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Short-read sequencing 17 

At NHSGGC, genomic DNA was extracted with the QIAsymphony system (Qiagen, Hilden, 18 

Germany), the libraries were prepared with the Illumina DNA Prep Kit (Illumina) and 19 

sequencing was performed with MiSeq (Illumina). At UKHSA, genomic DNA was extracted 20 

with the QIAsymphony system (Qiagen), the libraries were prepared with the Nextera XT kit 21 

(Illumina) and sequencing was performed with HiSeq 2500 (Illumina). At NIID, genomic 22 

DNA was extracted with the QIAseq FX DNA Library Kit (Qiagen), the libraries were 23 

prepared with the QIAseq FX DNA Library Kit (Qiagen), and sequencing was performed 24 

with MiSeq (Illumina). At UCD, genomic DNA was extracted with the EZ1® DNA Tissue kit 25 
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(Qiagen), the libraries were prepared with the Nextera DNA Flex library prep kit (Illumina), 26 

and sequencing was performed with MiSeq (Illumina). At RKI, genomic DNA was extracted 27 

with the GenElute™ Bacterial Genomic DNA Kit (Sigma-Aldrich, St. Louis, MO, USA) or 28 

by combined thermal and mechanical disruption with acid-washed glass beads (Sigma-29 

Aldrich) in a TissueLyser II bead mill (Qiagen), the libraries were prepared with the Nextera 30 

XT kit (Illumina), and sequencing was performed with MiSeq (Illumina) or NextSeq 500 31 

(Illumina).  32 

 33 
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 35 

Epidemiology of paratyphoid B fever during the first half of the 20th century 36 

From its discovery in France in 1896 until 1903, 69 cases of paratyphoid B fever (PTB) — 37 

mostly sporadic or small-scale outbreaks — were reported in various European countries and 38 

the United States of America (US)1,2. In the United Kingdom (UK), in 1906, it was estimated 39 

that 3% of the 3,000 typhoid fever cases notified each year in London could be PTB cases; in 40 

Germany in 1901 and 1905, this percentage was around 7% (ref.3). Whereas, in the US, no 41 

SPB was isolated among 250 cases of enteric fever (200 of typhoid fever and 50 of 42 

paratyphoid A) in Philadelphia in 1908-1909 (ref.2). Between December 1914 and February 43 

1915, 6.7 % of the ~4,500 enteric fever cases seen at the Military Hospital of Zuydcoote, 44 

France were PTB cases4. A new combined vaccine (TAB) — extending the initial vaccination 45 

against typhoid fever to paratyphoid A and B fevers — was therefore introduced in 1915-46 

1916 for Allied forces5. At the end of the 1930s, PTB became much more prevalent than 47 

typhoid fever in England6. Between 1923 and 1941, the vast majority of the 40 outbreaks of 48 

PTB, involving a total of more than 4,200 cases (from 4 to 883 cases per outbreak), reported 49 

in the UK were due to food contaminated by transient or chronic carriers7. The foods 50 
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contaminated were natural or synthetic cream, unpasteurised milk, ice-cream, bakery products 51 

or confectionery7. One contaminated synthetic cream, in particular, was implicated in seven 52 

outbreaks between 1940 (when the sale of natural cream was forbidden) to 1941 and resulted 53 

in 1,462 cases and at least 10 deaths. After World War II, commercial bakeries in the UK 54 

were through via a new source: contaminated frozen whole egg imported from China8,9. 55 

Contaminated water, either alone or on edible plants, was less frequently implicated than food 56 

items7,10. Interestingly, whereas typhoid fever is restricted to humans, two reports from 57 

Scandinavia (Norway in 1937 and Sweden in 1938) mentioned dogs as sources of SPB- 58 

infections in humans7.  59 

 60 

Validation of the SPB- PG1 diversity dataset 61 

Our serotype prediction approach identified one genome among the 568 genomes of the 62 

diversity dataset that did not correspond to SPB (the 116K strain, see below). Twenty-one 63 

genomes were identified as monophasic SPB (without the fljB gene encoding the H2 antigen 64 

“1,2”), and it was not possible to predict the O antigen for five genomes due to a low read 65 

coverage in the corresponding region (these five genomes had the correct fliC and fljB genes, 66 

encoding, the “b” and “1,2” antigens, respectively, and had been phenotypically serotyped as 67 

SPB at Institut Pasteur) (Supplementary Data 1). The rest of the genomes were inferred to 68 

be SPB. We then ensured that these 568 genomes belonged to PG1, the invasive lineage of 69 

SPB, described by Connor and coworkers11. We therefore used the EnteroBase core-genome 70 

MLST (cgMLST) scheme — based on 3,002 core genes — that had been successfully used to 71 

study the population structure of Salmonella enterica12,13 to confirm that our 568 genomes 72 

belonged to invasive PG1, by establishing a link between cgMLST and PG data. After 73 

curation of the genomes and metadata described by Connor and coworkers11 (see Methods 74 

section “Genomic typing methods”) (Supplementary Data 7), a tree based on the cgMLST 75 
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allelic distance for these genomes made it possible to recognise the 10 known PGs of SPB 76 

(Supplementary Fig. 1a). Following the hierarchical clustering14 of cgMLST data, also 77 

implemented in EnteroBase, all isolates assigned to PG1-PG5 clustered in HC2000_155 and 78 

HC900_155. However, the PG1 isolates could be distinguished from PG2 to PG5 isolates at 79 

the HC400 level (i.e., grouping together genomes with no more than 400 allelic differences). 80 

All the invasive PG1 genomes, and only these genomes, belonged to HC400_1620 81 

(Supplementary Fig. 1b). Furthermore, only the HC400_1620 genomes contained the 82 

specific SNV within STM 3356 described in SPB- strains (ref.15). All 446 genomes from SPB- 83 

isolates and strains contributed by various reference laboratories across the world for this 84 

study, and the 109 previously published genomes belonged to HC400_1620 and contained the 85 

d-Tar- specific SNV (Supplementary Data 1). 86 

 87 

We also used a combination of this HC400_1620 level and the presence of the d-Tar- specific 88 

SNV to search for additional unpublished SPB- genomes in EnteroBase, a very large genomic 89 

database containing >400,000 Salmonella genomes at the time of study. This search captured 90 

12 additional genomes from reference strains (e.g., SARA collection)16 or from isolates 91 

collected locally in regions of the world not well covered by our initial dataset 92 

(Supplementary Data 1). During this search, we unexpectedly found within HC400_1620, a 93 

reference strain (116K) of an extremely rare serotype, Onarimon (antigenic formula: 94 

1,9,12:b:1,2), deposited independently by one of the participating laboratories (Institut 95 

Pasteur). Serotype prediction based on genomic sequence confirmed this serotype and the 96 

d-Tar- specific SNV was present. There were only 28 serotype Onarimon strains reported in 97 

1965 (among the 547,386 strains from diverse sources across the world)17 and this serotype 98 

has been reported to cause paratyphoid fevers18. As in Salmonella spp., serotype antigens can 99 
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be subject to horizontal gene transfer and homologous recombination19, we therefore 100 

considered 116K to be an O antigen-variant of SPB- and we included it in the study.  101 

 102 

For one unpublished genome (ATCC 10719, original name 41-H-6) we were unable to 103 

confirm membership of HC400_1620 because it was a draft genome prepared from 454 104 

sequences and was not, therefore, accepted by EnteroBase (Supplementary Data 1). 105 

However, this genome came from an old SPB strain used to prepare the TAB vaccine of the 106 

US Army in 1940 (ref.20) and it contained the d-Tar- specific SNV. We therefore retained this 107 

genome in the study. 108 

 109 

Using MLST7, Achtman and coworkers19 found that only SPB isolates containing the d-Tar- -110 

specific SNV belonged to ST86 or five single-locus variants (SLVs) of ST86. We used this 111 

same scheme implemented in EnteroBase to analyse the 568 genomes of the diversity dataset.  112 

The vast majority of genomes (96.7%, 549/568) belonged to ST86 (Supplementary Data 1). 113 

However, 17 of these genomes belonged to 13 different SLVs of ST86. These 17 isolates 114 

included the three lineage L1 genomes, all three belonging to ST5113. One genome (13-80) 115 

could not be typed by MLST due to an incomplete purE gene. Finally, one genome 116 

(ERR129867) described by Connor and coworkers11 was a triple-locus variant of ST86 117 

(ST2134). We therefore confirm that even though ST86 is an excellent predictor of SPB-  PG1 118 

isolates, the existence in such isolates of other SLVs of ST86 (such as ST772, ST2340, 119 

ST5113, ST6558, ST7999, ST8505, ST8506, ST8931, ST8932, ST9224, ST10005, ST10013, 120 

and ST10014 and potentially others), a triple-locus variant of ST86 (ST2134), or even the 121 

possibility of non-typability by MLST (Supplementary Data 1) might complicate the use of 122 

MLST7 as a unique tool for identifying SPB-  PG1. Furthermore, the SLVs of ST86 are also 123 

observed in other SPB PGs, such as ST43 in PG3 and PG4, and ST149 in PG5 (ref.11). If 124 
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MLST7 is used, we recommend its use in combination with the detection of the specific 125 

d-Tar- SNV within STM 3356, this SNV being crucial for the formal assignment of non-ST86 126 

genomes to SPB- PG1. 127 

 128 

Genotypes found in non-human SPB- PG1 isolates 129 

Twelve different genotypes were observed for the 14 animal isolates (from six molluscs, two 130 

insects, two dogs, one squirrel, one pig, one bird and one crustacean) and 14 genotypes were 131 

observed for the 42 environmental isolates (mostly from river water). These genotypes were 132 

identical to those found in human isolates collected in the same geographic region. The first 133 

dog isolate (#1190) was obtained from a dog reported sick (diarrhoea and spontaneous 134 

abortion) in the week before the onset of three human cases in a Swedish village in 1938 135 

(refs.21,22). This isolate belonged to genotype 4.  The second dog isolate was collected in 136 

Algeria (North Africa) in 1966 and belonged to genotype 7.3.1_NorthAfrica1. The only two 137 

food isolates studied were isolated in Iraq in 1976 from locally prepared food23 and were of 138 

genotype 9.0, which was mostly isolated in Western Europe. The other four Iraqi isolates, 139 

obtained from humans between 1974 and 1980, belonged to three other genotypes 140 

(10.3.1_SouthAsia1, 10.3.2_MiddleEast1, and 10.3.8.4_MiddleEast4). 141 

 142 

Age of SPB- PG1 143 

Based on our dataset of 568 SPB- PG1 genomes, we estimated the age of this pathogen at 144 

~750 years (1274 CE; 95% CI, 915 – 1583), which is very close to the previous median date 145 

of origin estimated by Connor and coworkers11 (1188 CE; 95% CI, 469 BC – 1799 CE), who 146 

used only 25 SPB- PG1 genomes (i.e., those with a known year of isolation). SPB- is older 147 

than SPA, which is estimated to have originated 450 – 700 years ago24. SPA was discovered 148 

two years after SPB (in the USA in 1898)1,2,25 but is currently the most frequent agent of 149 
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paratyphoid fever26. Due to lineage extinction, in particular, times to the MRCA are often 150 

underestimated and the inclusion of ancient DNA in the analysis would increase precision and 151 

make it possible to establish dates of origin further in the past24. The dating of a representative 152 

collection of modern isolates of SPC estimated the origin of SPC to date back 456 – 664 153 

years. When a draft SPC genome from an 800-year-old Norwegian skeleton was added to the 154 

analysis, the time to the MRCA increased to 1162 – 1526 years2. Unfortunately, no ancient 155 

DNA is currently available for SPB- strains.  156 

 157 

Prophages of SPB- PG1 158 

We facilitated the pan-genome analysis, including the assignment of accessory genes to 159 

clearly delineated prophages (Supplementary Data 8), by also including in our analysis the 160 

complete genomes of 14 isolates from the “diversity dataset” together with 12 (including the 161 

reference genome, CIP 54.115) genomes generated for this study and two publicly available 162 

genomes (P7704 and SARA41_FB_1) (Supplementary Data 1).  163 

 164 

Of the 1,506 accessory genes present in < 95% of the genomes (Supplementary Fig. 7, 165 

Supplementary Data 4), 696 (46.2%), 242 (16.1%), and 28 (1.9%) were found to belong to 166 

prophages, plasmids, and transposases, respectively. The mapping of these accessory genes 167 

onto the core genome phylogeny revealed that an absence of phylogenetic clustering for 168 

plasmid genes, whereas some prophage genes were (sub)lineage-specific (Supplementary 169 

Fig. 8). We then evaluated the occupancy of the 10 prophage insertion sites — identified in 170 

the 14 complete genomes — with short-read assemblies from the entire diversity dataset 171 

(Supplementary Fig. 10). 172 

 173 
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Three (sites #1 to 3) of the 10 sites were occupied by prophages containing the sopE virulence 174 

gene. Only two of the 568 SPB- PG1 genomes (173-73 and 73-67) did not contain sopE. Two 175 

types of sopE prophages, both belonging to the Caudoviricetes class, were identified; the first 176 

was 41,250 bp to 44,615 bp in size and displayed 89.8% to 95.9% nucleotide identity (38% to 177 

55% coverage) to the Salmonella Brunovirus SEN34 (GenBank accession no. NC_028699); 178 

the second was 34,723 bp long and displayed ~98% nucleotide identity (83% coverage) to the 179 

Enterobacterium Xuanwuvirus P88 (GenBank accession no. NC_026014) (Supplementary 180 

Table 2).  181 

 182 

The sopE-containing SEN34-like prophages occupied sites #1 and #2, whereas the P88-like 183 

prophage occupied site #3. This sopE-prophage content was correlated with SPB- phylogeny, 184 

with a sopE-containing SEN34-like prophage inserted at site #1 in lineages L1 to L4 and at 185 

site #2 in lineages L5 to L11 (Fig. 6b). The P88-like prophage was not seen alone but always 186 

in addition to the SEN34-like prophage and its presence was strongly associated with the 187 

Dundee PT (Chi squared test, p < 0.0001) (Supplementary Fig. 10).  188 

 189 

The presence of a particular sopE bacteriophage (FSopE309) was previously used by Prager 190 

and coworkers28 to distinguish the systemic SPB- isolates from the enteric SPB+ isolates. By 191 

contrast, Connor and coworkers11 suggested that the sopE gene was not a suitable marker for 192 

identifying SPB- PG1 isolates because this gene was not present in all of their PG1 isolates 193 

and some of these isolates had a gene homologous to sopE also found in all other SPB PGs. 194 

As FSopE309 was initially isolated from SPB- strain B309 — also included in our study — 195 

we were able to determine that it was actually the Brunovirus SEN34-like prophage. Our in-196 

depth analysis supports the recommendation of Prager and coworkers28 to use sopE as a 197 

marker gene for SPB-, because the sopE-carrying SEN34-like prophage was present in almost 198 
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all the 568 SPB- PG1 isolates from our diversity dataset (including 28 genomes from the study 199 

by Connor and coworkers11). Only two isolates (173-73 and 73-67) were devoid of sopE and 200 

each of the three insertion sites for sopE prophages were empty in these isolates. These two 201 

isolates were collected more than 50 years ago and we cannot therefore rule out the possibility 202 

that the sopE prophage was excised during storage or subculture. Furthermore, according to 203 

their nearest neighbours on the phylogenetic tree, these isolates would have contained only 204 

one sopE prophage. The gene homologous to sopE unexpectedly found in some SPB- PG1 205 

genomes by Connor and coworkers11 is almost certainly sopE2, a chromosomal gene present 206 

in all Salmonella lineages encoding an effector protein, SopE2, 69% identical to SopE (ref.29). 207 

By contrast, the sopE gene, carried by different bacteriophages (lambda-like Gifsy-2, P2-like, 208 

mTmV), was previously found in only some serotypes of Salmonella (e.g., Gallinarum, 209 

Typhi, Dublin, Heidelberg) or some strains of certain serotypes (e.g., epidemic S. enterica  210 

serotype Typhimurium DT204 in the 1970s or the currently dominant monophasic S. enterica  211 

serotype Typhimurium ST34)30,31,32. It has been suggested that the acquisition of sopE by 212 

lysogenic conversion increases the fitness of S . enterica serotype Typhimurium, thereby 213 

contributing to the emergence of epidemic strains33. SopE and SopE2 are G-nucleotide 214 

exchange factors that are translocated into the host cell, where they activate host cellular Rho-215 

GTPases — such as Cdc42 and Rac1 for SopE and Cdc42 alone for SopE2 — which act as 216 

key regulators of diverse activities, such as the expression of pro-inflammatory cytokines and 217 

the organisation of the actin cytoskeleton, ultimately promoting bacterial uptake and even 218 

intracellular replication33,34. In addition to their chromosomal sopE2 gene and their SEN-34-219 

like prophage sopE gene, 17.8% and 7.1% of SPB- PG1 isolates contain one and two 220 

additional copies of sopE (carried by either the SEN-34-like or P88-like prophages), 221 

respectively. Three copies of sopE were observed exclusively in the PT Dundee strain 222 

(genotype 9.1_France) that was epidemic in France after WWII and is still isolated, even now, 223 
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from long-term carriers. Similarly, two copies of sopE were previously described in 224 

S. enterica serotype Heidelberg isolates from a large multistate outbreak linked to turkey meat 225 

in the US35 and three copies were found in a cluster of monophasic S. enterica serotype 226 

Typhimurium ST34 isolates from humans and pigs in the UK32. An increase in sopE copy 227 

number is observed in ~25% of SPB- PG1 isolates, but additional studies are required to 228 

determine the consequences of this increase for the expression of sopE and interaction with 229 

host cells.  230 

 231 

At least three sorts of non-sopE prophages could occupy insertion site “A”. This site is 232 

located right next to the hin-fljB-fljA region, which is involved in the expression of the phase 233 

2 flagellin (“1,2” antigen encoded by fljB) (Supplementary Fig. 11). Prophage rearrangement 234 

at site “A” leading to the loss of the of hin-fljB-fljA region might account for the appearance 235 

of monophasic isolates (i.e., lacking phase 2, with the antigenic formula 4:b:-) in genotypes 4 236 

and 7.3 (Supplementary Data 1). 237 

 238 

Development of a new SNV-based genotyping tool and comparison to cgMLST  239 

Mykrobe checks (i) for the presence of invA to ensure that the genome belongs to the genus 240 

Salmonella, (ii) and then for the presence of the STM 3356 d-Tar-- specific SNV to confirm 241 

that the genome belongs to SPB-, and (iii) finally assigns genomes to genotypes based on 242 

presence of the 38 genotype-specific SNVs. For validation of our scheme, we first analysed 243 

the 568 genomes of our diversity dataset. A concordance of 100% was obtained between the 244 

genotypes assigned by Mykrobe and those initially defined on the basis of both hierBAPS and 245 

visual inspection (Fig.2a,b). The scheme was then used on the surveillance dataset, 246 

containing 336 routinely obtained genomes (111 already present in the diversity dataset and 247 

225 new genomes) originating from public health laboratories in four countries (UK, n = 200; 248 
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France, n = 84; USA, n = 39; Canada, n = 13), with isolation dates between 2014 and 2023 249 

(see Methods section “S. enterica serotype Paratyphi B sequence data collection”) 250 

(Supplementary Data 6). The SNV-based genotyping scheme accurately captured the 251 

population structure as defined by a core-genome phylogeny on the 793 genomes from both 252 

datasets (Supplementary Fig. 8). Three new routinely sequenced genomes, without travel 253 

information, from the US and Canada were assigned to genotype 10.3.8. However, on the 254 

basis of phylogeny, one (PNCS011535) of these genomes was considered to be intermediate 255 

between genomes typed as 10.3.8 and those typed as 10.3.8.4_MiddleEast4, and the other two 256 

(PNUSAS023302 and PNUSAS023173) were grouped together and considered intermediate 257 

between genomes typed as 10.3.8 and those typed as 10.3.8.1_SouthAsia2. If similar isolates 258 

were to be identified in the future, we would perhaps have to refine the definition of genotype 259 

10.3.8 slightly. Only one of the 793 genomes genotyped (44-66) was not called by Mykrobe 260 

due to a missing invA gene. Fourteen other genomes were called correctly by Mykrobe despite 261 

read coverage being too low for the d-Tar SNV region, precluding formal identification of the 262 

d-Tar- SNV. The genotyping tool yields the result “unknown” if the Salmonella specific invA 263 

gene is not detected (for non-Salmonella genomes) or if the d-Tar+ SNV is detected (for non-264 

PG1 Salmonella genomes). However, if there is no call for the d-Tar- SNV marker, this does 265 

not prevent a final genotype call being obtained. Therefore, to avoid the possibility of a non-266 

PG1 Salmonella genome with a low read coverage for the d-Tar SNV region (shown in the 267 

Mykrobe output table under the column “species_depth”) being erroneously assigned to a 268 

PG1 genotype, it is therefore recommended to ensure that all genomes genotyped with this 269 

scheme belong to cgMLST HC400_1620, a robust signature of SPB- PG1. 270 

 271 

With a higher-resolution HC level, such as HC200, it was possible to identify lineages L1 to 272 

L4 (L1, HC200_137805; L2, HC200_17706; L3, HC200_301037; L4, HC200_12575) 273 
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(Supplementary Fig. 12, Supplementary Data 1). However, all other isolates belonging to 274 

Lineages L5 to L11 were assigned to the same HC200 cluster (HC200_1620), with the 275 

exception of three isolates previously found to be outliers in the root-to-tip analysis, which 276 

were each assigned to a unique HC200 cluster. The use of HC100 to HC50 did not permit the 277 

recognition of SPB- population structure as determined by our core-genome SNV-based 278 

phylogenetic analysis and our SNV-based genotyping scheme. For example, the isolates 279 

belonging to the emerging South American genotype 10.3.6 were found in three different 280 

HC50 clusters. The predominant cluster, HC50_1857, was even not specific to 10.3.6 (also 281 

found in isolates of five other genotypes) and the 10.3.6 isolates within HC50_1857, were 282 

further subdivided into 15 different HC20 clusters, making them hard to track by 283 

cgMLST (Supplementary Fig. 12, Supplementary Fig. 13, Supplementary Data 1). The 284 

superiority of SNV-based genotyping over cgMLST for tracking epidemiologically relevant 285 

strains has already been reported for S. sonnei36. 286 

  287 
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Supplementary Table 1. GenBank accession numbers and co-ordinates of the genes studied 288 

to confirm that our isolates were SPB- 289 

 290 

Target Strain Accession no. Coordinates 
rfb_O4 S. enterica serotype Typhimurium str. LT2 NC_000913.3 2160595-2182675 
rfb_O9 S. enterica serotype Enteritidis str. P125109  AM933172.1 2162790-2184501 
fliC_b S. enterica serotype Paratyphi B str. B62 CP147902 1931292-1932779 
fljB_1,2 S. enterica serotype Paratyphi B str. B62 CP147902 1120688-1122208 
d-Tar+ S. enterica serotype Paratyphi B str. NCTC 5706 AY211490.1 1-291* 
d-Tar- S. enterica serotype Paratyphi B str. NCTC 3176 AY211491.1 1-291* 

*single-nucleotide variant (SNV) at position 252 (gene STM 3356): G (d-Tar+) or A (d-Tar-)  291 
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Supplementary Table 2. Comparison of sopE prophages found in the 14 complete SPB- PG1 genomes 
 
 

Isolate Genotype 
Prophage 
insertion 

site 

Prophage 
length 

Prophage 
genus Blastn query * Query name 

Query 
coverage 

(%) 

Nucleotide 
identity (%) 

#hit_genes 
from 

PHASTER 

63-90 1 1 [SopE] 43665 Brunovirus NC_028699.1 Salmonella phage SEN34 53 90.9 36 
B76 2.1 1 [SopE] 43084 Brunovirus NC_028699.1 Salmonella phage SEN34 45 89.8 30 

CIP 54.100 2.1 1 [SopE] 43084 Brunovirus NC_028699.1 Salmonella phage SEN34 45 89.8 30 
CIP A214 4 1 [SopE] 43096 Brunovirus NC_028699.1 Salmonella phage SEN34 45 89.8 30 

B2590 9.1_France 1 [SopE] 43987 Brunovirus NC_028699.1 Salmonella phage SEN34 44 95.9 33 
B2590 9.1_France 2 [SopE] 41250 Brunovirus NC_028699.1 Salmonella phage SEN34 50 93.7 29 

SARA41 7.3.1_NorthAfrica1 2 [SopE] 43291 Brunovirus NC_028699.1 Salmonella phage SEN34 55 91.9 37 
B2227 7.3.2_BAOR 2 [SopE] 44615 Brunovirus NC_028699.1 Salmonella phage SEN34 55 91.9 39 
B624 6 2 [SopE] 41336 Brunovirus NC_028699.1 Salmonella phage SEN34 36 95.9 26 
P7704 10.3.6_SouthAmerica 2 [SopE] 43943 Brunovirus NC_028699.1 Salmonella phage SEN34 38 95.9 31 
B1655 10.3 2 [SopE] 43943 Brunovirus NC_028699.1 Salmonella phage SEN34 38 95.9 31 
B1727 7.3 2 [SopE] 43943 Brunovirus NC_028699.1 Salmonella phage SEN34 38 95.9 31 
B97 7.2_EuropeEasternAsia 2 [SopE] 43943 Brunovirus NC_028699.1 Salmonella phage SEN34 38 95.9 31 
B62 7.2_EuropeEasternAsia 2 [SopE] 43941 Brunovirus NC_028699.1 Salmonella phage SEN34 38 95.9 31 

CIP 54.115 7.3 2 [SopE] 43941 Brunovirus NC_028699.1 Salmonella phage SEN34 38 95.9 30 
B2227 7.3.2_BAOR 3 [SopE] 34723 Xuanwuvirus NC_026014.1 Enterobacteria phage P88 83 97.9 44 
B2590 9.1_France 3 [SopE] 34723 Xuanwuvirus NC_026014.1 Enterobacteria phage P88 83 97.8 44 
B624 6 3 [SopE] 34724 Xuanwuvirus NC_026014.1 Enterobacteria phage P88 83 97.8 44 

* best hit identified by PHASTER         
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Supplementary Figure 1. A NINJA neighbour-joining GrapeTree of 166 SPB genomes 
described by Connor et al.11. a, The tree nodes are colour-coded by phylogroup (PG) (see 
the legend, inset). b, The tree nodes are colour-coded by cgMLST HC400 data (see the 
legend, inset). The presence of the specific SNV found in the STM 3356 gene of SPB- (ref.15) 
is indicated. The scale bars indicate the number of cgMLST allelic differences. The 
interactive version of the tree is publicly available 
from https://enterobase.warwick.ac.uk/ms_tree?tree_id=92077 
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Supplementary Figure 2. Circular maximum likelihood phylogeny of the 568 SPB- PG1 
genomes of the diversity dataset. Same phylogeny as in Fig. 1a, except that for each isolate, 
its name, year of collection, country of origin, and source, are shown at the tips of the tree. 
The lineages are also shown. Red dots indicate bootstrap values >95%.  
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Supplementary Figure 3. Temporal structure of SPB- PG1 genomes. a, Correlation of 
root-to-tip distances with year for all 568 genomes of the diversity dataset in the maximum 
likelihood phylogeny. Red points indicate outlier genomes, which were long branches with a 
distance of >0.03, and blue points represent all other genomes. R2 shows the Pearson 
correlation coefficient. b, Correlation of root-to-tip distances with year after excluding outlier 
genomes shown in panel “a”. c, Date randomisation test for the dated BEAST2 phylogeny. 
The first point indicates the median rate (in substitutions site-1 year-1) estimated by BEAST2 
for the real dates, with bars showing the 95% height posterior density (HPD) interval. 
Subsequent points show the rate estimates from eight independent BEAST2 runs in which 
dates were randomised across the phylogeny. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.01

0.02

0.03

0.04

0.05

800 1200 1600 2000
year

ro
ot

−t
o−

tip
 d

is
ta

nc
e

0.00

0.01

0.02

0.03

0.04

0.05

800 1200 1600 2000
year

ro
ot

−t
o−

tip
 d

is
ta

nc
e

0

5.0x10-8

1.0x10-7

1.5x10-7

real 1 2 3 4 5 6 7 8

su
bs

tit
ut

io
ns

 p
er

 s
ite

 p
er

 y
ea
rR2 = 0.19 R2 = 0.20

a b c



 18 

 
 
Supplementary Figure 4. Timed phylogeny of a representative subsample of 256 SPB-

PG1 genomes. Same phylogeny as in Fig. 2a, except that the name of the isolates is indicated. 
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Supplementary Figure 5. Selected phage-typing data reported for SPB isolates from 
France, UK, Austria, Canada, and Japan. The original data can be found in refs37-41. 
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Supplementary Figure 6. Characteristics of the core- and pan-genomes of SPB- PG1.  
The pan-genome analysis was performed across the 11 SPB- PG1 lineages, with the 
assemblies of the 568 isolates of the diversity dataset. In the left panel, the pan-genome curve 
(dark yellow) shows the number of genes subsequently discovered as more genomes are 
added to the dataset. The rarefaction curve (blue) shows the decay in the number of core 
genes as more genomes are added to the dataset. Both pan-genome and core-genome curves 
were estimated from the panaroo binary matrix with PanGP42 using a totally random sampling 
method and 10 sample repeats. The pie chart (right panel) shows the relative proportions of 
the core (dark blue), soft core (blue), shell (light yellow) and cloud (dark yellow) genes. 
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Supplementary Figure 7. Distribution of the 1,506 accessory genes across the phylogeny 
of SPB- PG1 and their attribution to prophages or plasmids. The pan-genome analysis 
was performed with the assemblies of the 568 isolates from the diversity dataset. The 
phylogeny is similar to that shown in Fig. 2a. 
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Supplementary Figure 8. Maximum likelihood phylogeny for 793 SPB- PG1 isolates. This 
phylogeny includes the 568 isolates of the diversity dataset (not coloured in ring 1) and 225 
additional recent isolates (coloured in red in ring 1). For each isolate, its name, year of 
collection, country of origin, and source, are shown at the tips of the tree. The scale bar indicates 
the number of substitutions per variable site (SNV). The genotypes (see legend) of these 
additional 225 isolates are colour-coded in ring 2. 
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Supplementary Figure 9. Identification of the discrepancies between the predictions of 
sopE copy number and insertion site occupancy at sites #1, #2, and #3. The sopE copy 
number per genome was estimated from short-read mapping onto the B62 genome across the 
11 SPB- PG1 lineages, for the 568 isolates of the diversity dataset. The distribution of sopE 
copy number values according to the number of sopE prophage insertion sites occupied can 
be used to detect potential discrepancies between site occupancy and sopE copy number 
predictions. 
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Supplementary Figure 10. Prophage content at 10 insertion sites (1-3, A, B, B’, C-F) and 
phage types across the 11 lineages of SPB- PG1. Ten prophage insertion sites were 
identified from the comparative analysis of the 14 complete genomes (Supplementary Data 
8). The occupancy of the 10 insertion sites was assessed across the 11 lineages of SPB- PG1, 
for the 568 isolates of the diversity dataset. Prophages at sites #1 to # 3 contain the sopE 
virulence gene. The schematic representation of the consensus chromosome starts at the dnaA 
locus (positions 1..1401). 
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Supplementary Figure 11. Prophage insertion polymorphism in the close vicinity of the 
phase 2 flagellin gene (fljB) of SPB- PG1. a, The hin-fljB-fljA gene cluster encoding the 
phase 2 flagellin was examined in detail in the 14 complete genomes. hin is the flagellar phase 
variation DNA invertase gene; fljB is the phase 2 flagellin gene; fljA is the phase 1 flagellin 
gene (fliC) repressor gene. The hin-fljB-fljA gene cluster is located between the iroB 
(encoding a salmochelin biosynthesis C-glycosyltransferase) and tmRNA-ssrA loci. The 
cluster is deleted in three isolates (B1727, CIP 54.115, CIP A214). The gene arrow maps 
illustrate the six genomic environments detected between iroB and tmRNA-ssrA. b, The 
presence of the hin-fljB-fljA gene cluster and prophage content near the fljB locus were 
determined across the 11 lineages of SPB- PG1, with the 568 isolates of the diversity set. 
Prophages were detected with short-read assemblies and the blastn algorithm. Further details 
are provided in Supplementary Data 8. 
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Supplementary Figure 12. A NINJA neighbour-joining GrapeTree for 567 SPB- PG1 
isolates from the diversity dataset. The tree nodes are colour-coded by lineage, genotype, 
cgMLST HC200, HC100, and HC50 clusters (see legends). The scale bars indicate the 
number of cgMLST allelic differences. The interactive version of the tree is publicly available 
from https://enterobase.warwick.ac.uk/ms_tree?tree_id=92095 
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Supplementary Figure 13. Correlation between cgMLST and genotyping data for the 
tracking of particular strains. Circular plots illustrating the difficulty of using cgMLST 
HC50 (a) or HC20 (b) clustering to identify the most frequently isolated genotype, 
10.3.6_SouthAmerica. The flow bars are coloured according to the genotype. The number of 
isolates for each genotype is also indicated. 
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