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Supplementary Fig. 1. (a) (Upper) Setup for the nanoelectrokinetic sampling method. A glass capillary
with nano-scale pore is carefully placed on the cell membrane by the micro-manipulation system. The tip of
the capillary is filled with a sucrose solution. An electrode connected to the source meter is immersed in the
inner solution of capillary and the other in the medium. The contact between the capillary and the cellular
membrane is monitored by an increase in the electrical resistance. After the contact, a voltage adjusted for
sampling is applied for reversible electroporation. Electroosmotic flow aspirates subcellular biopsies
through the pores into the capillary. (b) Changes in electrical resistance before and after the contact of
capillary onto cellular membrane. (¢-f) gPCR-based measurement of extracted mRNA (n = 5) and count for
survival cells after sampling (n = 10) in various conditions, buffers (c), the applied voltage for
electroporation (d), the magnitude of the voltage for extraction (e), the number of applications (f). (g, h)
Examination of the inner diameter of capillary on the basis of current (g) and voltage (h). Error bars s.d..
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Supplementary Fig. 2. (a) Evaluation of cell cycle score based on Fucci intensity of each
HeLa/Fucci(SA)2 cell. (b) Transitions of Fucci pattern in each cell before sampling and
after 2.5 h. Arrows show the 2.5 h transition. Control cells are nearest neighbors of the
sampled cells in the space of Fucci fluorescence intensity. The colors of arrows indicate
Fucci fluorescence intensities in pre-sampling cells. (¢) Relation between post-sampling
progression of cell cycle and amount of extracted RNA in each cell. Score of cell cycle
progression is the difference of cell cycle scores before and after sampling. P value was
estimated with a two-tailed ¢ test. n=10. (d) Comparation of score of cell cycle progression
between sampled cells and control cells. P value was estimated with a two-tailed ¢ test. n.s.
p-value > 0.05. n=10. (e) Comparation of change in cell area before and after sampling.
P value was estimated with a two-tailed ¢ test. n.s. p-value > 0.05. n=10. (f) Ct values of
housekeeping genes, GAPDH and ACTB, in red fluorescent cells 2.5 h after sampling and
control cells. P value was estimated with a two-tailed 7 test. n.s. p-value > 0.05. n = 5. Error

bars s.d..



1Y

Control cells Sampled cells

Green fluorescence intensity, log

Red fluorescence
intensity, log

b d
[0 = _
—% 0.7 g’ 1.5
= Control <
8 06 cells™\ §§ 1.0
S 05 %~ sampled £38 05
S cells <3
®o41EE % 00
0 25 50 75 0 25 50 75
Time (h) Time (h)
c e
Control cells
40 Sampled cells
‘g e Control ) n.s n.s
=] cells_\ P
= 2,000 *e
©
Q °
% 7,589 \_Sampled
(&} 1,200 ®e cells
0 25 50 75 GAPDH ACTB

Time (h)

Supplementary Fig. 3. (a) Transitions of Fucci pattern in cells during repeated
sampling every 2.5 h four times and control cells. The colors of arrows indicate cell
cycle phase during steps of imaging. (b) Cell cycle scores in cells shown in (a). n = 10.
(¢) Amount of extracted RNA at each time point. n = 10. (d) Time-series of cell area. n
= 10. (e) Ct values of housekeeping genes, GAPDH and ACTB, comparing between
sampled cells and control cells. n = 5. P value was estimated with a two-tailed ¢ test.

n.s. p-value > 0.05. Error bars s.d..
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Supplementary Fig. 4. (a) Temporal changes in total UMI counts and number of detected genes in real
time-series data. (b) Correlation between the gene expression profiles of pseudo bulk created by
accumulating real time-series transcriptome data and that created by accumulating scRNA-seq data.
Pearson’s r = 0.959. (¢) A continuum trajectory of batch collected real time-series transcriptome data and
scRNA-seq data in UMAP space overlaid by expression levels of cell cycle markers. (d) (Left) Corrected
fluorescent signals of each cell paired with scRNA-seq data and live-cell transcriptome data. Batch
correction of fluorescence intensities was performed by histogram matching of both green and red intensities
in two datasets. (Middle) Visualization of sampling fraction for FACS and sampling time in real time-series
data on the trajectory in UMAP space. (Right) Cell-by-cell transitions of transcriptome recorded in real
time-series transcriptome data. Arrows indicate the transition in 2.5 hours sampling interval. (e) Expression
pattern of cell cycle markers in real time-series data shown as solid lines. Doted lines show averages of the
expression level in each sampling fraction of scRNA-seq data arranged from left to right: 1, 2, 3, 4. (f) The
temporal patterns of enrichment scores, based on GO term analysis with real-time series data, are depicted as
solid lines. Dotted lines represent the enrichment scores of each sampling fraction of scRNA-seq data
arranged from left to right: 1, 2, 3, 4. (g) Coefficient of variation vs. mean plots (CV-mean plots) of scRNA-
seq data (Upper left) and real time-series transcriptome data (Lower left). 1 pg bulk RNA control (black);
significantly variable genes than control (red and blue). (Upper right) Venn diagram of significantly variable
genes from the real time-series transcriptome and scRNA-seq data. (Lower right) Overlapped genes in the
Venn diagram on CV-mean plot of real time-series transcriptome data. The dotted line indicates Poisson
noise. Error bars s.d..
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Supplementary Fig. 5. (a) Patterns of cell cycle progression in repeatedly sampled HeLa/Fucci cells and
unsampled cells (control). (Upper) hierarchical clustering showed the major two clusters with the distinct
cell-cycle patterns of control cells indicated by light gray and sampled cells indicated by yellow. Bottom
panel showed temporal changes of Fucci fluorescence signals by each cluster (cluster 1 or 2) and condition
(control or sampled). Fisher's exact test revealed an insignificant p-value of 0.7324 for the comparison of
control vs sampled cells. (b) Correlation between the edge weights in consensus scGRN and GRN inferred
from an ensemble of scRNA-seq. (¢) The consensus scGRN with gene symbols shown in Fig. 1c. (d) Elbow
plot showing rank-ordered genes by Gini index. (e) Comparison of variance of edge weights between
consensus sScGRN and consensus scGRNs predicted from 1pg bulk RNA-seq datasets. The 1pg bulk RNA-
seq dataset comprises five RNA-seq data for every four time points assembled along cell cycle. Edges with
higher variance in scGRNs are shown in red and those with lower variance in gray. The number of edges is
shown in the panel. (f) Patterns of cell cycle progression observed in the cells shown in Fig. 2d over the
subsequent five hours.
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Supplementary Fig. 6. Transcription (a) and degradation (b) rates of cell
cycle related genes estimated from live-cell time-series transcriptome data
(left) and from scEU-seq data (right).!” The area enclosed by the white dot
lines indicate the period during which we performed sampling.
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Supplementary Fig. 7. (a) t-SNE plot displaying data from each timepoint of the live-
cell time-series transcriptome data. Arrows in the lower panel represent transitions of
individual cells in 2.5 h on the t-SNE plot. (b-d) RNA velocity estimated by velocyto
under various parameters is shown by arrows in t-SNE plots. At the bottom left of each
figure, the cosine similarity between the RNA wvelocity evaluated under each

n_neighbors parameter and the real velocity shown in (a) is indicated.
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Supplementary Fig. 8. (a) Procedure for preparation of nematode zygotes for live-
organism sampling. (b) Hatchability rates of wild-type (N2) zygotes following eggshell
removal using bleach solutions of different compositions. (¢) (Top) Comparison of
hatchability among various treatment durations of bleach and chitinase solutions.
(Middle) Hatchability of eggshell removed embryos after repeated samplings. (Bottom)
Relative amount of extracted RNA from zygotes with different treatment durations. (d)
Hatchability and Ct values under various application conditions for RNA extraction. n =
5 for qPCR. Error bars s.d..
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Supplementary Fig. 9. (a, b) Hatchability of freshly excised zygotes, zygotes

with removed eggshells, and repeatedly sampled are presented for wild-type (N2)

(a) and oma-17**"> (b). The hatchability was assessed for 40 embryos per

condition. P values were calculated using a chi-squared test. (¢) Total UMI counts

and the number of detected genes in hatching embryos and mortal embryos are

depicted. (d) CV-mean plot for live-organism transcriptome data. The dotted line

indicates Poisson noise. Genes with two or more average UMI counts were

selected as variable genes and highlighted in red.
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Supplementary Fig. 10. (a) The single-embryo data concatenated horizontally
with each feature. (b) UMAP visualization of the single-embryo data shown in
(a). (c) Cross-validation based on classification analysis was conducted for each
feature type of single-embryo data to determine the prediction accuracy of fate.
(d) The prediction accuracy of fate for each feature type. (e) Correlation between
the prediction accuracy and the area under the curve shown in Fig. 3e. The color
of points indicates feature types. (f,g) Comparison of fate prediction accuracy of
each feature type between original and shuffled single-embryo data.



0.10+ *55 0.751
« o2 1711112111221 1161134
[9) 2% 0504 » 1700000000000 00000
2 573 determinants sg™ ‘; - fzy-1
= 0.051 of fate ec N'=200 0%o o
S 2% 025 52400 00 ° °o =
é@ ';‘% 3 noca-1 LD ¢
0.001, n n i S 0.00 1 o 6001, d h i ;
0 5,000 10,000 15,000 0 300,000 600,000 0.4 0.5 0.6 0.7 0.8
Rank of features Rank of edge weights Threshold of correlation coefficient
within gene correlation network
b
0.7
Correlation coefficient
T
N
<
«Q
=3
=
noca-1 2
T
3
>
D
3
E 3
=
3
[ = fzy-1
u
f ]
=
Ell N O EECECEEEEE LI [ ]
ENEEEE EEEEEEEEE C EEEEEEEEE R[] HOE AN

Determinants in 2-cell stage divergence (A4p p1)

noca-1 gpd-1 kin-18
.@ki"'m @

Supplementary Fig. 11. (a) Elbow plot showing rank-ordered features by Gini index. High-scoring
features are selected as determinants of fate. (b) Correlation matrix showing correlation between zygotic
determinants and determinants of 2-cell stage divergence. (¢) Elbow plot showing rank-ordered
correlations between the determinants by Spearman’s p. (d) The rank of closeness centrality of fzy-/ and
noca-1 in the gene correlation network based on various thresholds of correlation coefficient. In a gene
correlation network with a correlation coefficient threshold set to 0.8, noca-1 had no edges. (e) Protein—
protein association networks consisted of zygotic determinants obtained from STRING database.



