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SUPPLEMENTARY MATERIAL

1 Marine turtles information and study workflow

Species IUCN Red List Climate Zone Distribution
Natator depressus Data Deficient Tropical Indo-West Pacific
Dermochelys Vulnerable Tropical Circumglobal
coriacea
Caretta caretta Vulnerable Tropical Circumglobal
Lepidochelys Vulnerable Tropical Indo-Pacific and Atlantic
olivacea Ocean
Chelonia mydas Endangered Tropical Circumglobal
Lepidochelys Critically Endangered Tropical Atlantic Ocean and
kempii Mediterranean
Eretmochelys Critically Endangered Tropical Circumglobal
imbricata

Table S1. Marine turtle species information from TUCN Red List and SeaLifeBase, including IUCN Red List status, climate
zone, and distribution.



Species DOI

Natator depressus https://doi.org/10.15468/dl.wbweak
Dermochelys coriacea  https://doi.org/10.15468/dl.4ub6fn
Caretta caretta https://doi.org/10.15468/d1.bvgx97
Lepidochelys olivacea https://doi.org/10.15468/dl.bmhp5d
Chelonia mydas https://doi.org/10.15468/dl.e3757n

Lepidochelys kempii https://doi.org/10.15468/d1.5gzu4c
Eretmochelys imbricata  https://doi.org/10.15468/d1.8uw52a

Table S2. Digital Object Identifier (DOI) from GBIF for each marine turtle species.
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Figure S1. Study workflow: 1) represents the workflow follow for the marine turtles case of study and 2) represents the simulation study.
Orange color refers to the modelling process, blue color refers to prediction and red color refers to validation. Green arrows represent the
inputs use in the modelling and purple arrows represent the model and prediction outputs.
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2 Species predictions

For the species spatio-temporal predictions, we have two different outputs. Figures 1, 2 and 3 refer to the spatial current
predictions (native ranges and suitable habitats) done in this work for 5 species (1950-2014). While Figures 3, 4, and 5 refer to
the suitable habitats obtain for those 5 species using future projections of environmental variables (2015-2100).
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Figure S2. Maps depict the probability of presence for two species from 1950 to 2014, Caretta caretta and Lepidochelys olivacea. The
first and second columns illustrate the native ranges (current distribution), while the third and fourth columns portray the suitable or potential
habitats. The first and third rows correspond to the results for the GFDL-ESM4 model, while the second and fourth rows depict the results of
IPSL-CM6ALR. We are presenting the mean posterior predictive distribution for both species, accompanied by uncertainty represented as the
subtraction of quantiles 0.025 and 0.975.

3/11



Native range Suitable habitat

Uncertainty Uncertainty

[9)
° m
[} g
E [
g 2 9
>0
| Eg
5)
3.
Q
3
S
3
e &
O
=
>
2
Py
®
m
g
U
5 3
£ a
o
(o]
>0
@
<
(/2]
58
il 1=
O T
§=:
>
2
Pl

Probabilty
0.00 0.25 0.50 0.75 1.00

Figure S3. Maps depict the probability of presence for two species from 1950 to 2014, Chelonia mydas and Lepidochelys kempii. The first
and second columns illustrate the native ranges (current distribution), while the third and fourth columns portray the suitable or potential
habitats. The first and third rows correspond to the results for the GFDL-ESM4 model, while the second and fourth rows depict the results of
IPSL-CM6ALR. We are presenting the mean posterior predictive distribution for both species, accompanied by uncertainty represented as the
subtraction of quantiles 0.025 and 0.975.
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Figure S4. Maps depict the probability of presence for one species from 1950 to 2014 of Eretmochelys imbricata. The first and second
columns and rows illustrate the native ranges, while the third and fourth columns and the first and second rows portray the suitable or
potential habitats. We are presenting the mean posterior predictive distribution, accompanied by uncertainty represented as the subtraction of
quantiles 0.025 and 0.975. Rows thrid and fourth represent the maps with the mean probability of presence from 2089 to 2099, along with the
difference between the historical suitable habitat and the projections for the last 10 years (2089-2099).
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Figure S5. Maps representing the mean probability of presence from 2089 to 2099 for Caretta caretta and Lepidochelys olivacea, along
with the difference between the historical suitable habitat and the projections for the last 10 years (2089-2099). We have calculated the
difference for both climate change scenarios, ssp126 and ssp585, and also for both Earth System Models (GFDL-ESM4 and
IPSL-CM6A-LR).
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Figure S6. Maps representing the mean probability of presence from 2089 to 2099 for Chelonia mydas and Lepidochelys kempii, along
with the difference between the historical suitable habitat and the projections for the last 10 years (2089-2099). We have calculated the
difference for both climate change scenarios, ssp126 and ssp585, and also for both Earth System Models (GFDL-ESM4 and
IPSL-CM6A-LR).
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Figure S7. Results for the species Caretta caretta and Lepidochelys olivacea. The first column represents the contributions of all the
variables to the model for both ESMs. We also provide the additive relation for the variables that have contributed the most to the model.
These additive relations represent the probability of being present at some point along the x-axis.
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Figure S8. Results for the species Chelonia mydas and Lepidochelys kempii. The first column represents the contributions of all the
variables to the model for both ESMs. We also provide the additive relation for the variables that have contributed the most to the model.

These additive relations represent the probability of being present at some point along the x-axis.
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Figure S9. Results for the species Eretmochelys imbricata. The first column represents the contributions of all the variables to the model
for both ESMs. We also provide the additive relation for the variables that have contributed the most to the model. These additive relations
represent the probability of being present at some point along the x-axis.
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3 Error measures

In this section, we present all the measures used in our study to compare the estimations of different regression models with
respect to the simulated biomass of a fish stock.

Specificity:
TN
SPC = —-,
N
where SPC is the specificity or selectivity, TN are the true negatives, and N are the total negatives.

Sensitivity
TP
SEN = —,
P

where SEN is the sensitivity or probability of detection, TP are the true positives, and T are the total positives.

Accuracy:

Acc = [PHIN
P+N

where ACC is the accuracy and the remain terms are those specify in the previous equations.

F; score
2xTP

2XxTP+FP+FN’
where F P are false positives, FN are false negatives, and the remaining terms are those specified in the previous equations.

Fy score =
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