Supplementary Material of “Machine-learning-enhanced automatic
spectral characterization of x-ray pulses from a free-electron laser”

Danilo Enoque Ferreira de Lima* Arman Davtyan, Joakim Laksman, Natalia Gerasimova, Theophilos
Maltezopoulos, Jia Liu, Philipp Schmidt, Thomas Michelat, Tommaso Mazza, Michael Meyer, Jan Griinert,
and Luca Gelisio

European XFEL, Schenefeld, 22869, Germany

SI. SASE3 X-RAY SPECTROMETERS

The grating-based monochromator can operate in spectrometer mode (GS)* by introducing a YAG:Ce crystal in
its focal plane, which converts the x-ray photons into optical luminescence. The resulting image is registered by
a standard CCD camera. This diagnostic monitor is called the exit slit imager, which provides an optical system,
including a fast electronic shutter, that can be applied to select a single pulse from a pulse train?, much like an image
intensifier. The resulting images are used to measure the X-ray spectrum in the focal plane of the monochromator.
We refer to Refs ™ for further details on the GS.

The operation principle of the photo-electron spectrometer (PES) is that atoms in a low density matter target
— typically a very dilute gas — are ionized whereupon photo-electrons are emitted with a kinetic energy that is
related to the photon energy?. Flight-tubes composed of four electrostatic sections with an applied retardation
potential act as dispersive elements where the time is measured from the instant of ionization until electrons reach
a micro-channel plate (MCP) based detector. Instrumental resolution is limited by the fact that retardation takes
place stepwise in each segment, thus higher retardation voltage cannot fully compensate for higher initial kinetic
energy. This implies that lower photo-electron kinetic energy has higher temporal dispersion and consequently
higher spectral resolving power”. Criteria for selecting target gas for a particular photon energy are, in addition
to low photo-electron kinetic energy, also high photo-ionization cross-section® (o) for improved signal to noise ratio
and narrow Lorentzian lifetime broadening” (T'). Flight-tubes are assembled in a plane oriented perpendicular with
respect to the X-ray beam. The angular distribution of the photo-electrons depends on the anisotropy parameter
B for the electronic transition of the target gas®. Available target gases are Ny, Ne, Kr, and Xe.

Data acquisition is performed with digitizer boards (SP Devices ADQ 412-4G) in a yTCA crate. Each board can
be operated acquiring data from all channels with a sampling rate of 2GSs~! (500 ps binning), or optionally two
channels can be bridged (interleaved mode) in order to increase the rate to 4 GSs™! (250 ps binning). We refer to
Ref® for further details on the PES.

Sll. EXPERIMENTAL DETAILS

This section includes information on XFEL characteristics and PES settings for the experimental data used in
the manuscript. In particular, Tab. [S1]lists the data-taking configurations for each dataset used. All the data were
collected in the context of commissioning proposals at Furopean XFEL.

Dataset Dy uses the Ny 1s transition at photon energies around 900 eV with o ~ 0.09 Mb, I' = 0.13eV™, and
B = 2.0. The binding energy is 410 eV. Dataset D; includes data taken using the Xe 3ds/, (with a binding energy
of 689eV, I' = 0.468eV) and 3ds5/, (with a binding energy of 676.4eV, I' = 0.482eV) at photon energies around
1400eV with o ~ 0.6 Mb and 8 = 1.13. The spectral bandwidth in Xe is less than 10eV, and thus the spin-orbit
splitting of 12.6 eV is sufficient to avoid overlap in the time-of-flight spectra. All remaining datasets use the Ne 1s
transition, which has a binding energy of approximately 870eV.

Slll.  EXAMPLE RESULTS

The spectra of the samples highlighted in Fig. 4] of the main text are shown in Fig.
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Undulator Average of pulse PES
Dataset |Cells |Taper Pulse en- | Photon en-|Gas |Pressure |[Retard. pot. |Samp. rate |Channels
ergy ergy
[mJ] [eV] [x1075  |[V] [GSs™']
mbar]
D42 10 Linear 1.3 1001 Ne 1.3 -116 2 12
Dg? Linear 0.6 917 Ne (0.9 -35 2 12
Dd? Linear 2.0 892 Ne 0.2 0 2 12
Dp* 13 Quadratic |4.1 917 Ne 0.3 -36 2 12
Dg? 7 Linear 0.05 917 Ne 9.5 -35 2 12
D#? Linear 2.0 892 Ne |02 0 4 6
Dd” 11 Quadratic | 1.9 917 Ne 0.4 -35 2 12
Dy® 9 Linear 14 895 Ns 1.7 -480 2 12
D Linear 0.2 1391 Xe [5.5 -689 2 12
Dj® Linear 1.7 916 Ne 5 -36 2 12
TABLE S1. Operating conditions for the datasets used in this study. For each row two samples were derived, one that was

used for training of the virtual spectrometer (VS), and another one which was used (under the same operating conditions) for
validating the results during inference. The column “Dataset” shows the dataset identifier used in the paper. The columns
“Cells” and “Taper” show the number of undulator cells used, and the taper configuration, respectively. These parameters
strongly influence the x-ray properties. The average x-ray pulse energy (“Energy”) and photon energy (“Ph, energy”) are also
reported. The remaining columns refer to the PES settings and include the gas used (“Gas”) and its pressure (“Pressure”),
the electric potential used to control the electric field in the PES (“Retard. pot.’), the PES data acquisition rate in units
of a billion samples per second (“Samp. rate”); and the number of PES channels acquired (“Channels”). When operating in
interleaved mode, the sampling rate is twice higher as in normal operation, and only half of the channels are available.
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(a) Measured PES data. (b) VS and smoothened GS data. (c) GS data.

FIG. S1. Test dataset Da. The sample identification number (corresponding to Fig. |4) is given in the right bottom part
of each row. (a) PES time-of-flight measurements. Two of the measured channels (PES sub-detectors) is shown. (b) Virtual
spectrometer output for the same sample. The blue solid line shows the GS measurement smoothened by the VS response
function. The red line shows the mean prediction of the VS considering only the PES data for this train, after training. The
yellow band shows the 68% confidence level uncertainty band around the prediction. (c¢) Original GS data.

SIV. CHOICE OF HYPER-PARAMETERS

The most important free hyper-parameters of the method include those of the automatic relevance determination
(ARD)* fit, and the number of principal components*t. The ARD fit uses expectation maximization to solve the
Bayes’ theorem and determines the weights and uncertainties a posteriori. It relies on the choice of shape and scale
parameters for the Gamma distribution hyper-prior. The choice of hyper-prior parameters has been done following
the criterium for an uninformative priort2, according to which the hyper-prior should provide the least amount
of information possible, to avoid biasing the fit. According to such criteria, the scale and rate parameters of the
Gamma hyper-prior have been set to be as close to zero as possible, to the value of 1076 (a value of exactly zero

would lead to an undefined distribution). In addition, the threshold used to prune weights with large uncertainties
has been set to a precision of 10%.

The number of principal components is chosen after analysing the cumulative variance contained in the compo-
nents, as shown, for example, in Fig.[S2|for dataset D 4. The dashed line shows the point of the cumulative variance
curve corresponding to 90% of the variance. Notice that the curve reaches an asymptotic behaviour and adding
more features does not increase significantly the variance content. As we would like to remove low-variance content,
the threshold at 90% has been chosen to keep most of the variance.

The GS has 1800 measurement points, which, for dataset D4, have been reduced to only 24 components after the
projection into the leading principal components. The region-of-interest selection in the PES provides 600 features
per channel, which are augmented with the pulse intensity. While the PES is capable of performing measurements
in 16 channels in total, only 12 channels have been used in this test (see Tab. . 600 PES principal components

have been kept. The threshold on the PCA variance is chosen such that sufficient data for a stable and fast fit is
provided.
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FIG. S2. Variance contained in each principal component (red) and the cumulative variance contained up until the given
component (blue) for dataset Da. Components are ordered by their corresponding eigenvalues. (a) effect of PCA on PES
data. (b) effect of PCA on GS data. The dashed lines correspond to a 90% cumulative variance.

SV. RESOLUTION ESTIMATION METHOD

This section summarizes the procedure used for the resolution estimation from the spectral data collected at
European XFEL, which often contains many spectral modes. In this analysis we have the advantage of having a
reference spectrum from the GS, which can be used to estimate the effect of the VS with very mild assumptions.

We have several estimates of the photon energy spectrum from GS measurements, y, and from VS, §. It is
assumed that the VS result is a degraded version of the GS measurement, as a result of convolving the GS spectra
with a response function. Mathematically, we model such effect as

y=(h®y)+n, (1)
Y=HY +N,

where ® is the convolution operator, and h is the response function, which encodes the effect of such degradation.
The term n encodes all effects that cannot be modelled in such a manner. The same equation is rewritten in the
second line in terms of the Fourier transforms of ¥ y, h, and n, which are written as Y, Y, H, and N, respectively.

One could calculate H as ?{(N, however we do not have an estimate of the noise level per spectrum. Additionally,

if one ignores the noise term, the estimate of H would include a term inversely proportional to the signal-to-noise
ratio. We avoid this by calculating the cross power spectral density, Syy, defined as E [Y* Y] Namely,

Sys 2E[Y" Y]
—E[Y*HY + Y"N]
—HE[Y'Y]+E[Y*N]|
—HE[Y'Y]
—HS,y.

In this calculation, the assumption has been made that the noise is uncorrelated with §. As a result, one may

estimate h as:
h=r"! {S-VY}
Syy

E [Y* Y}

h=Fr"1! EYY [ (2)



where F~! represents the inverse Fourier transform. To avoid noise and numerical fluctuations, Welch’s method!
is used to estimate the cross-spectral density and spectral density estimates, with a Hamming window size of 400.

This procedure can be done after multiplying the spectra y and § by a Super-Gaussian of degree 2 to emphasize
a given energy range and thereby, produce an estimate of h for different energy regimes. The full-width-at-half-
maximum of h is used as an estimate of the resolution.

It is important to note that the function h may be arbitrarily small. That is, if there is a very low signal-to-noise
ratio, the first term of Eq. [2] may contain a very narrow function h, but with a very small normalization factor, in
which case the noise term, n, dominates. We can use a similar approach as above to estimate the mean signal-to-
noise ratio in ¥, which provides an idea of how many effects cannot be modelled by a resolution model. Namely,
we estimate the signal component, o, and the noise component, ¢,,, using:

1
o =3 Z E[HY 2],

bins

where Npiys is the number of bins, and the equation for the noise level follows from Eq. |Z[ The mean signal-to-noise
level can be estimated as g—i

More information on the methods and statistical definitions can be found in more details in classical signal
processing textbooksi%,

SVI. VALIDATION OF THE RESOLUTION ESTIMATE

Although the shape of the resolution function is not perfectly Gaussian, we have cross-checked the obtained
results, by smearing the original grating spectrometer spectra with a Gaussian of different widths, and comparing
the smeared GS with the VS. The comparison was done by estimating the average root-mean-squared error between
the unit-normalized spectra. If h were indeed Gaussian, the GS and the VS results should have the lowest root-mean-
squared error when the grating spectrometer measurement is smeared by a Gaussian with the correct resolution
width. The result is shown in Fig. [S3] and Fig. [S4 The red dashed line shows the results using the method
described in Sec. [SV] Although the function % is not Gaussian, the minimum of the curve is quite close to the
resolution obtained using the method in Sec. [SV}

SVII. IMPACT OF NOISE ON THE RESOLUTION ESTIMATE

While Sec. [SV] discusses how to estimate the resolution of the VS, there are effects that are not modelled by the
resolution. This could be the non-detection of a peak, due to the large noise content in the PES, as well as any
other effects not captured in the resolution model. For this reason, Sec.[SV]also includes details on the calculation
of a signal-to-noise ratio. Figure [S5] shows the signal-to-noise ratio of the VS result versus the average resolution
for each dataset.

SVIIl. TRADE-OFF BETWEEN NOISE AND RESOLUTION

A low signal-to-noise ratio indicates that there are effects not captured by the resolution model. That is, artefacts
may appear in the PES measurements and propagated to the VS output. One can reduce the impact of such
artefacts, by convolving the grating spectrometer data by a Gaussian, so that effects across a wider range of photon
energy are emphasized. While this undoubtedly reduces the final resolution of the VS, it increases its signal-to-
noise ratio. Fig. [S6] shows the effect of the full-width-at-half-maximum of a Gaussian in both the resolution and
signal-to-noise ratio of different datasets. Scientists may optimize for a signal-to-noise ratio, sacrificing resolution
by tuning the VS accordingly.



x10~4 x10~4
25 5
2.0 4
1.5 3

1.0

Mean RMSE(smeared grating spec., VS)

—— Smearing grating spectrometer

Mean RMSE(smeared grating spec., VS)

un

N

—— Smearing grating spectrometer

----- Estimated ----- Estimated
DA -===- Minimum DB -===- Minimum
0'8.30 0.05 0.10 0.15 020 0.25 030 0.35 0.40 %.0 0.1 0.2 0.3 0.4
SE/E [%] SE/E [%]
x10~4 x1074
3.0 3.5
@ @
> >3.0
;2.5 H
L} o}
aQ aQ
a a
o 2.5
£ £
520 B
c o
o o
° ©2.0
9 9
215 3 \
£ € 4
a 215
w w
g g
< 1.0 o
s 510
[} i}
= =
0.5 —— Smearing grating spectrometer 0.5 —— Smearing grating spectrometer
----- Estimated ----- Estimated
DC -===- Minimum DD -===- Minimum
0'%.0 0.1 0.2 0.3 0.4 0'%.0 0.1 0.2 0.3 0.4
SE/E [%] SE/E [%]
x10~4 x10~4
3.0
4
2 2
: -2.5
1> o
] ja}
o aQ
a a
o3 o
= £20
o o
o o
e e
9 o
© 215
9] 1}
£2 £
) K
w w
] ]
z 210
c c
] o
=1 =
—— Smearing grating spectrometer 0.5 —— Smearing grating spectrometer
----- Estimated ----- Estimated
DE -===- Minimum DF -==== Minimum
%.0 0.1 0.2 0.3 0.4 0'%.0 0.1 0.2 0.3 0.4
6E/E [%] SE/E [%]

FIG. S3. Average root-mean-squared difference between smeared GS output and VS estimate versus the full-width-at-half-
maximum (FWHM) of the smearing Gaussian used in dataset Da — Dr. The red dashed line shows the FWHM obtained
using the method described in Sec. [SV] for comparison.
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FIG. S5. Signal-to-noise ratio of the VS output versus resolution.
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FIG. S6. Effect of pre-smoothing the GS on the VS resolution (a), and the signal-to-noise ratio (b).

SIX. STATISTICAL SIMULATION DETAILS

To better understand the increase of resolution of the VS with respect to the GS, we have generated artificial
datasets under controlled conditions. As such, we define the PES calibration function.

We have simulated spikes in random positions with higher probability in the middle of the energy range, according
to a Normal distribution with standard deviation given by half of the energy range. For each pulse, the number
of spikes is taken from a Poisson distribution with mean 10, and the peak amplitude is sampled from a Gamma
distribution with scale parameter 0.15 and shape parameter 2. The spectra are normalized by the simulated pulse
energy, taken to be samples of a Normal distribution with mean 1.3mJ and standard deviation of 200 pJ. These
spectra are smoothed to produce grating spectrometer observations, by convolving them with a Gaussian corre-
sponding to a resolution of 0.6 eV to simulate the effect of both the FEL bandwidth and the grating spectrometer
resolution. Normally-distributed white noise is added with a standard deviation of 2.

The PES observation is obtained by smearing the grating spectrometer result with a Gaussian of 1.6 eV FWHM.
The resulting spectrum is converted to a time-of-flight observation with true calibration constants set to the same
as the ones obtained for dataset D 4. The final PES samples are scaled by the squared cosine of the PES detector
angle to simulate the polarization effect, scaled to simulate the cross-section and acceptance effects. Additionally,
as the PES estimates photo-electron counts, the simulation of the statistical uncertainty is done by taking a sample
from a Poisson distribution corresponding to the number of detected photo-electrons. Extra Gaussian noise is added
with standard deviation of 1 count to simulate the electronic noise in the PES. Examples of simulated PES and GS
measurements, and the corresponding VS result are shown in Figure [S7}

SX. IMPLEMENTATION WITHIN THE KARABO CONTROL SYSTEM

Fig. shows the easy-to-use and automated graphical interface for both training the model and performing
inference while the experiment progresses, as data arrives. This is implemented within European XFEL’s control
system Karabo®. Notice that Fig. displays two plots and a lamp icon: variations of the input data quality

are estimated and an alarm is triggered if needed (the green lamp becomes red). Fig. shows the resolution and
signal-to-noise ratio estimates.
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FIG. S7. (a) Example of simulated calibrated PES data, and (b) application of the VS to data in (a).

SXI. AVERAGE SPECTRA

Fig. [S9 shows the mean spectra and their root-mean-squared error obtained for each dataset. The mean spectra
corresponds to the sum of all samples collected in a dataset, normalized by number of samples, while the root-mean-
squared error is the root-mean-squared deviation from the mean spectra. Note that the VS has a slightly smaller
root-mean-squared error than the GS, indicating a smaller variation. The root-mean-squared deviation between the
grating spectrometer spectra and either the Virtual Spectrometer result, or the calibrated PES spectra are shown
in Table

Dataset | RMS dev. (GS, PES) (meV/uJ)|RMS dev. (GS, VS) (meV/uJ)
Dy 5.44 0.29
Dp 7.98 0.28
D¢ 30.39 1.34

TABLE S2. Root-mean-squared deviation between the grating spectrometer spectra and either the Virtual Spectrometer or
the calibrated PES for datasets D4, Dp and Dc.

SXIl. REPRODUCTION OF RESULTS

All results shown in this paper may be reproduced using the software package in https://git.xfel.eu/
machineLearning/pes_to_spec/-/tree/1.1.1/ and the data at Ref® and Ref’”. For convenience, they have
been reduced and compressed in Ref®. Specifically, the following notebooks contain the software used to prepare
plots shown in this manuscript:

e https://git.xfel.eu/machinelearning/pes_to_spec/-/blob/1.1.1/notebook/Resolution)20comparison.
ipynb;

e https://git.xfel.eu/machinelearning/pes_to_spec/-/blob/1.1.1/notebook/Toy%20resolution. ipynb;
and

e https://git.xfel.eu/machinelearning/pes_to_spec/-/blob/1.1.1/notebook/Effect’200f%20pre-smoothing.
ipynb.

A demonstration of the software can be seen in the following notebooks.

e https://git.xfel.eu/machinelearning/pes_to_spec/-/blob/1.1.1/demo/Demo.ipynb| shows the train-
ing and inference steps using data available in Ref, which is downloaded for this purpose; and


https://git.xfel.eu/machineLearning/pes_to_spec/-/tree/1.1.1/
https://git.xfel.eu/machineLearning/pes_to_spec/-/tree/1.1.1/
https://git.xfel.eu/machineLearning/pes_to_spec/-/blob/1.1.1/notebook/Resolution%20comparison.ipynb
https://git.xfel.eu/machineLearning/pes_to_spec/-/blob/1.1.1/notebook/Resolution%20comparison.ipynb
https://git.xfel.eu/machineLearning/pes_to_spec/-/blob/1.1.1/notebook/Toy%20resolution.ipynb
https://git.xfel.eu/machineLearning/pes_to_spec/-/blob/1.1.1/notebook/Effect%20of%20pre-smoothing.ipynb
https://git.xfel.eu/machineLearning/pes_to_spec/-/blob/1.1.1/notebook/Effect%20of%20pre-smoothing.ipynb
https://git.xfel.eu/machineLearning/pes_to_spec/-/blob/1.1.1/demo/Demo.ipynb
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FIG. S8. Karabo graphical user interface. (a) Interface used to train the model from previously saved PES, XGM, and
GS data. (b) interface to the VS, which provides the spectra in quasi-real-time using only the parasitic PES and XGM
information. (c) interface available after the fit is performed, which allows the users to inspect the training quality, including
the resolution achievable with the VS, relative to the GS. (d) Pulse-resolved information during inference and a moving-
average representation of the pulse data over a time window.

e https://git.xfel.eu/machinelearning/pes_to_spec/-/blob/1.1.1/demo/Demo%20only%20inference.
ipynb| uses a pre-trained model in https://git.xfel.eu/machineLearning/pes_to_spec/-/blob/1.1.1/
demo/model_demo. joblib|to perform only inference using the small example dataset in https://git.xfel.
eu/machinelLearning/pes_to_spec/-/blob/1.1.1/demo/demo_dataset_A_test.tar.bz2,
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FIG. S9. Mean spectra and their root-mean-squared error of test dataset Da — Dy measured by the grating-based spectrometer
(blue) and estimated through the virtual spectrometer (black). When available, the calibrated output of the photo-electron

spectrometer (green) is also shown.



	Supplementary Material of ``Machine-learning-enhanced automatic spectral characterization of x-ray pulses from a free-electron laser''
	SASE3 x-ray spectrometers
	Experimental details
	Example results
	Choice of hyper-parameters
	Resolution estimation method
	Validation of the resolution estimate
	Impact of noise on the resolution estimate
	Trade-off between noise and resolution
	Statistical simulation details
	Implementation within the Karabo control system
	Average spectra
	Reproduction of results
	References


