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Table S1. IDP systems in test set,  and experimental chemical shifts. Abbreviated forms of long system names are marked in bold.
	System
	
	Chemical Shift

	Sic1
	34.71
	 chemical shifts1

	Aβ 42
	12.42
	 chemical shifts3

	Aβ 40
	124
	 chemical shifts3

	RS1
	12.625
	 chemical shifts6

	Histatin5
	13.87
	N/A

	p15PAF
	28.18
	 chemical shifts8

	FEZ1 monomer
	369
	N/A

	HIV-1 Tat133
	3310
	N/A

	R17
	22.911
	N/A

	PIR domain
	26.512
	N/A

	IB5
	27.913
	N/A

	PaaA2
	22.414
	 chemical shifts14

	ACTR
	2515
	 chemical shifts16

	drkN SH3
	16.717
	 chemical shifts18

	Juxtanodin
	55.919
	N/A

	α Synuclein
	3320
	 chemical shifts21

	β Synuclein
	4922
	N/A

	γ Synuclein
	6122
	N/A

	Tau K18
	3823
	N/A

	Tau K19
	3523
	N/A

	Prothymosin α
	37.824
	N/A

	p53 (1-93) [p53]
	28.725
	 chemical shifts25

	Human NCBD domain [NCBD]
	3326
	N/A

	Human Calpastatin (137-237) [Calpastatin]
	3926
	N/A

	N-term NRG1 type III [NtermNRG1]
	26.827
	N/A

	N-term VS Virus phosphoprotein 
[NtermVS]
	2628
	N/A

	E3 ubiquitin ligase RNF4 (32-82) 
[RNF4]
	25.829
	N/A





Table S2. Performance of all 8 versions of AlphaFlow.
	Methods
	Validity (↑)
	Fidelity

	
	
	
	 (↓)

	AF-PDB-base
	0.97
	
	0.54

	AF-PDB-distilled
	0.91
	
	0.78

	AF-MD-base
	0.94
	
	0.54

	AF-MD-distilled
	0.91
	
	0.66

	ESM-PDB-base
	0.94
	
	0.64

	ESM-PDB-distilled
	0.89
	
	0.77

	ESM-MD-base
	0.96
	
	0.62

	ESM-MD-distilled
	0.90
	
	0.68
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Figure S1. The bond lengths and angles of IDPFold generated conformations.
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Figure S2. The Ramachandran plots of pretrained and fine-tuned IDPFold.
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Figure S3. Differences between generated conformational ensembles and experimental observations. (A) Average Rg errors and their standard deviation on all 27 IDPs. (B) Mean average error on ensemble average  chemical shift on all 10 IDPs.
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Figure S4. Rg distribution of IDPFold generated conformation ensembles (colored) and MD trajectories (black dashed) on 27 IDP systems. Experimental Rg values are plotted as black solid lines.
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Figure S5. Ensemble average  chemical shifts of IDPFold generated conformation ensembles (colored) and MD trajectories (black dashed) on 27 IDP systems. Experimental values are plotted as black solid lines.
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Figure S6. Rg distribution of AF-cluster generated conformation ensembles (colored) on 27 IDP systems. Experimental Rg values are plotted as black solid lines.
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Figure S7. Rg distribution of AlphaFlow (PDB-base) generated conformation ensembles (colored) on 27 IDP systems. Experimental Rg values are plotted as black solid lines.


[image: ]
Figure S8. Rg distribution of idpGAN generated conformation ensembles (colored) on 27 IDP systems. Experimental Rg values are plotted as black solid lines.
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Figure S9. Rg distribution of idpSAM generated conformation ensembles (colored) on 27 IDP systems. Experimental Rg values are plotted as black solid lines.
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Figure S10. Ensemble average  chemical shifts of AF-cluster generated conformation ensembles (colored) on 27 IDP systems. Experimental values are plotted as black solid lines.
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Figure S11. Ensemble average  chemical shifts of AlphaFlow (PDB-base) generated conformation ensembles (colored) on 27 IDP systems. Experimental values are plotted as black solid lines.
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Figure S12. Ensemble average  chemical shifts of idpGAN generated conformation ensembles (colored) on 27 IDP systems. Experimental values are plotted as black solid lines.
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Figure S13. Ensemble average  chemical shifts of idpSAM generated conformation ensembles (colored) on 27 IDP systems. Experimental values are plotted as black solid lines.
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Figure S14. Rg distribution of IDPFold generated conformation ensembles (colored) on 58 IDP systems from IDRome. Experimental Rg values are plotted as black solid lines.
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Figure S15. IDPFold generates a wide range of conformations for allosteric proteins. (A) IDPFold generated conformations mapped on L6-Y71-D38 distance plane. (B) Fine-tuned IDPFold generated conformation compared to X-ray structure (PDB ID: 7f0w). (C) Pretrained IDPFold generated conformation compared to X-ray structure (PDB ID: 4ldj)30.
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