machine translation model. 

WER is calculated as given in equation 1. 

  (1) 

The main challenge in measuring performance with WER is the 

discrepancy in length between the machine-recognized word 

sequence and the reference (primary) word sequence [45]. 

Calculated based on the Levenshtein distance [46], WER 

operates at the level of individual words rather than 

phonemes which does not offer any specific information 

regarding the specific types of translation error. [47] submits 

that when the WER is high, it becomes challenging to 

determine the level of usefulness a model will have for the end 

user. Specifically, when WER fails to account for the degree of 

semantic similarity or the evaluation of the mistake. The 

availability of other robust metrics for ASR model evaluation 

does not however invalidate or make WER evaluation trivial. 

A. Source/Input 

The input in this Yoruba-speaking Google Maps direction 

narration system is the narration (in the English language) 

provided by the Google Maps direction service recorded as an 

audio file. 

B. ASR 

Several open-sourced ASR models were considered for the 

task of generating the transcript (text input) from the audio 

source input. Five of these models were explored including 

WhisperAI, developed by Open AI, Facebook’s FAIRSEQ S2T 
(S2T-LARGE-LIBRISPEECH-ASR model) [48], Microsoft’s 
unispeech-sat-base-100h-libri-ft ASR model [49], Nvidia’s 
Conformer-Transducer X-Large STT [50] and the Google 

Speech Library. These models possess the capability of audio 

capture, speech recognition, and transcript generation. 

When evaluating these models, we took into consideration, 

the submission in [51] which highlights the challenges that 

impact the quality of speech recognition. These challenges 

range from interference from background noise, variations in 

accents, dialects, word length, and non-wordy utterances like 

breaths, coughs, or sneezes. We therefore evaluated the 

models in a serene environment as well as in a relatively noisy 

environment. 

The output of the models as well as their performance based 

on their WER evaluation are presented in Tables I to IV. 

TABLE I 
ASR MODEL PERFORMANCE IN NOISY ENVIRONMENT 

Reference Text In two hundred meters turn left 

ASR Model Output 

WhisperAI In 200 meters turn left. 

FAIRSEQ S2T (S2T-LARGE- 
LIBRISPEECH-ASR) 

and two hundred metres on the left wall 

Microsoft’s unispeech-sat-

base100h-libri-ft ASR 
AND GON ADMI DAZ DON ALETO U 

Nvidia’s Conformer-Transducer 

XLarge STT 
time-out error 

Google Speech Library let in 200 m turn left 

Table 1 shows the output of each of the models in a 

relatively noisy environment. Only Nvidia’s conformer-

transducer STT model failed to produce an output in the given 



experimental setup, all other models responded to speech 

input and generated an output. 

TABLE II 
WER PERFORMANCE OF THE ASR MODELS IN NOISY ENVIRONMENT 

  Model performance   

ASR Model WER Substitutions Insertions Deletions hit 

WhisperAI 0.33 1 0 1 4 

FAIRSEQ S2T 
(S2T-

LARGELIBRISPEECH- 
ASR) 

0.83 2 0 2 4 

Microsoft’s 
unispeech-satbase-

100hlibri-ft ASR 

1.17 6 1 0 0 

Nvidia’s 
ConformerTransducer 
X-Large STT 

not 

rated 
not rated not rated not 

rated 
not 

rated 

Google 
Speech 
Library 

0.67 4 0 0 2 

 

The WER of each model judging by the number of words 

substituted, inserted, and deleted is presented in Table II. 

From the results presented, WhisperAI model has the best 

WER score with one of the words in the reference text deleted, 

one of the words substituted, and none of the words 

substituted. There was a hit on four of the six words in the 

reference text. A similar performance was recorded by 

Facebook’s Fairseq S2T model, obtaining a hit on four of the 
six reference texts. Google Speech library substituted four of 

the six reference texts while retaining the meaning of the 

words. Microsoft’s unispeech-sat-base -100h-libri-ft ASR 

substituted all the words in the reference text without 

retaining the meaning of any of the words. The pictorial 

representation of the performance of these models is shown 

in Figure 2. 

 

 

Fig. 2. The Word Error Rate of the models in a noisy environment 

TABLE III 
ASR MODEL PERFORMANCE IN SERENE ENVIRONMENT 

Reference Text In two hundred meters turn left 

ASR Model Output 

WhisperAI In 200 meters turn left. 

FAIRSEQ S2T (S2T-LARGE- 
LIBRISPEECH-ASR) in two hundred metres tom leaped 

Microsoft’s unispeech-sat-

base100h-libri-ft ASR IN TWO HUNDRED MITALS JON LEPTD 

Nvidia’s Conformer-Transducer 

XLarge STT time-out error 

Google Speech Library in 200 m turn left 

 

In Table III, the performance of the models was examined 

again in a serene environment void of background noise. 

Again, the WhisperAI has the best WER result with four hits of 

the six reference texts. Facebook’s Fairseq S2T had the second-

best WER result with four hits out of the six reference words. 

It, however, substituted two words “turn left” for “tom 
leaped”, which shows that the information the sentence is 
passing across has been lost and underscored the need for 

more evaluation of ASR models other than WER. While Google 

Speech Library also substituted two words, “two hundred 
meters” to ”200 m”, it still retained the meaning of the 
sentence. The Microsoft ASR model examined had three words 

substituted and got three-word hits; it however does not 

retain the information the reference sentence passes across. 

Of the five models (apart from Nvidia’s model which returned 
an error), only whisperAI and Google Speech Library ASR 

models were able to retain the meaning or interpretation of 

the reference sentence. 

 

 

 



TABLE IV 
WER PERFORMANCE OF THE ASR MODELS IN A SERENE ENVIRONMENT 

  Model performance   

ASR Model WER Substitutions Insertions Deletions hit 

WhisperAI 0.33 1 0 1 4 

FAIRSEQ S2T 
(S2T-

LARGELIBRISPEECH- 
ASR) 

0.5 2 0 0 4 

Microsoft’s 
unispeech-satbase-

100hlibri-ft ASR 

0.67 3 0 0 3 

Nvidia’s 
Conformer- 
Transducer 
X-Large STT 

not 

rated 
not rated not rated not 

rated 
not 

rated 

Google 
Speech 
Library 

0.67 2 0 1 3 

 

The pictorial representation of the word error rate of the 

models assessed in a serene environment is presented in 

Figure 3. 

 

 

Fig. 3. The Word Error Rate of the models in a serene environment 

C. Machine Translation 

The next step in this cascaded speech-to-speech translation 

model is the translation of the text generated from the audio 

input in the ASR stage. Four models were explored in this 

stage. 

1) DeepL Translate: The DeepL GmbH team created the 

widely used DeepL machine translation service. The ability to 

translate text between numerous languages with ease and 

speed is provided by this free online application. The model 

uses deep learning techniques, especially transformer models 

which are trained on massive volumes of multilingual text 

data, DeepL can grasp linguistic subtleties and generate 

remarkably accurate and coherent translations. 

Unfortunately, DeepL does not support translation in Yoruba 

Language. 

2) LibreTranslate: LibreTranslate is an open-sourced MT 

technology that offers translation services across several 

languages. The API offers a straightforward and user-friendly 

interface that can be seamlessly incorporated into different 

applications. LibreTranslate however does not support 

translation in the Yoruba language. 

3) NLLB: No Language Left Behind (NLLB), research 

championed by Meta to narrow the disparity between well-

resourced and under-resourced languages in the field of 

machine translation, provides translation services for an 

impressive range of 200 languages, including some African 

languages that are frequently overlooked by other models. 

This feature renders it an invaluable instrument for facilitating 

worldwide communication and enhancing the availability of 

information. It employs innovative methods to train with a 

small amount of data and enhance the quality of translation 

for various languages. The NLLB model is programmed to 

recognize the target language and acquire proper syntax and 

grammar. Data collected by social media platforms like 

Facebook is utilized to train this model, leading to the creation 

of many language training datasets [5]. Research indicates that 

NLLB provides high-quality translations, with a focus on 

achieving precision and producing output that sounds natural. 

It does not however support translation in the Yoruba 

language. 

4) Google Translate: Google Translate, the company’s 
language translation product, debuted in 2006 and initially 

supported only two languages using their statistical machine 

translation engine [52]. In order to steadily improve the quality 

of its translations, Google Translate now uses machine 

learning and neural network technologies. It currently does 

hundreds of millions of translations every day, earning it a 

reputation as the most prominent provider of online language 

translation services. The Google Translate API is a Python-

based library that dynamically converts text provided in a 

language to a desired language through the use of a neural 

machine translation that has been pre-trained. Google 

Translate translates text according to the frequency of 

occurrence of word pairs between two languages. The 

absence of context-aware translation may result in 

grammatical errors or the loss of meaning in the translated 

text. More than 100 different languages are currently 

supported by Google’s extensive translation services. It 

facilitates the translation of the Yoruba language into other 

languages and vice versa. 



Only Google Translate supports translation into the Yoruba 

language of the four state-of-the-art neural machine 

translation models explored. The output of the transcript 

generated in the ASR part of this task, which is an English text 

document is therefore translated to Yoruba language using 

Google Translate. While the model was able to translate some 

of the texts correctly, a significant part of the translations was 

wrongly interpreted, especially locations in Yoruba and Yoruba 

numerals. An example of this is presented in Figure 4 and 

Figure 5 followed by the evaluation of the translations using 

the word error rate metric. 

 

 

Fig. 4. The Google translation of the ASR-generated text from English to 

Yoruba 

Figure 4 shows the Google translation of the ASR-generated 

text from English to Yoruba. From Figure 4, using human 

evaluation of the MT-translation, three of the four sentences 

were not translated correctly. The total number of words in 

the reference text is 29, and the errors recorded from the 

substitutions, deletions, and wrongful insertions recorded by 

the model are 12. The WER evaluation of the translation is 

41%. The Yoruba text obtained from this translation was then 

re-translated into English, using Google Translate. The result is 

presented in Figure 5. 

 

Fig. 5. The Google translation of the MT-generated Yoruba text to English 

 

 

 

TABLE V 
EVALUATION OF THE MACHINE TRANSLATION YORUBA TEXT 

Google Transla te Model Evaluation performance 

Reference Text Output 

turn left turn left 

in three hundred meters turn left in three hundred meters this left 

in two hundred metres turn right to 

Gbongan - Ibadan express road 
in the three meters scroll to the collection to take road 

in one hundred and fifty metres make a 

U-turn 
in 100 and fifty meters make an existing feature 

 

Table V contains four sentences that make up the reference 

translation task containing 29 words. In the translation, there 

were 12 words substituted, 2 words deleted, no wrong word 

inserted, and 17 words gotten correctly. The WER for this 

translation task stands at 48%. 

 

 
TABLE VI 

WER EVALUATION OF TABLE V 

  WER of each sentence   

Sentence Word 
Length 

Substitutions Insertions Deletions hit 

1 2 0 0 0 2 

2 6 1 0 0 5 

3 11 7 0 1 3 

4 10 4 0 1 5 

 

In the end, the transcript of the audio input generated 

through ASR is: 

”turn left, in three hundred meters turn left, in two 

hundred meters turn right to Gbongan - Ibadan 

express road, in one hundred and fifty meters make 

a U-turn” 

The Yoruba translation of the task is: 

”Ya si apa osi, ni ogorun meta mita yi osi, ni awon mita 
meji meta yi lo si gbigba lati gba opopona, ni ogorun ati 

aadota mita s.e eya ti o was” 

 



This Yoruba translation, when translated to English using 

Google Translate is: 

”turn left, in three hundred meters this left, in the 
three meters scroll to the collection to take road, in 

100 and fifty meters make an existing feature”. 
It is clear from the results presented that the information 

contained in the input text has been lost in translation. It is 

therefore safe to submit that this speech-to-speech translation 

model so far cannot provide a Yoruba translation reliable 

enough to build a Yoruba-speaking Google Map navigation 

narration system upon without some modifications or 

improvement. 

It can be inferred that the bulk of the error this translation 

model recorded revolves around Yoruba numerals and 

locations which form the pivot of this translation exercise. We 

therefore probed a little further, limiting the reference text to 

be translated using GoogleTrans to numerals only. The output 

is presented in Figure 6. 

The reference text as presented in Figure 6 contains 

numbers written in both figures and words in a bid to ascertain 

the performance of the model in the translation of the various 

forms in which numbers can be shown. We compared the 

translation output with the expected (human) translation and 

presented the result in Table VII. There was a wrongful 

insertion in two of the four reference texts presented as 

figures. The model was marked with wrong substitutions when 

translating numerals presented in words. For instance, ten 

metres, which is expected to be ibuso mewa, was translated as 

meji meta. While the word meter has been substituted as mita 

in the translation instead of ibuso, it is still acceptable under 

the premise of lexical borrowing [53], [54]. However, the 

substitution that occurs in the translation of Yoruba numbers 

such as three hundred to odotarun meta instead of orundin 

nirinho completely contravenes either of the Yoruba numerals 

formation - the cardinal (asoye or onkaye) or the ordinal 

(asopo or onkapo) system [55], [56]. We argue that the word 

odotarun does not exist in the Yoruba language. Interestingly, 

when odotarun meta was translated to English using Google 

Translate, it returned three hundred and fifty. There is 

therefore something fundamentally wrong either with the 

dataset or the techniques on which the model has been 

configured to handle Yoruba numerals. 

 

Fig. 6. The translation of some Numerals from English to Yoruba using 
Google Translate 

 

 

 

 

 

 

 



TABLE VII 
EVALUATION OF THE MACHINE TRANSLATION OF YORUBA NUMERALS 

Human Translation of Yoruba numerals vs translation by Google Translate 

Reference Text Expected (Human) Translation Expected (Human) Translation 

300 meters ibuso orundin-nirinho awon mita 300 

150 meters ibuso aadojo awon mita 150 

200 meters ibuso igba 200 mita 

10 meters ibuso mewa 10 mita 

three hundred metres ibuso orundin-nirinho odotarun meta 

one hundred and fifty 

me- 
tres 

ibuso aadojo ogorun ati aadota mita 

two hundred metres ibuso igba igba ogorun mita 

ten meters ibuso mewa meji mita 

D. TTS 

Five Text-To-Speech models were explored in this next 

phase of the translation exercise. The input to this TTS is 

the Yoruba machine-translated text from the MT section. The 

models are thus presented. 

1) Seamless TTS: Developed by Meta, SeamlessM4T v2 

is a comprehensive TTS model capable of processing both 

speech and text singly. It supports 100 languages for speech 

input and 96 languages for text input. The system can generate 

written output in 96 languages and spoken output in 36 

languages [2]. Unfortunately, Yoruba is not one of the 

languages supported for the spoken output. 

2) MMS TTS: The Massively Multilingual Speech TTS 

model, an endeavor by Facebook at significantly increasing 

speech technology to more than 1000 languages, providing 

TTS models for 1107 languages [57], including Yoruba. The 

mms-tts-yoruba model was able to convert the input texts to 

Yoruba words. However, the model still needs fine-tuning. 3) 

SpeechT5 TTS: The Microsoft speech synthesis model [58] does 

not support TTS in Yoruba. 

4) Coqui TTS: Coqui promises several noteworthy  

features, including voice cloning, and multilingual speech 

generation capabilities [?]. It however supports only 16 

languages, none of which is an African language. 

5) Your TTS: The YourTTS model [59], a multi-speaker 

speech synthesis model does not also support Yoruba 

language. 

Only one of the five state-of-the-art TTS models that were 

investigated to be utilized for the third and final stage of this 

English narration to Yoruba narration translation gave a 

perceptible outcome. This model was Facebook’s Massively 
Multilingual Speech TTS. 

IV. CONCLUSION 

We have examined the various components that make up a 

cascaded speech-to-speech translation model aimed at 

facilitating the translation of the voice narration provided by 

Google Maps direction service from English to narration in the 

Yoruba language. 

The first of the three components is the ASR. Four of the five 

models experimented with at this stage were able to 

conveniently recognize the English voice narration and 

produce a corresponding text with varying degrees of 

accuracy. The WhisperAI model was adjudged the best of 

these models based on a WER evaluation score of 33%. 

Although a WER of 33% is considerably high (i.e. the 

proportion of words that the model got wrong when 

compared to the words that were actually spoken), this 

performance is deemed acceptable because contextually, the 

meaning of the words spoken remained intact at the end of 

the translation. 

The second component is the MT: i.e. the automatic 

translation of the English text generated from the ASR into 

Yoruba. We experimented with four state-of-the-art models of 

which only one, Google Translate, can translate English texts 

to Yoruba and vice versa. The translation was however fraught 

with significant errors especially when it came to Yoruba 

numerals and locations. We submit that the output (the 

Yoruba text generated during translation) at this stage can not 

be used as the input for the TTS model because the 

information from the reference text has become mutilated 

and lost in the previous translation stages. 

The last component of the model is the TTS: i.e. the 

automatic production of the Yoruba speech from the 

translated texts. We experimented with five state-of-the-art 

TTS models for this exercise and only one model, Meta’s 
Massively Multilingual Speech TTS model supports TTS in the 

Yoruba language. The model however needs some fine-tuning 

to get the pronunciation of the words to a largely acceptable 

level. 

V. FUTURE WORK 

The findings from this work reveal that while there is 

considerable effort in the automatic speech-to-speech 

translation especially for low-resource languages, the task of a 

speech-to-speech translation in the Yoruba language lags 

conspicuously on two fronts: an efficient machine translation 

model and a formidable text-to-speech model for speech 

synthesis. 

Here, we summarize the direction in which we may turn our 

future efforts. 



1) Development of a high-performing Machine 

Translation model for the Yoruba language: While we 

acknowledge the great effort in state-of-the-art models for 

translation to and from Yoruba, we believe that there is still 

room for improvement. The best of the models we examined 

had a word error rate of 30% in short and basic sentences. The 

word error rate would only be significantly worse while using 

such models in translating long sentences. Because we have a 

first-hand understanding of the nuances of the language and 

understand its linguistic and semantic structure, we, 

therefore, intend to develop a Yoruba machine translation 

model that will have better performance and will be publicly 

available. 

2) Curation of more publicly available audio dataset for 

the Yoruba language: Advanced machine translation models 

today are primarily transformer-based models which often 

require a substantial amount of training data. In the course of 

this study, we found three publicly available Yoruba audio 

datasets on the internet. The first, OpenSLR86 a 4-hour-long 

transcribed dataset provided by OpenSLR and Google; the 

second, the Lagos-NWU, a 2 hours 45-minute long audio file 

transcribed provided by North-West University; and the Bibeli 

Mimo (NIV) a 93:38:15 audio file transcribed, provided by 

Biblica Open Bible. Apart from the Bibeli Mimo dataset which 

is fairly long, the other datasets combined provide an 

approximate 7 hours dataset which is significantly small in the 

context of this assignment. The Bibeli Mimo dataset, being a 

religious text however, will be highly constrained and limited 

largely to religious registers. All these underscore the need for 

more audio datasets for training Yoruba TTS systems. 

3) Development of formidable Text to Speech model for 

the Yoruba Language: We believe that for the TTS task, the 

Tacotron2 model can be adopted for generating the Yoruba 

narration of the Google Map Direction translation from English 

to Yoruba. The model was primarily trained on a sample of US 

accents, which will not suit this paper’s target language, 
Yoruba, which cannot contain any foreign accent. The 

Tacotron2 is capable of being trained on a single language, 

however, it is not suitable for use in cross-lingual text-to-

speech systems. Therefore, it is necessary to train a model in 

which the acoustic and language properties are trained 

independently. Thus, the need for a where the acoustic and 

linguistic features are separately trained. To produce a proper 

Yoruba accent that has both acoustic and linguistic features 

intact, a model can be trained adopting the architecture in [5] 

using any of the publicly available Yoruba datasets or a newly 

curated one. 
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