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1 Supplementary Texts24

1.1 Supplementary Text 125

Significance and fluctuations of albedo changes affected by snow26

dynamics. The change in albedo of snow-free areas globally shows a signif-27

icant increasing trend (Fig.1a; Mann–Kendall test; P -value=0.018; Student’s28

t-test in local albedo changes see Fig.S4), typically driven by long-term changes29

in surface properties such as vegetation and water. Our results indicate that30

albedo changes in snow-free region are usually less than 0.1 during the past31

two decades, while albedo often increase by 0.5 after land was covered by snow.32

Moreover, at larger scales, such as 1°x1° grid cells or globally, albedo interan-33

nual fluctuations caused by snow cover change also disrupt the significance of34

the albedo change trends driven by surface properties. During the period 2001-35

2020, global snow cover areas exhibited a significant decreasing trend (Fig.1a36

in the main paper; Mann–Kendall test; P -value = 0.012), and the year 202037

was not an anomalous year for snow cover (the linear regression residuals were38

less than 1.5 times the standard deviation). Furthermore, the GLMA increase39

caused by the albedo change in snow-free regions was two times as large as the40

GLMA decrease (195.3%) caused by snow dynamics during 2001-2020, indi-41

cating that the GLMA change during 2001-2020 may represent the general42

trend in global land surface albedo changes over the past two decades, instead43

of being mainly explained as the fluctuations caused by snow cover change.44

1.2 Supplementary Text 245

Comparisons with previous results. Compared with previous research46

on albedo-induced radiative forcing caused by anthropogenic changes in land47

use [1–4], our findings exhibit agreement. Land-use forcing is defined as those48

changes in land-surface properties directly caused by human activity rather49

than by climate processes (IPCC AR6). Lejeune et al. [4] and Smith et al.50

[3] individually quantified land-use radiative forcing using CMIP5 and CMIP651

models; and their results were -0.11±0.09 W/m2 during 1850-2014 and -0.11 (-52

0.16 to -0.04) W/m2 during 1850-2000. The two studies focused on the changes53

in land use due to shifts in agricultural practices and deforestation leading54

to primary/secondary forest. Ghimire et al. [2] provided a MODIS/AVHRR-55

based radiative forcing of approximately -0.12 W/m2 from 1850, consistent56

with the results of CMIP5 and CMIP6. They established a one-to-many or57

one-to-one mapping between the 6 land-use types in Land-use Harmonization58

(LUH) dataset [5] and the 17 land cover types defined by the International59

Geosphere-Biosphere Plan (IGBP), and reconstructed LULC conversions at60

a 500m resolution. The radiative forcing was estimated by combining the61

reconstructed LULC conversions and an albedo lookup map without albedo62

interannual variations [6]. Based on the above results, IPCC AR6 estimated63

land-use radiative forcing of -0.15±0.1 W/m2 during 1750-2019, excluding the64
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forcing by irrigation at 0.05 W/m2. The radiative forcing decreased on aver-65

age by 0.00073 W/m2/year. We used the Ghimire’s mapping method to group66

the 16 land cover types excluding permanent snow and ice into the 6 LULC67

types in the LUH dataset (Supplementary Table S3). Conversions between the68

6 land-use types from 2001 to 2020 resulted in a radiative forcing of -0.0100469

W/m2, with a reduction of 0.00053 W/m2/year, slightly lower than 0.0007370

W/m2/year given by IPCC.71
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2 Supplementary Figures72
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Supplementary Fig. S1 | Damaged building samples in a Syrian conflict city on
0.5m- and 10m-resolution satellite images, respectively.
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Supplementary Fig. S2 | The framework of our methodology. a, Generation of
ALLUM, and contributions of LULC change to global land surface mean albedo (GLMA)
change and the induced radiative forcing. b, Validations for reconstructing 500m-resolution
blue-sky albedo. c, Contributions of changes in photosynthetic vegetation (PV), non-
photosynthetic vegetation (NPV) and surface water content (SWC) to albedo change over
regions without LULC conversions. The data in pink boxes and yellow boxes separately rep-
resent 500m-resolution pixel-level data and grid-level data.

77

78

79

80

81

82

83



7

ba

dc

84

Supplementary Fig. S3 | Validations of the four-dimensional spatiotemporal
Inverse Distance Weighted (IDW) interpolation. a, White-sky shortwave albedo. b,
Black-sky shortwave albedo. c, White-sky vis albedo. d, Black-sky vis albedo. e, White-sky
near-infrared albedo. f, Black-sky near-infrared albedo.
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89

Supplementary Fig. S4 | Spatial distribution of albedo absolute changes in snow-
free regions between 2001 and 2020 using albedo data in ALLUM. Black dots
indicate bins with average albedo change between two independent temporal windows (2011-
2020 and 2001-2010) that are statistically different from zero (two-sided Student’s t-test;
P-value leq 0.05).
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95

Supplementary Fig. S5 |The albedo changes over different regions. a, The changes
in the north frigid zone (90°N-66°N) and the south frigid zone (66°S-90°S). b, The changes
in the north temperate zone (66°N-23°N), tropical zone (23°N-23°S) and south temperate
zone (23°S-66°S). The shaded areas denote the seasonal variations of albedo changes with
one standard deviation.
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101

Supplementary Fig. S6 | The albedo changes of snow-free regions in the
northern temperate zone (66°N-23°N), tropical zone (23°N-23°S) and southern
temperate zone (23°S-66°S). The shaded areas denote the seasonal variations of albedo
changes with one standard deviation.
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106

Supplementary Fig. S7 | Contributions to the land surface albedo changes from
snow dynamics (a), LULC conversions (b) and albedo change in LULC non-
conversion regions (c) during 2001-2020.
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110

Supplementary Fig. S8 |Albedo-induced radiative forcing due to snow dynamics
(a), LULC conversions (b), and albedo change in LULC non-conversion regions
(c) during 2001-2020.
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Supplementary Fig. S9 | Validations of the PV-NPV-SWC model regression. a,
white-sky shortwave albedo. b, Black-sky shortwave albedo.
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117

Supplementary Fig. S10 | Effects of the changes in photosynthetic vegetation
(a), non-photosynthetic vegetation (b) and surface water content (c) on land
surface albedo in LULC non-conversion regions during 2001-2020.
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121

Supplementary Fig. S11 | Albedo-induced radiative forcing due to changes in
photosynthetic vegetation (a), non-photosynthetic vegetation (b) and surface
water content (c) in LULC non-conversion regions during 2001-2020.
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125

Supplementary Fig. S12 | The contributions of PV, NPV, and SWC to the
monthly global land surface mean albedo change from 2001 to 2020. The albedo
in the regions where the solar zenith angle is larger than 70° is filled with the mean in
other months. Some regions worldwide with high normalized difference vegetation index
(NDVI) cover vegetation such as evergreen forests in winter, which lead to the decrease
of albedo. There is hardly green vegetation in winter in most of the regions, contributing
little to albedo changes. We observe that the contribution is negative in winter. In summer,
vegetation cover decreased in many regions with low NDVI values in the past 20 years, and
the albedo change in these regions is sensitive to the change of NDVI. The decrease of green
vegetation substantially increases albedo, which generally exceeds the decrease of albedo in
regions with high NDVI values, so the contribution is positive in summer.
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137

Supplementary Fig. S13 | The global average NDVI for the year 2020.138
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139

Supplementary Fig. S14 | Contributions of PV, NPV and SWC to GLMA over
the LULC non-conversion regions.
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3 Supplementary Tables142

Supplementary Table S1 | The 16 land cover classes defined by IGBP. We have
excluded Permanent Snow and Ice (15). The classes are from the MODIS/Terra+Aqua
Land Cover Dataset, with class number in parentheses next to the class name [7].

Name Acronym Description

Natural Vegetation
Evergreen Needleleaf Forests (1) ENF Lands dominated by woody vegetation with

a percent cover >60% and height exceeding
2 meters. Almost all trees remain green all
year. Canopy is never without green foliage.

Evergreen Broadleaf Forests (2) EBF Lands dominated by woody vegetation with
a percent cover >60% and height exceeding
2 meters. Almost all trees and shrubs remain
green year-round. Canopy is never without
green foliage.

Deciduous Needleleaf Forests (3) DNF Lands dominated by woody vegetation with
a percent cover >60% and height exceeding
2 meters. Consists of seasonal needleleaf tree
communities with an annual cycle of leaf-on
and leaf-off periods.

Deciduous Broadleaf Forests (4) DBF Lands dominated by woody vegetation with
a percent cover >60% and height exceeding
2 meters. Consists of broadleaf tree commu-
nities with an annual cycle of leaf-on and
leaf-off periods.

Mixed Forests (5) MF Lands dominated by trees with a percent
cover >60% and height exceeding 2 meters.
Consists of tree communities with inter-
spersed mixtures or mosaics of the other four
forest types. None of the forest types exceeds
60% of landscape.

Closed Shrublands (6) CSH Lands with woody vegetation less than 2
meters tall and with shrub canopy cover
>60%. The shrub foliage can be either ever-
green or deciduous.

Open Shrublands (7) OSH Lands with woody vegetation less than 2
meters tall and with shrub canopy cover
between 10-60%. The shrub foliage can be
either evergreen or deciduous.

Woody Savannas (8) WSA Lands with herbaceous and other under-
story systems, and with forest canopy cover
between 30-60%. The forest cover height
exceeds 2 meters.

Savannas (9) SAV Lands with herbaceous and other under-
story systems, and with forest canopy cover
between 10-30%. The forest cover height
exceeds 2 meters.

Grasslands (10) GRA Lands with herbaceous types of cover. Tree
and shrub cover is less than 10%.

Permanent Wetlands (11) WET Lands with a permanent mixture of water and
herbaceous or woody vegetation. The vegeta-
tion can be present in either salt, brackish, or
fresh water.
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Name Acronym Description

Developed and Mosaic Lands
Croplands (12) CRO Lands covered with temporary

crops followed by harvest and a
bare soil period (e.g., single and
multiple cropping systems). Note
that perennial woody crops will be
classified as the appropriate forest
or shrub land cover type.

Urban and Built-up Lands (13) URB Land covered by buildings and
other man-made structures.

Cropland/Natural Vegetation Mosaics (14) CVM Lands with a mosaic of croplands,
forests, shrubland, and grasslands
in which no one component com-
prises more than 60% of the land-
scape.

Non-Vegetated Lands
Barren (16) BSV Lands with exposed soil, sand,

rocks, or snow and never has more
than 10% vegetated cover during
any time of the year.

Water Bodies (17) WAT Oceans, seas, lakes, reservoirs, and
rivers. Can be either fresh or salt-
water bodies.
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Supplementary Table S2 | The methods for calculating the normalized NDVI,
the spectral shape index (SSI) and the normalized multi-band drought index
(NDMI).

Index Methods

NDVI NDV I = band2−band1
band2+band1

SSI

SSI =
slopenir−r−slopeg−b

slopenir−r+slopeg−b

slopenir−r = band2−band1
WLband2+WLband1

slopeg−b = band4−band3
WLband4+WLband3

NDMI NDMI =
band2−(band6−band7)
band2+(band6−band7)

Notes. band1−7 represents the surface reflectance of the corresponding bands for MYD09A1
V6.1. WLband denotes the center wavelength of the corresponding band. The center
wavelengths for bands 1-4 are 645µm, 858µm, 469µm, and 555µm, respectively.
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Supplementary Table S3 | The maping between the IGBP land cover classes
and LUH land cover classes [2]

143

144

LULC types in the LUH dataset LULC types defined by IGBP

Primary lands

Evergreen Needleleaf Forests
Evergreen Broadleaf Forests
Deciduous Needleleaf Forests
Deciduous Broadleaf Forests

Mixed Forests
Barren

Closed Shrublands
Open Shrublands

Pasture Woody Savannas
Secondary lands Savannas

Grasslands
Barren

Water
Permanent Wetlands

Water Bodies

Cropland
Croplands

Cropland/Natural Vegetation Mosaicss

Urban Urban and Built-up Lands

145
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