

¹ **Satellites reveal recent increases in
2 global land surface albedo that moder-
3 ates global warming**

⁴ Zhengyang Hou¹, Liqiang Zhang¹, Jingjing Peng², Giovanni Forzieri³, Aolin
⁵ Jia⁴, Zhiqiang Xiao¹, Ying Qu¹, Jintai Lin⁵, Duoying Ji¹, Zidong Zhu¹, Xin
⁶ Yao¹, Shuwen Peng¹, Lanpu Zhao⁶, Wenjie Fan⁷, Zhaocong Wu⁶, Hao
⁷ Geng¹, Qihao Wang¹, Suhong Liu¹ and Liangpei Zhang⁶

⁸ ¹State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing
⁹ Normal University, Beijing, China.

¹⁰ ²Earth System Science Interdisciplinary Center/ Cooperative Institute for Satellite Earth
¹¹ System Studies (CISESS), University of Maryland, College Park, MD, USA.

¹² ³Department of Civil and Environmental Engineering, University of Florence, Florence,
¹³ Italy.

¹⁴ ⁴Remote Sensing and Natural Resource Modeling, Department ERIN, Luxembourg Institute
¹⁵ of Science and Technology, Belvaux, Luxembourg.

¹⁶ ⁵Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University,
¹⁷ Beijing, China.

¹⁸ ⁶Aerospace Information Research Institute, Henan Academy of Sciences, Beijing, China.

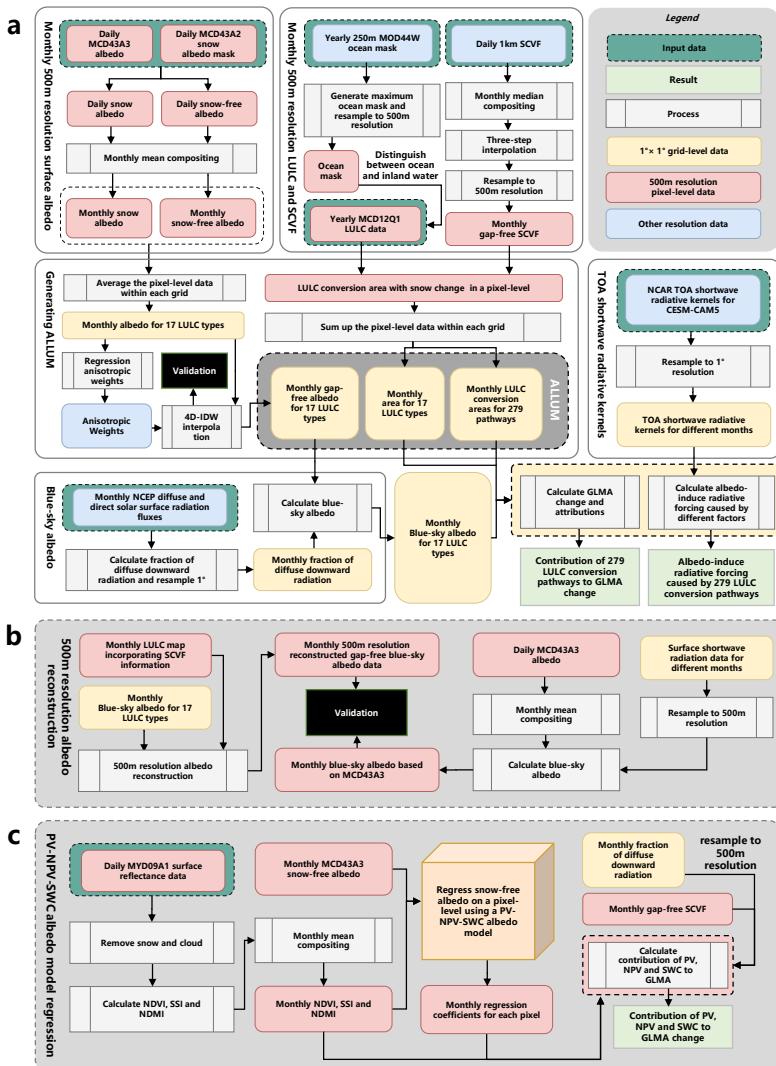
¹⁹ ⁷School of Earth and Space Sciences, Peking University, Beijing, China.

²⁰ **The File Includes:**

- ²¹ **1 Supplementary Texts 1-2**
- ²² **2 Supplementary Figures 1-14**
- ²³ **3 Supplementary Tables 1-3**

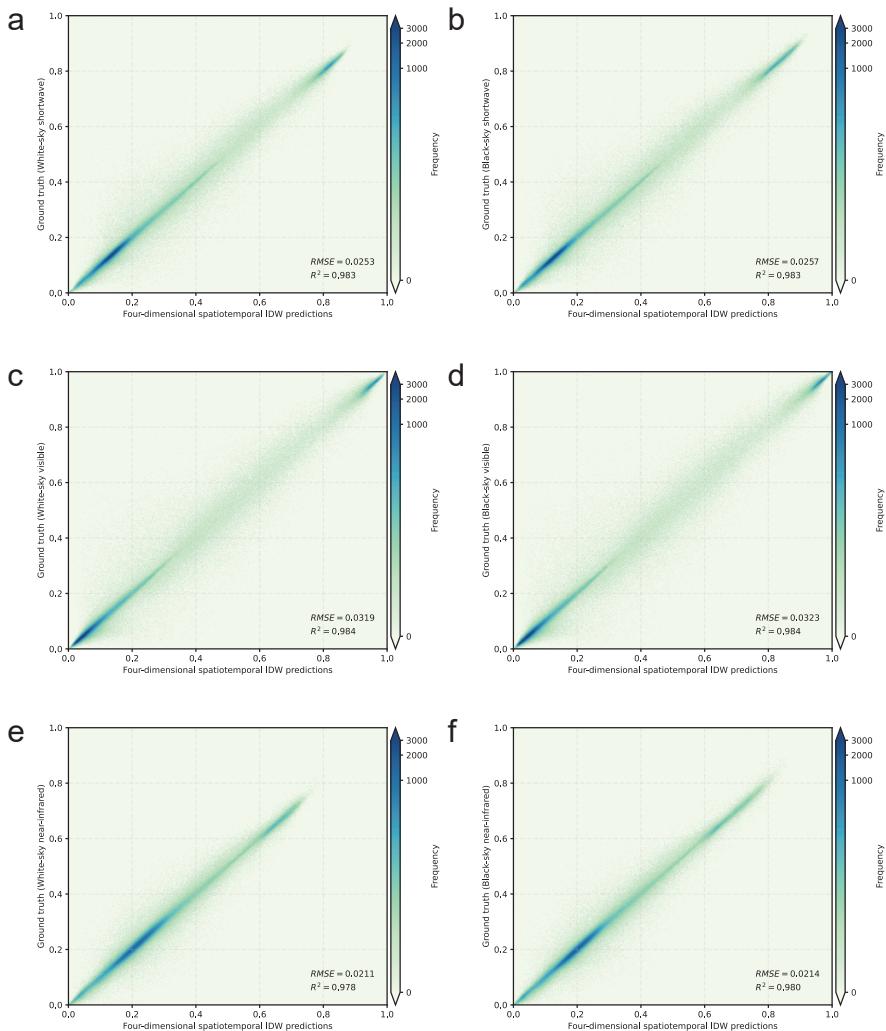
24 1 Supplementary Texts

25 1.1 Supplementary Text 1

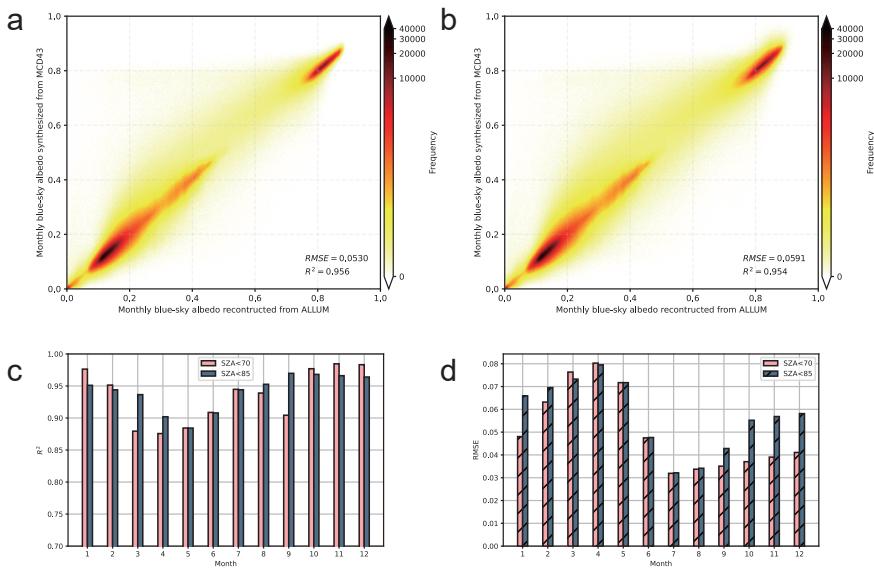

26 **Significance and fluctuations of albedo changes affected by snow**
27 **dynamics.** The change in albedo of snow-free areas globally shows a signif-
28 icant increasing trend (Fig.1a; Mann–Kendall test; P -value=0.018; Student’s
29 t-test in local albedo changes see Fig.S4), typically driven by long-term changes
30 in surface properties such as vegetation and water. Our results indicate that
31 albedo changes in snow-free region are usually less than 0.1 during the past
32 two decades, while albedo often increase by 0.5 after land was covered by snow.
33 Moreover, at larger scales, such as $1^\circ \times 1^\circ$ grid cells or globally, albedo interan-
34 nual fluctuations caused by snow cover change also disrupt the significance of
35 the albedo change trends driven by surface properties. During the period 2001-
36 2020, global snow cover areas exhibited a significant decreasing trend (Fig.1a
37 in the main paper; Mann–Kendall test; P -value = 0.012), and the year 2020
38 was not an anomalous year for snow cover (the linear regression residuals were
39 less than 1.5 times the standard deviation). Furthermore, the GLMA increase
40 caused by the albedo change in snow-free regions was two times as large as the
41 GLMA decrease (195.3%) caused by snow dynamics during 2001-2020, indi-
42 cating that the GLMA change during 2001-2020 may represent the general
43 trend in global land surface albedo changes over the past two decades, instead
44 of being mainly explained as the fluctuations caused by snow cover change.

45 1.2 Supplementary Text 2

46 **Comparisons with previous results.** Compared with previous research
47 on albedo-induced radiative forcing caused by anthropogenic changes in land
48 use [1–4], our findings exhibit agreement. Land-use forcing is defined as those
49 changes in land-surface properties directly caused by human activity rather
50 than by climate processes (IPCC AR6). Lejeune et al. [4] and Smith et al.
51 [3] individually quantified land-use radiative forcing using CMIP5 and CMIP6
52 models; and their results were $-0.11 \pm 0.09 \text{ W/m}^2$ during 1850-2014 and -0.11 ($-$
53 0.16 to -0.04) W/m^2 during 1850-2000. The two studies focused on the changes
54 in land use due to shifts in agricultural practices and deforestation leading
55 to primary/secondary forest. Ghimire et al. [2] provided a MODIS/AVHRR-
56 based radiative forcing of approximately -0.12 W/m^2 from 1850, consistent
57 with the results of CMIP5 and CMIP6. They established a one-to-many or
58 one-to-one mapping between the 6 land-use types in Land-use Harmonization
59 (LUH) dataset [5] and the 17 land cover types defined by the International
60 Geosphere-Biosphere Plan (IGBP), and reconstructed LULC conversions at
61 a 500m resolution. The radiative forcing was estimated by combining the
62 reconstructed LULC conversions and an albedo lookup map without albedo
63 interannual variations [6]. Based on the above results, IPCC AR6 estimated
64 land-use radiative forcing of $-0.15 \pm 0.1 \text{ W/m}^2$ during 1750-2019, excluding the


65 forcing by irrigation at 0.05 W/m^2 . The radiative forcing decreased on aver-
66 age by $0.00073 \text{ W/m}^2/\text{year}$. We used the Ghimire's mapping method to group
67 the 16 land cover types excluding permanent snow and ice into the 6 LULC
68 types in the LUH dataset (Supplementary Table S3). Conversions between the
69 6 land-use types from 2001 to 2020 resulted in a radiative forcing of -0.01004
70 W/m^2 , with a reduction of $0.00053 \text{ W/m}^2/\text{year}$, slightly lower than 0.00073
71 $\text{W/m}^2/\text{year}$ given by IPCC.

72 2 Supplementary Figures

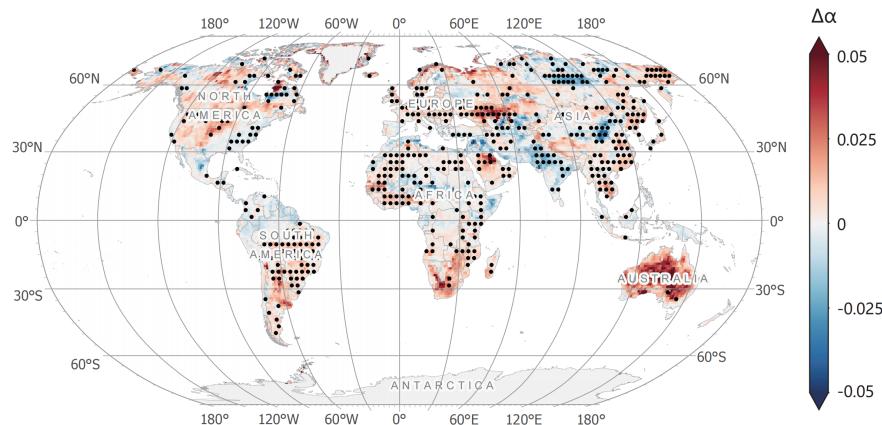

73

74 **Supplementary Fig. S1 | Damaged building samples in a Syrian conflict city on**
 75 **0.5m- and 10m-resolution satellite images, respectively.**

76

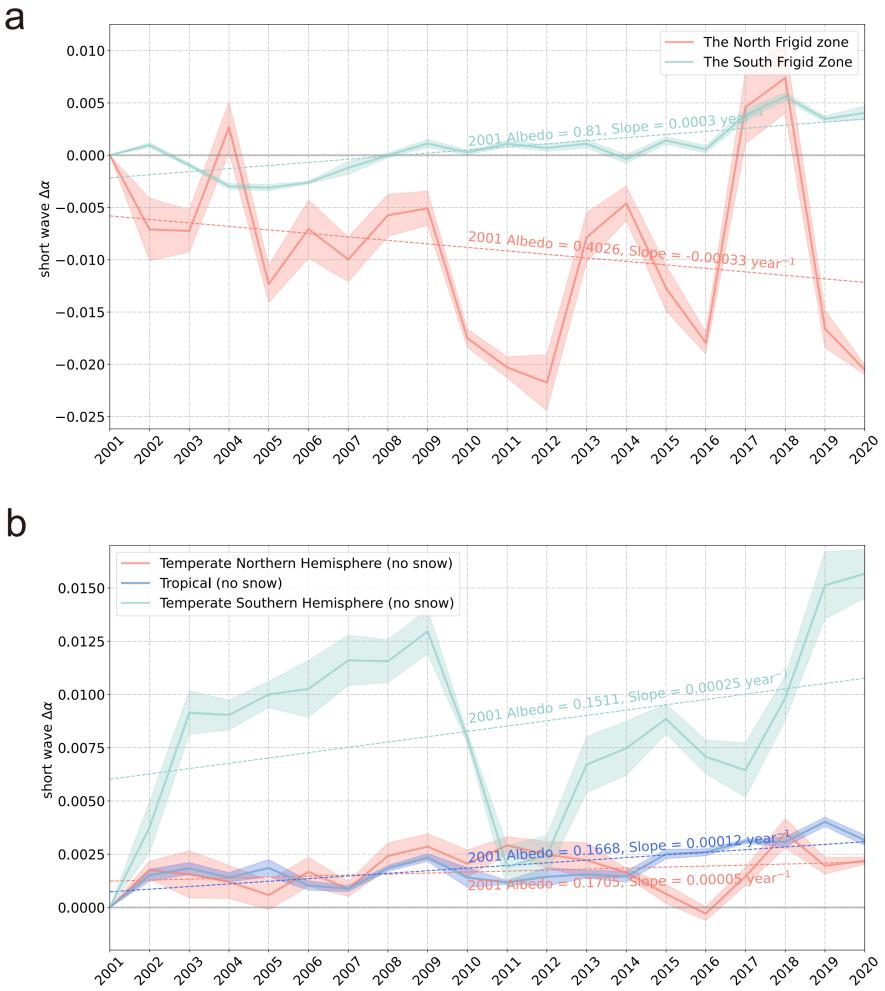
77 **Supplementary Fig. S2 | The framework of our methodology.** **a**, Generation of
 78 ALLUM, and contributions of LULC change to global land surface mean albedo (GLMA)
 79 change and the induced radiative forcing. **b**, Validations for reconstructing 500m-resolution
 80 blue-sky albedo. **c**, Contributions of changes in photosynthetic vegetation (PV), non-
 81 photosynthetic vegetation (NPV) and surface water content (SWC) to albedo change over
 82 regions without LULC conversions. The data in pink boxes and yellow boxes separately rep-
 83 resent 500m-resolution pixel-level data and grid-level data.

84


Supplementary Fig. S3 | Validations of the four-dimensional spatiotemporal Inverse Distance Weighted (IDW) interpolation. **a**, White-sky shortwave albedo. **b**, Black-sky shortwave albedo. **c**, White-sky vis albedo. **d**, Black-sky vis albedo. **e**, White-sky near-infrared albedo. **f**, Black-sky near-infrared albedo.

85

86


87

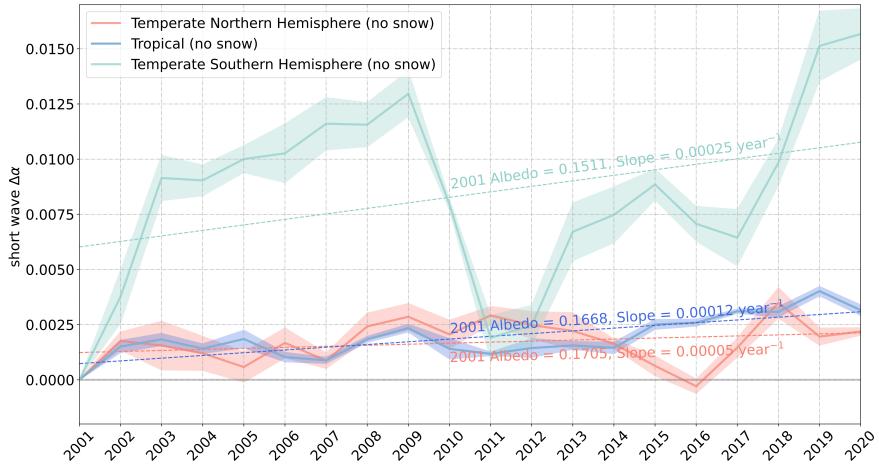
88

89

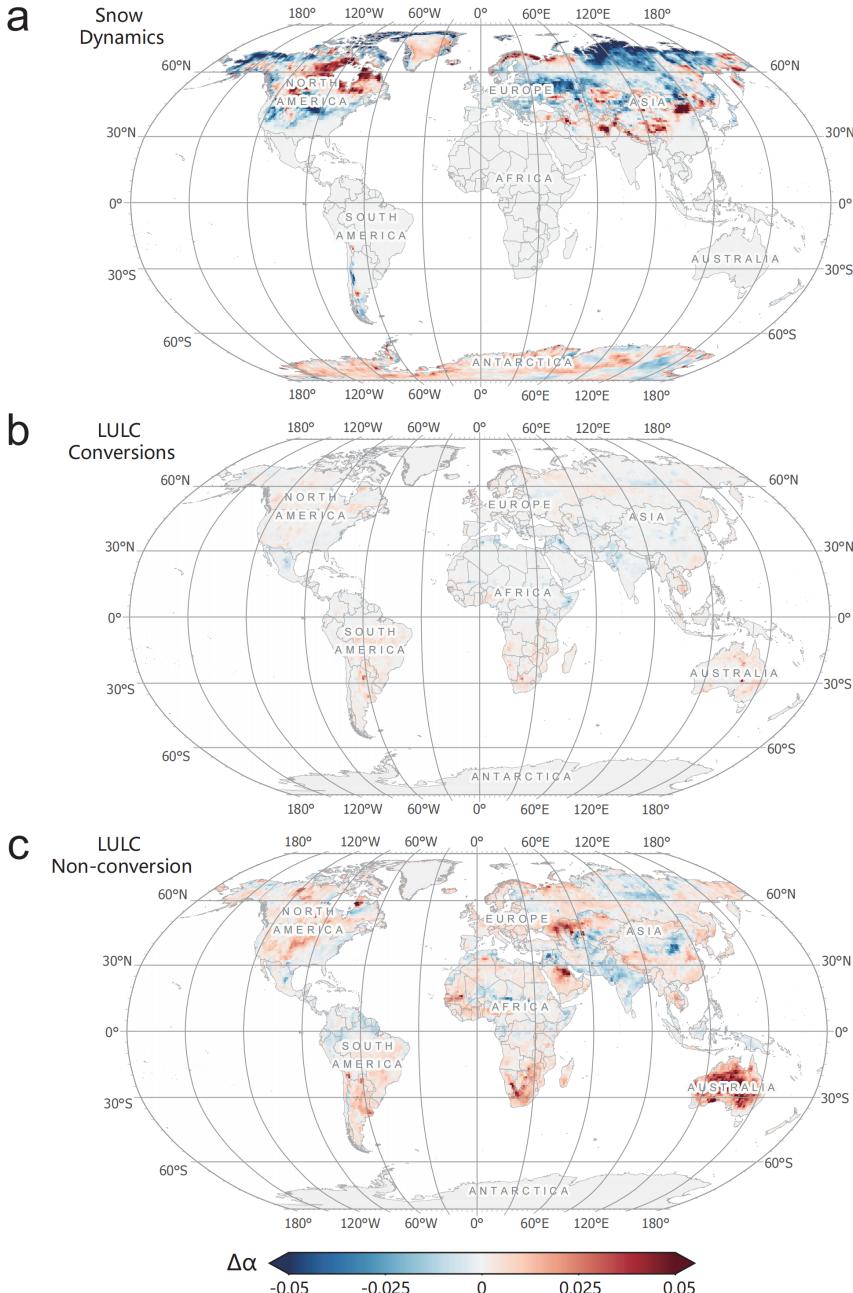
90 **Supplementary Fig. S4 | Spatial distribution of albedo absolute changes in snow-
 91 free regions between 2001 and 2020 using albedo data in ALLUM.** Black dots
 92 indicate bins with average albedo change between two independent temporal windows (2011-
 93 2020 and 2001-2010) that are statistically different from zero (two-sided Student's t-test;
 94 P-value ≤ 0.05).

95

Supplementary Fig. S5 | The albedo changes over different regions. a. The changes in the north frigid zone (90°N - 66°N) and the south frigid zone (66°S - 90°S). **b.** The changes in the north temperate zone (66°N - 23°N), tropical zone (23°N - 23°S) and south temperate zone (23°S - 66°S). The shaded areas denote the seasonal variations of albedo changes with one standard deviation.

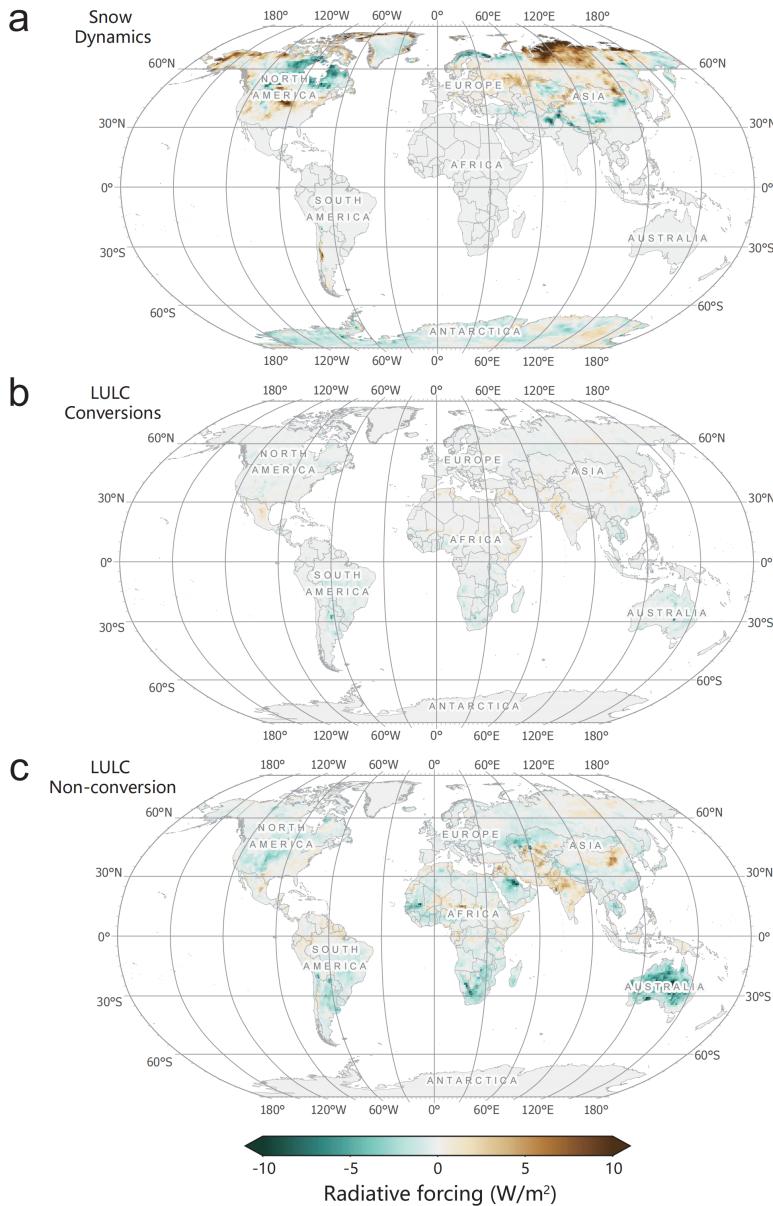

96

97

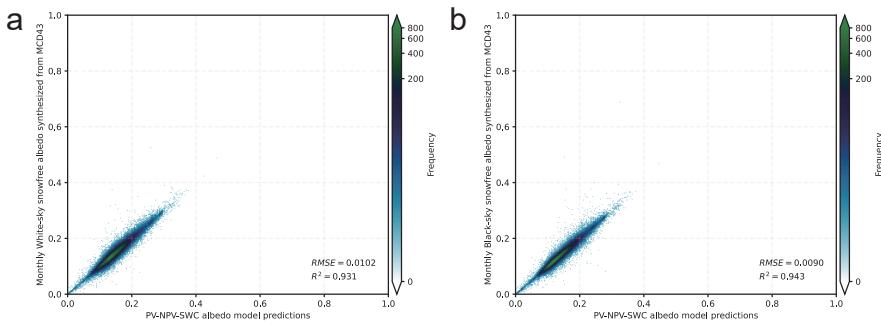

98

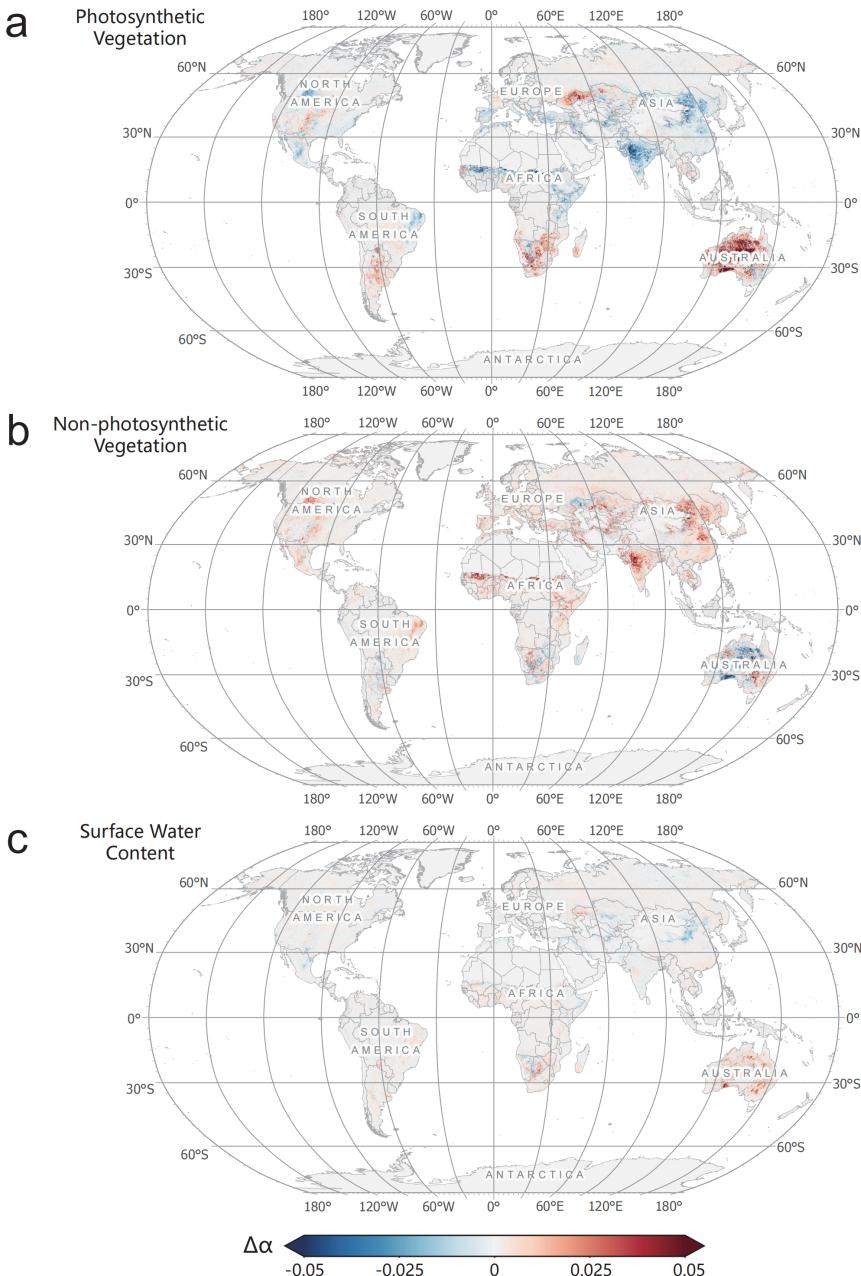
99

100

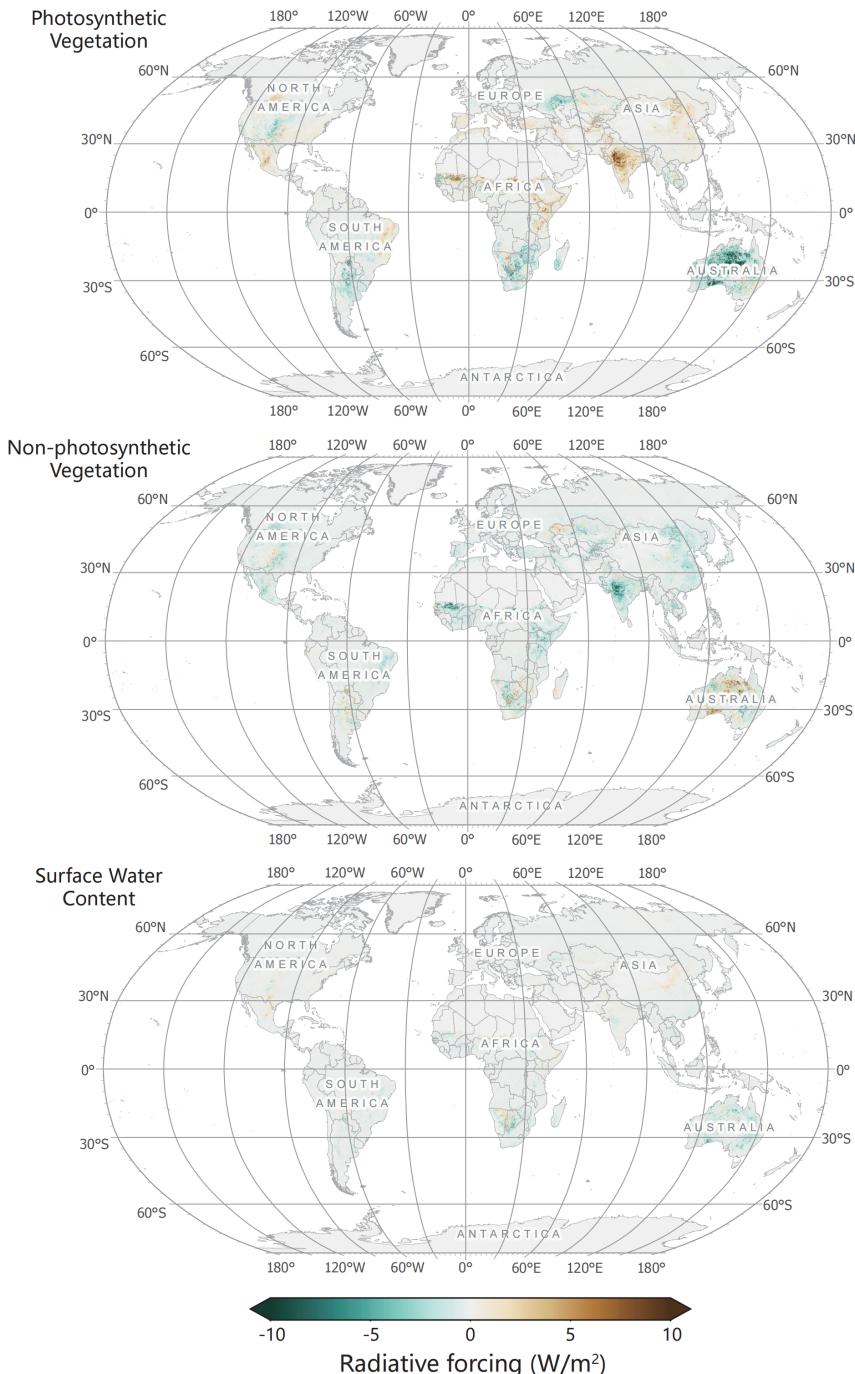


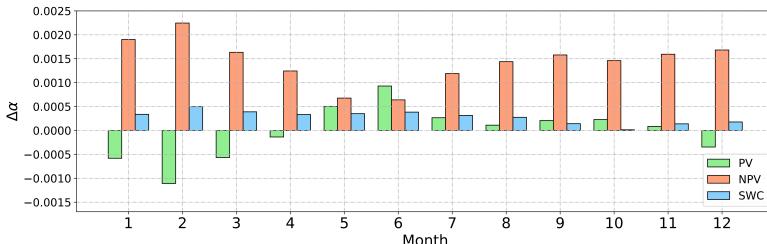
101
102 **Supplementary Fig. S6 | The albedo changes of snow-free regions in the**
103 **northern temperate zone (66°N - 23°N), tropical zone (23°N - 23°S) and southern**
104 **temperate zone (23°S - 66°S).** The shaded areas denote the seasonal variations of albedo
105 **changes with one standard deviation.**


106

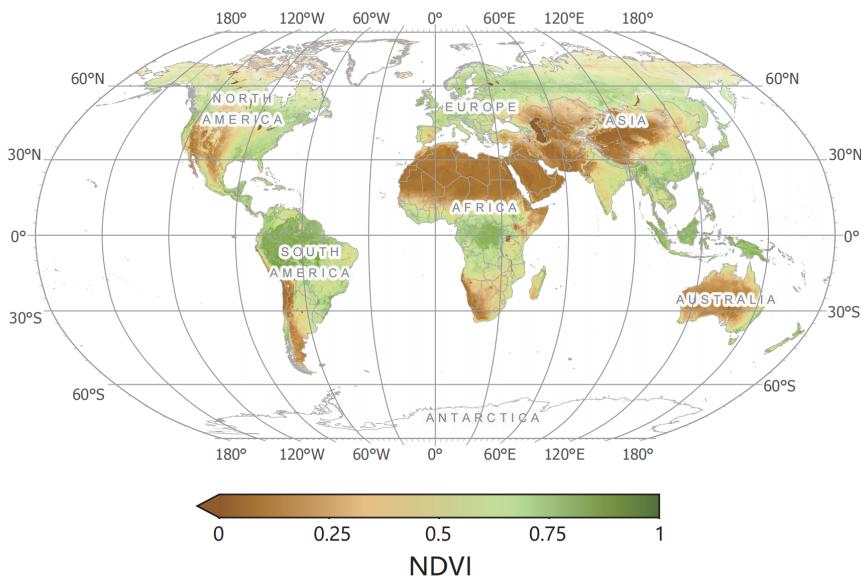

107 **Supplementary Fig. S7 | Contributions to the land surface albedo changes from**
 108 **snow dynamics (a), LULC conversions (b) and albedo change in LULC non-**
 109 **conversion regions (c) during 2001-2020.**

110


111 **Supplementary Fig. S8 |** Albedo-induced radiative forcing due to snow dynamics
 112 (a), LULC conversions (b), and albedo change in LULC non-conversion regions
 113 (c) during 2001-2020.

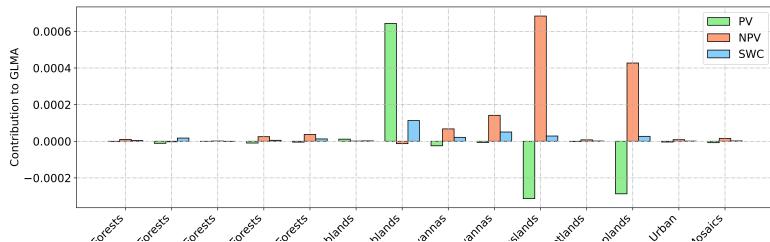

117

118 **Supplementary Fig. S10 | Effects of the changes in photosynthetic vegetation**
 119 **(a), non-photosynthetic vegetation (b) and surface water content (c) on land**
 120 **surface albedo in LULC non-conversion regions during 2001-2020.**



121

122 **Supplementary Fig. S11** | Albedo-induced radiative forcing due to changes in
 123 photosynthetic vegetation (a), non-photosynthetic vegetation (b) and surface
 124 water content (c) in LULC non-conversion regions during 2001-2020.



125 **Supplementary Fig. S12 | The contributions of PV, NPV, and SWC to the**
 126 **monthly global land surface mean albedo change from 2001 to 2020.** The albedo
 127 in the regions where the solar zenith angle is larger than 70° is filled with the mean in
 128 other months. Some regions worldwide with high normalized difference vegetation index
 129 (NDVI) cover vegetation such as evergreen forests in winter, which lead to the decrease
 130 of albedo. There is hardly green vegetation in winter in most of the regions, contributing
 131 little to albedo changes. We observe that the contribution is negative in winter. In summer,
 132 vegetation cover decreased in many regions with low NDVI values in the past 20 years, and
 133 the albedo change in these regions is sensitive to the change of NDVI. The decrease of green
 134 vegetation substantially increases albedo, which generally exceeds the decrease of albedo in
 135 regions with high NDVI values, so the contribution is positive in summer.

137

138 **Supplementary Fig. S13 | The global average NDVI for the year 2020.**

139
140 **Supplementary Fig. S14 | Contributions of PV, NPV and SWC to GLMA over**
141 **the LULC non-conversion regions.**

¹⁴² 3 Supplementary Tables

Supplementary Table S1 | The 16 land cover classes defined by IGBP. We have excluded Permanent Snow and Ice (15). The classes are from the MODIS/Terra+Aqua Land Cover Dataset, with class number in parentheses next to the class name [7].

Name	Acronym	Description
Natural Vegetation		
Evergreen Needleleaf Forests (1)	ENF	Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage.
Evergreen Broadleaf Forests (2)	EBF	Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees and shrubs remain green year-round. Canopy is never without green foliage.
Deciduous Needleleaf Forests (3)	DNF	Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on and leaf-off periods.
Deciduous Broadleaf Forests (4)	DBF	Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.
Mixed Forests (5)	MF	Lands dominated by trees with a percent cover >60% and height exceeding 2 meters. Consists of tree communities with interspersed mixtures or mosaics of the other four forest types. None of the forest types exceeds 60% of landscape.
Closed Shrublands (6)	CSH	Lands with woody vegetation less than 2 meters tall and with shrub canopy cover >60%. The shrub foliage can be either evergreen or deciduous.
Open Shrublands (7)	OSH	Lands with woody vegetation less than 2 meters tall and with shrub canopy cover between 10-60%. The shrub foliage can be either evergreen or deciduous.
Woody Savannas (8)	WSA	Lands with herbaceous and other under-story systems, and with forest canopy cover between 30-60%. The forest cover height exceeds 2 meters.
Savannas (9)	SAV	Lands with herbaceous and other under-story systems, and with forest canopy cover between 10-30%. The forest cover height exceeds 2 meters.
Grasslands (10)	GRA	Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.
Permanent Wetlands (11)	WET	Lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.

Name	Acronym	Description
Developed and Mosaic Lands		
Croplands (12)	CRO	Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
Urban and Built-up Lands (13)		
Urban and Built-up Lands (13)	URB	Land covered by buildings and other man-made structures.
Cropland/Natural Vegetation Mosaics (14)		
Cropland/Natural Vegetation Mosaics (14)	CVM	Lands with a mosaic of croplands, forests, shrubland, and grasslands in which no one component comprises more than 60% of the landscape.
Non-Vegetated Lands		
Barren (16)	BSV	Lands with exposed soil, sand, rocks, or snow and never has more than 10% vegetated cover during any time of the year.
Water Bodies (17)	WAT	Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies.

Supplementary Table S2 | The methods for calculating the normalized NDVI, the spectral shape index (SSI) and the normalized multi-band drought index (NDMI).

Index	Methods
NDVI	$NDVI = \frac{band2 - band1}{band2 + band1}$
SSI	$SSI = \frac{slope_{nir-r} - slope_{g-b}}{slope_{nir-r} + slope_{g-b}}$ $slope_{nir-r} = \frac{band2 - band1}{WL_{band2} + WL_{band1}}$ $slope_{g-b} = \frac{band4 - band3}{WL_{band4} + WL_{band3}}$
NDMI	$NDMI = \frac{band2 - (band6 - band7)}{band2 + (band6 - band7)}$

Notes. $band1-7$ represents the surface reflectance of the corresponding bands for MYD09A1 V6.1. WL_{band} denotes the center wavelength of the corresponding band. The center wavelengths for bands 1-4 are $645\mu m$, $858\mu m$, $469\mu m$, and $555\mu m$, respectively.

¹⁴³ **Supplementary Table S3 | The maping between the IGBP land cover classes**
¹⁴⁴ **and LUH land cover classes [2]**

LULC types in the LUH dataset	LULC types defined by IGBP
Primary lands	Evergreen Needleleaf Forests Evergreen Broadleaf Forests Deciduous Needleleaf Forests Deciduous Broadleaf Forests Mixed Forests Barren
Pasture	Closed Shrublands Open Shrublands Woody Savannas Savannas Grasslands Barren
Secondary lands	
Water	Permanent Wetlands Water Bodies
Cropland	Croplands Cropland/Natural Vegetation Mosaicss
Urban	Urban and Built-up Lands

146 References

147 [1] IPCC, . Masson-Delmotte, V. *et al.* (eds) *Climate change 2021: The phys-*

148 *ical science basis. contribution of working group I to the sixth assessment*

149 *report of the intergovernmental panel on climate change.* (eds Masson-

150 *Delmotte, V. et al.)* (Cambridge University Press, Cambridge, UK and New

151 *York, NY, USA, 2021).*

152 [2] Ghimire, B. *et al.* Global albedo change and radiative cooling from anthro-

153 *genic land cover change, 1700 to 2005 based on MODIS, land use*

154 *harmonization, radiative kernels, and reanalysis* **41** (24), 9087–9096 (2014)

155 .

156 [3] Smith, C. J. *et al.* Effective radiative forcing and adjustments in CMIP6

157 *models* **20** (16), 9591–9618 (2020) .

158 [4] Lejeune, Q. *et al.* Biases in the albedo sensitivity to deforestation in CMIP5

159 *models and their impacts on the associated historical radiative forcing*

160 *11* (4), 1209–1232 (2020) .

161 [5] Hurt, G. C. *et al.* Harmonization of land-use scenarios for the period

162 *1500–2100: 600 years of global gridded annual land-use transitions, wood*

163 *harvest, and resulting secondary lands* **109** (1), 117 (2011) .

164 [6] Feng, G. *et al.* Multiscale climatological albedo look-up maps derived from

165 *moderate resolution imaging spectroradiometer BRDF/albedo products* **8**,

166 *083532 (2014) .*

167 [7] Loveland, T. R. & Belward, A. S. The igbp-dis global 1km land cover

168 *data set, discover: First results. International Journal of Remote Sensing*

169 *18* (15), 3289–3295 (1997) .