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1 Supplementary Texts

1.1 Supplementary Text 1

Significance and fluctuations of albedo changes affected by snow
dynamics. The change in albedo of snow-free areas globally shows a signif-
icant increasing trend (Fig.la; Mann—Kendall test; P-value=0.018; Student’s
t-test in local albedo changes see Fig.S4), typically driven by long-term changes
in surface properties such as vegetation and water. Our results indicate that
albedo changes in snow-free region are usually less than 0.1 during the past
two decades, while albedo often increase by 0.5 after land was covered by snow.
Moreover, at larger scales, such as 1°x1° grid cells or globally, albedo interan-
nual fluctuations caused by snow cover change also disrupt the significance of
the albedo change trends driven by surface properties. During the period 2001-
2020, global snow cover areas exhibited a significant decreasing trend (Fig.la
in the main paper; Mann—Kendall test; P-value = 0.012), and the year 2020
was not an anomalous year for snow cover (the linear regression residuals were
less than 1.5 times the standard deviation). Furthermore, the GLMA increase
caused by the albedo change in snow-free regions was two times as large as the
GLMA decrease (195.3%) caused by snow dynamics during 2001-2020, indi-
cating that the GLMA change during 2001-2020 may represent the general
trend in global land surface albedo changes over the past two decades, instead
of being mainly explained as the fluctuations caused by snow cover change.

1.2 Supplementary Text 2

Comparisons with previous results. Compared with previous research
on albedo-induced radiative forcing caused by anthropogenic changes in land
use [1-4], our findings exhibit agreement. Land-use forcing is defined as those
changes in land-surface properties directly caused by human activity rather
than by climate processes (IPCC ARG6). Lejeune et al. [4] and Smith et al.
[3] individually quantified land-use radiative forcing using CMIP5 and CMIP6
models; and their results were -0.114-0.09 W/m? during 1850-2014 and -0.11 (-
0.16 to -0.04) W/m? during 1850-2000. The two studies focused on the changes
in land use due to shifts in agricultural practices and deforestation leading
to primary/secondary forest. Ghimire et al. [2] provided a MODIS/AVHRR-
based radiative forcing of approximately -0.12 W/m? from 1850, consistent
with the results of CMIP5 and CMIP6. They established a one-to-many or
one-to-one mapping between the 6 land-use types in Land-use Harmonization
(LUH) dataset [5] and the 17 land cover types defined by the International
Geosphere-Biosphere Plan (IGBP), and reconstructed LULC conversions at
a 500m resolution. The radiative forcing was estimated by combining the
reconstructed LULC conversions and an albedo lookup map without albedo
interannual variations [6]. Based on the above results, IPCC ARG6 estimated
land-use radiative forcing of -0.154-0.1 W/m? during 1750-2019, excluding the
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forcing by irrigation at 0.05 W/m?. The radiative forcing decreased on aver-
age by 0.00073 W/m? /year. We used the Ghimire’s mapping method to group
the 16 land cover types excluding permanent snow and ice into the 6 LULC
types in the LUH dataset (Supplementary Table S3). Conversions between the
6 land-use types from 2001 to 2020 resulted in a radiative forcing of -0.01004
W/m?2, with a reduction of 0.00053 W/m? /year, slightly lower than 0.00073
W /m? /year given by IPCC.
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ALLUM, and contributions of LULC change to global land surface mean albedo (GLMA)
change and the induced radiative forcing. b, Validations for reconstructing 500m-resolution
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Supplementary Table S1 | The 16 land cover classes defined by IGBP. We have
excluded Permanent Snow and Ice (15). The classes are from the MODIS/Terra+Aqua
Land Cover Dataset, with class number in parentheses next to the class name [7].

Name

Acronym

Description

Natural Vegetation

Evergreen Needleleaf Forests (1)

ENF

Lands dominated by woody vegetation with
a percent cover >60% and height exceeding
2 meters. Almost all trees remain green all
year. Canopy is never without green foliage.

Evergreen Broadleaf Forests (2)

EBF

Lands dominated by woody vegetation with
a percent cover >60% and height exceeding
2 meters. Almost all trees and shrubs remain
green year-round. Canopy is never without
green foliage.

Deciduous Needleleaf Forests (3)

DNF

Lands dominated by woody vegetation with
a percent cover >60% and height exceeding
2 meters. Consists of seasonal needleleaf tree
communities with an annual cycle of leaf-on
and leaf-off periods.

Deciduous Broadleaf Forests (4)

DBF

Lands dominated by woody vegetation with
a percent cover >60% and height exceeding
2 meters. Consists of broadleaf tree commu-
nities with an annual cycle of leaf-on and
leaf-off periods.

Mixed Forests (5)

MF

Lands dominated by trees with a percent
cover >60% and height exceeding 2 meters.
Consists of tree communities with inter-
spersed mixtures or mosaics of the other four
forest types. None of the forest types exceeds
60% of landscape.

Closed Shrublands (6)

CSH

Lands with woody vegetation less than 2
meters tall and with shrub canopy cover
>60%. The shrub foliage can be either ever-
green or deciduous.

Open Shrublands (7)

OSH

Lands with woody vegetation less than 2
meters tall and with shrub canopy cover
between 10-60%. The shrub foliage can be
either evergreen or deciduous.

Woody Savannas (8)

WSA

Lands with herbaceous and other under-
story systems, and with forest canopy cover
between 30-60%. The forest cover height
exceeds 2 meters.

Savannas (9)

SAV

Lands with herbaceous and other under-
story systems, and with forest canopy cover
between 10-30%. The forest cover height
exceeds 2 meters.

Grasslands (10)

GRA

Lands with herbaceous types of cover. Tree
and shrub cover is less than 10%.

Permanent Wetlands (11)

WET

Lands with a permanent mixture of water and
herbaceous or woody vegetation. The vegeta-
tion can be present in either salt, brackish, or
fresh water.




20

Name

Acronym

Description

Developed and Mosaic Lands

Croplands (12)

CRO

Lands covered with temporary
crops followed by harvest and a
bare soil period (e.g., single and
multiple cropping systems). Note
that perennial woody crops will be
classified as the appropriate forest
or shrub land cover type.

Urban and Built-up Lands (13)

URB

Land covered by buildings and
other man-made structures.

Cropland/Natural Vegetation Mosaics (14) CVM

Lands with a mosaic of croplands,
forests, shrubland, and grasslands
in which no one component com-
prises more than 60% of the land-
scape.

Non-Vegetated Lands

Barren (16) BSV Lands with exposed soil, sand,
rocks, or snow and never has more
than 10% vegetated cover during
any time of the year.

Water Bodies (17) WAT Oceans, seas, lakes, reservoirs, and

rivers. Can be either fresh or salt-
water bodies.
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Supplementary Table S2 | The methods for calculating the normalized NDVI,
the spectral shape index (SSI) and the normalized multi-band drought index
(NDMI).

Index Methods
__ band2—bandl
NDVI NDVI = band2+bandl

SST = slopenir—r—slopeg_p
slopenjr—r+slopeg_p

SSI slope, _ band2—bandl
Penir—r = WI,ana2+W Lyandl

band4—band3

slope,_p = o= —2onee
PC9—b = Wpanaat W Loands

NDMI _ band2—(band6—band7)
NDMI = band2+(band6—bandT)

Notes. bandl—T7 represents the surface reflectance of the corresponding bands for MYD09A 1
V6.1. WLpanqg denotes the center wavelength of the corresponding band. The center
wavelengths for bands 1-4 are 645um, 858um, 469um, and 555um, respectively.
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Supplementary Table S3 | The maping between the IGBP land cover classes
and LUH land cover classes [2]

LULC types in the LUH dataset LULC types defined by IGBP

Evergreen Needleleaf Forests
Evergreen Broadleaf Forests
Deciduous Needleleaf Forests
Deciduous Broadleaf Forests
Mixed Forests
Barren

Primary lands

Closed Shrublands
Open Shrublands

Pasture Woody Savannas
Secondary lands Savannas
Grasslands
Barren

Permanent Wetlands

Water Water Bodies

Croplands

Cropland Cropland/Natural Vegetation Mosaicss

Urban Urban and Built-up Lands
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