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Abstract:

Spiking neural network, consisting of spiking neurons and plastic synapses, is a
promising but relatively underdeveloped neural network for neuromorphic computing.
Inspired by the human brain, it provides a unique solution for highly efficient data
processing. Recently, memristor-based neurons and synapses are becoming intriguing
candidates to build spiking neural networks in hardware, owing to the close resemblance
between their device dynamics and the biological counterparts. However, the
functionalities of memristor-based neurons are currently very limited, and a hardware
demonstration of fully memristor-based spiking neural networks supporting in situ
learning is very challenging. Here, a hybrid spiking neuron by combining the memristor
with simple digital circuits is designed and implemented in hardware to enhance the
neuron functions. The hybrid neuron with memristive dynamics not only realizes the
basic leaky integrate-and-fire neuron function but also enables the in situ tuning of the
connected synaptic weights. Finally, a fully hardware spiking neural network with the
hybrid neurons and memristive synapses is experimentally demonstrated for the first time,
with which in situ Hebbian learning is achieved. This work opens up a way towards the
implementation of spiking neurons, supporting in situ learning for future neuromorphic

computing systems.
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Introduction

Inspired by the human brain, the spiking neural networks (SNNs) encode timing signals
into the computing process, where the spike-based temporal processing allows sparse and
efficient information transfer, conversion, and storagel’z. Building an SNN system in
hardware is promising and attractive for performing edge tasks with great efficiency in
the big-data era’. Lately, significant efforts with impressive progress have been made
towards the implementation of SNN chips based on CMOS (complementary metal-oxide-
semiconductor) technology, such as TrueNorth from IBM*, Loihi from Intel’, and Tianjic
from Tsinghua University®, et al. Nevertheless, due to the lack of similarities between
CMOS devices and biological components at physical mechanism level, the CMOS
devices without the intrinsic neuronal dynamics can only simulate rather than faithfully
emulate neurons functions. Even the simplest simulation of neuron functions would

t7—9

require such silicon neurons to have a fairly complex circuit’”, which further grows

quickly with more fidelity and functionalities'®!!. Therefore, compared to the biological
neurons, these bulky neuron circuits are less area or energy efficiency, which will limit its
edge applications due to energy constraints as well as its cloud application due to the
limited number of neurons that can be integrated on chips.

To achieve the area and energy efficiency comparable to the neurons in the human

brain, nanoscale emerging memristive devices, such as ion-based threshold switching (TS)

16-20 21-23

devices'*!>, Mott-transition devices!®?, resistive switching (RS) memory*'**, phase-

24,25 26-28

change memory?*%>, magnetic memory?®2®, and ferroelectric memory?*2, have recently

124

been demonstrated to emulate spiking neurons. For example, Tuma et al** used a single

phase-change device to realize an integrate-and-fire neuron function with stochastic



dynamics and the detection of temporal correlations. Subsequently, the same group
further combined this neuron with phase-change synapses and demonstrated the detection
of multiple temporal correlations through using level-tuned neuronal characteristics®.
Wang et al'? used the dynamic migration of Ag in a host dielectric material to emulate the
stochastic leaky integrate-and-fire (LIF) process in neurons and demonstrate a fully
memristive SNN system with unsupervised learning. Attributing to the intrinsic dynamics
in a single memristive device, neurons in these works are more energy and area efficient
than CMOS-based ones. However, these memristor-based neurons focus on the emulation
of single neuron’s functionalities, without considering the actual requirements for system
realization in hardware. Thus, the functional diversity (such as generating in sifu learning
and lateral inhibition signals) of these neurons remains to be demonstrated, the stability
(such as firing under continuous stimuli inputs) needs great improvement, and the fully
hardware system-level demonstration is primitive.

Here, we design a hybrid memristor-CMOS leaky integrate-and-fire (LIF) spiking
neuron to enhance the fidelity and functionality of memristor-based neurons. In this
neuron circuit, a single TS memristor serves as the dynamic integrator of the post-
neurons to collect input signals from the pre-neurons and determines whether to fire or
not. Simple digital circuits detect the fire event and output reproducible spike signals, as
well as ensuring the stable firing of the memristor under pulse train inputs by supplying a
refractory period (RP) signal. In the hybrid neuron, the TS memristor provides the
dynamics for neuromorphic functions, and transistors supply the signal amplification to
enable larger and multilayer networks. For performing in sifu learning operations on

memristive synapses, potentiation, depression, and lateral inhibition signals are



introduced into the neuron successfully, and a lateral inhibition array (LIA) is specifically
designed. Using the hybrid neurons and LIA, we further experimentally demonstrate a 30
x 10 x10 fully hardware multilayer SNN (MSNN) with RS synapses. In this MSNN, the
training processes are in sifu, 10 hidden neurons perform feature extraction with the LIA
in the first layer, and 10 output neurons serve for further recognition in the second layer.
The experimental results show that the hybrid neurons could perform in situ tuning on RS

synapses and have the potential to build self-adaptive spiking neuromorphic systems.
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Fig. 1. Biological neural system vs. memristive system. a, Schematic of a biological neural
system. The post-neuron receives input signals from the pre-neurons through the connected
synapses and changes its membrane potential. An action potential generates at the axon hillock
once the membrane potential surpasses a threshold value. The fired neuron could inhibit
neighboring neurons through interneurons. The relative timing of pre- and postsynaptic spikes

could in situ modify the synaptic strength, i.e., the spike-timing-dependent plasticity (STDP)



learning rule. b, Frame diagram of the hybrid neuron driven memristive system. The resistive
switching (RS) memristor serves as synapses and lateral inhibition connection. The hybrid neuron
contains a threshold switching (TS) memristor and simple digital units (CMOS), in which the TS
devices perform the leaky integrate-and-fire neuron function, and the digital units generate active
spikes, refractory period (RP) signals, in situ weight updating signals, and lateral inhibition
signals.

Results

Design principles of the neuron circuits

Figure 1a shows the schematic of a biological neural system, constructed with a variety
of neurons and connected plastic synapses. In such a system, a typical neuron mainly
includes numerous dendrites, a soma, and an axon®**. Together with the soma, the
dendrites of post-neurons receive and integrate the excitatory or inhibitory signals from
pre-neurons and raise the membrane potential***°>. Once the membrane potential
surpasses a threshold, the axon hillock generates an ““all-or-none” action potential (AP)
through the opening or closing of the voltage-gated ion channels. The “all-or-none”
feature of AP makes the biological neuron perform the signal gain function and ensure
the AP transmission in a deep network. After firing, the membrane potential recovers to
the resting state within a refractory period and prepares for the next spiking event. Thus,
the neuron could fire continuously under a string of AP inputs. The axon-terminals (of
the pre-neuron) and dendrite-terminals (of the post-neuron) form the synapses whose
strength (synaptic weight) dictates the intensity of the signal passing from the pre-
neurons to the post-neurons. Importantly, the synaptic weight can be in situ modified
according to the relative timing of pre- and postsynaptic spikes (spike-timing-dependent

)36—38

plasticity (STDP) learning rule , which is believed to be one of the key mechanisms



for organisms to learn and dynamically adapt to the external environment. Furthermore,
the lateral inhibition between post-neurons through inhibition interneuron is another key
feature in biological systems, in which the excited neurons inhibit other nearby or
connected neurons®. The lateral inhibition behavior enables the brain to manage the
sensory inputs, avoid information overload, and support a network to perform
competitive learning®>4°,

Inspired by the biological system, we design a hybrid spiking neuron to construct a
memristive SNN in hardware, as schematically shown in Fig. 1b. In this neuron circuit,
the TS memristor serves as a gated membrane to dynamically integrate the input signals
through the growth of Ag filaments and induce a fire event determined by the TS
switching nature of the device (abrupt switching from a highly resistive OFF state to a
highly conductive ON state). The CMOS units shape a fixed output spike for performing
the signal gain function and ensure the continuously firing behavior of the TS memristor
under pulse train stimuli through supplying a refractory period (RP) feedback signal.
Within the RP, the device spontaneously relaxes back to its initial state, without needing
any reset operation. This is attributed to the self-rupture of Ag-channel by interfacial
energy minimization between Ag and dielectrics, or Thomson-Gibbs effect!>*4?, Under
the help of the CMOS units, the weight updating signals are successfully introduced into
the neuron circuits to in situ modulate the RS synaptic weights. Furthermore, to support

competitive learning in a network, the CMOS units also supply a lateral inhibition signal

to other neurons through RS devices (more circuit details are presented in Fig. 3).



b | c
10 16r Integration time 160.0
—_— - 1.2} Input E —
S 10 ‘>"‘ - pulses <
€ by o 1400 S
g 10° go_g gias (7) o §
S ° 5
© = 1200 O
10 04 L\\Relaxaﬁon
2 i 0.0 - ——30.0
0 -06-0.4-0.20.0 0.2 0.4 0.6 1 2 3
Voltage (V) Time (ms)
d e .5 f
_ : g121 Fewer pulses
) a i g 10} are required
E Es10f < '§ sl under higher
= b=y = amplitudes
o - Z
s §g Integrgtion st 8 )
8 55 =24
5 XS o05; 3%
g 3 P artia 5 2|
£ © 2
o | elaxa £ 0}
1.01.11.21.31.41.01.11.21.31.4 -200p '3.0 1.0m 1.0 11 1.2 13 14
Voltage (V) Time (s) Voltage (V)

Fig. 2. Characteristics of the TS device. a, Scanning electron microscope (SEM) image of the
TS array, includes 32 discrete devices (4 um x 4 pm). The inset shows a zoom-in image of a
single device. b, 100 typical I-V switching curves of the device under positive voltage sweeps.
Inset: the device structure used in this work. ¢, The current response of the device under a 1.2 V
pulse (1 ms width) followed by a 0.05 V monitor voltage. Inset: the schematic of the testing
circuit. d, The statistical data of the integration time and relaxation time as a function of the pulse
amplitudes under 1 ms pulse width. e, The integration behavior of the TS device under multiple
pulses (1.1 V, 250 ps width, 250 us interval time) with 0.05 V monitor voltage between pulses.
After the first fire, the device cannot completely return to its initial HRS due to the interval time
is not enough for finishing a complete relaxation, and thus induces a sub-threshold firing. f, The
statistical data of the required pulse number for the first firing under different pulse voltages (with

250 us width and interval time). Fewer integration pulses are required under higher voltages.

Neural characteristics of the TS memristor
As mentioned before, the TS memristor plays a key role in the hybrid neuron. To obtain a

stable spiking behavior of the neuron and apply it for networks, a TS memristor array that



contains 32 discrete devices was fabricated, as shown in Fig. 2a, and the TS device with
Au/Ag/Si02:Ag/Au structure is shown in the inset of Fig. 2b. Initially, the device is in a
high resistance state (HRS) and features forming-free owning to the doping technology**-
45, which is important for large-scale integration. The fabrication process is described in
Methods. Fig. 2b shows typical volatile I-V switching curves of the TS memristor under
100 positive voltage sweeps. During the switching process, once the applied voltage
surpasses a threshold, the device switches from an HRS to a low resistance state (LRS)
because the Ag-channel(s) is formed within the SiO» dielectric***’. When the applied
voltage is below a hold value, the device relaxes back to an HRS due to the Ag-channel’s

spontaneous rupture*>#64%-30 ¢

should be noted that the growth and rupture processes of
the Ag-channel have stochastic physical dynamics, indicating the switching voltages
between each cycle follow a probability distribution function (see statistical data in
Supplementary Fig. 1). This provides the stochastic neuronal behavior inherent to the
memristor-based neuron, thus does not need any external random number generators
required in CMOS-based neurons'!.

To further study the device characteristics for emulating LIF neurons, we switched the
device with pulses, as shown in Fig. 2c. During the measurement, we used a transistor
instead of a fixed resistor to limit the current to protect the TS device (inset of Fig. 2c).
The transistor also serves as a read-out resistor that is beneficial for integration in the
designed hybrid neuron. The dynamic response of the device under a 1.2 V/1 ms post-
synaptic pulse monitored by 0.05 V read voltage was observed. Within a certain delay
time, the Ag atoms gradually accumulate in the SiO> dielectric layer with the effect of the

41,46,47,51

electric field and redox reaction , corresponding to the integration process.



Eventually, an Ag-channel forms and induces an LRS of the device, representing the fire
behavior of neurons. When the applied trigger voltage is ceased, the device relaxes back
to its HRS spontaneously, indicating the “leaky” feature of the biological neuron
membrane. Compared with the non-volatile memristor-based neuron®*, the TS device’s
volatile feature allows our artificial neuron to automatically recover to its resting state
after firing and without the need for extra reset operations, just like the biological neurons,
thus reduces the circuit complexity and energy consumption. To study the effect of the
pulse amplitude on integration time and relaxation time, pulses with different amplitudes
but fixed 1 ms width were applied on the device, and the statistical data are shown in Fig.
2d. The results show that with increasing the pulse amplitudes from 1.0 V to 1.4 V, the
integration time decreases while the relaxation time increases. In other words, a higher
post-synaptic voltage needs a shorter time to fire the post neurons and vice versa, which
is similar to what observed in biological neurons**. Both the required integration time and
relaxation time under different amplitudes show a probability distribution (see
Supplementary Fig. 2) because of the stochastic growth and rupture processes of the Ag-
channel(s). These features equip the TS memristors with the highly desirable stochastic
neuronal dynamics and spontaneous repolarization capabilities in biological neurons®2.
Recently, the stochasticity has been successfully demonstrated in PCM-based neurons
and presents the potential for population code?*.

Here, for performing the LIF behavior of neurons under multiple stimuli, pulses with
shorter width (250 ps) and interval time (250 ps) were operated as the input signals, as
shown in Fig. 2e. Four pulses are required to trigger the first fire event, indicating a

multiple pulse LIF process. The statistical data of the pulse number for firing under



different pulse amplitudes is shown in Fig. 2f. Fewer integration pulses are required
under higher amplitudes. Hence, the neuron firing rates can be modulated by the post-
synaptic action potential that depends on the connected synaptic weights. It is worth
nothing that, to prepare for the next LIF behavior, the waiting time after firing must be
longer than the device’s relaxation time. Therefore, after the first firing event (Fig. 2e),
the device cannot decay to its initial HRS before the next input pulse coming because the
interval time is insufficient. This phenomenon indicates that the simple TS device cannot
fire continuously under pulse train stimuli, which is a general challenge observed in
capacitor-less memristor-based neurons'>!>18:3%32 For pursuing a practical application, a
refractory period is needed to enable the device to recover to its HRS and perform
continuous LIF behavior under the pulse train inputs. Thus, in this work, we introduce an
RP feedback signal into the hybrid neuron circuit to solve this problem (more details are

presented in Fig. 3).
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Fig. 3. Hybrid memristor-CMOS neuron circuit and characteristics. a, Schematic of the
hybrid neuron circuit. A single TS device serves as the gated membrane for performing the leaky
integrate-and-fire neuron function. Two D-type latches (.1 and L2) and a AND gate (G1) are
used to shape the fire signal to a fixed spike signal. The output signal from L2 is applied to the
gate terminal of T1 to make the node 1 virtual ground, which is for performing synaptic
potentiation operation and supplying a refractory period (RP). A buffer, a transistor T3, and a
AND gate (G2) construct the depression module. An OR gate G3 that receives inputs from L1
and L2 serves as the lateral inhibition output. b, The sequence diagram of the output values on
five key nodes under continuous input pulses (1.8 V, 2 kHz, 250 ps width) within two continuous
firing cycles when disabling the depression feedback circuit. ¢, The continuous spiking behavior
under different input voltages on V. d, The statistical results of spiking frequencies as the
function of the input pulses amplitudes, the frequency increases with increasing the input pulse

amplitudes.

Hybrid neuron circuit and the characteristics
Figure 3a shows the details of the hybrid neuron circuits, whose area is estimated to be

about 50 X less than a 1 pF NMOS capacitor on a 14 nm technology node**. The CMOS

units include two D-type latches (L1 and L2), an AND gate (G1), an OR gate (G3), and a
depression module. The G1 generates the output spike signal, and G3 generates the
lateral inhibition signal. The output of the L2 serves as both the potentiation and
refractory period signal to control the transistor T1. The output of L1 triggers the
depression feedback circuit that consists of a AND gate (G2), a buffer, and a switch
transistor T3. Under a resting state, the transistor T1 is in an off-state, and the electrical
potential of node 1 is the post-synaptic action potential. When the TS device fires, a

feedback signal from L2 makes the T1 in an on-state, and node 1 is a virtual ground. The



virtual ground of node 1 leaves a refractory period for TS memristor relaxing back to its
HRS and potentiates the related synaptic weights that with input pulses. Initially, the
depression module can be considered as an open circuit because the voltage on the T3
gate is zero. When the TS device fires, the output signal from L1 activates the depression
module and lifts the potential of node 1 (see Supplementary Fig. 3), thus depressing the
synapses whose inputs are zero. Given the opening of T1 and T3 happens within two
different clock periods, the potentiation and depression operations do not conflict with
each other, and the neuron could support an optimized Hebbian learning rule’®>® (see
Supplementary Fig. 4). Fig. 3b shows the measured output sequence diagram of five
critical nodes in the neuron circuit within two adjacent firing cycles. Noting that for
clearly present the voltage evolution on critical nodes, the depression module is disabled
during the measurement. Here, two fixed resistors are performed as RS synapses (S1 = 10
kQ and S2 =40 kQ). Vini receives input pulses, and Vinz is grounded. On the fifth input
pulse within the first firing cycle, the TS memristor fires, leading to an abrupt increment
of the voltage on node 2. Then voltage on node 2 serves as the input of L1 and induces a
high-level output of L1 under the control of the CLK signal. Subsequently, the output of
L1 (the input of L2) activates the L2 to output a high-level voltage that turns on the T1.
When the T1 is on, the potential on node 1 is nearly zero, which offers the TS memristor
a sufficient time (refractory period (500 ps) + interval time (250 ps)) to decay to its initial
HRS state and prepare for the next firing event. During this period, the G1 generates an
output spike by carrying out the ‘AND’ logic operation of ‘L2 OUTPUT’ and ‘CLK’.
The CLK signals are provided by a global (shared) signal generator, with 2 kHz and 50%

duty cycle. All output spikes are identical because the output spike results from the



“AND” operation of the L2 output and the global CLK signal. Thus, the circuit could
output a fixed spike signal, emulating the “all-or-none” feature of the action potential in
biological neurons??.

The continuous firing behavior of the neuron under pulse train with different
amplitudes (from 1.4 V to 2.0 V, 2 kHz frequency, 250 ps width) are shown in Fig. 3c,
equivalent to the firing behaviors under identical input pre-neuron pulses but different
synaptic weights. Intuitively, the spiking frequency increases with increasing the
amplitudes, demonstrating that the neuron could classify different stimuli intensity by
giving a different spiking frequency. Identical forms of all output spikes are observed
(2.0 V, 250 ps width, the visual error results from the read fluctuation, see the zoomed-in
view in Supplementary Fig. 5). Figure 3d shows the spiking frequency’s statistical results
as a function of the input pulse amplitudes, further confirming that the neural spiking
frequency increases with increasing the input pulse amplitudes. Besides, attributing to the
active digital components, the hybrid neuron could enable the adjacent neurons directly.
The spiking behavior of two connected neurons was tested (see supplementary Fig. 6).
The results indicate that the proposed hybrid neuron could propagate the spiking signals
in multilayer networks through connected synapses, just like what observed in biological
systems.

To further demonstrate the neuron’s feasibility for performing in sifu learning, two RS
synapses (Ta/HfO>/Pd) are connected to the neuron circuits (see Supplementary Fig. 3a).
Initially, the synapses S1 and S2 are programmed into a medium resistance state (~ 400
uS @ 0.2 V). Then a series of pulses are applied on the input terminal Vini, and Vinz is

zero. Compared to Wang’s work'?, both the synaptic potentiation and depression



operations are performed within the neuron and avoid using any external depression
control circuits, which in some certain decrease the system hardware overhead and more
faithfully implement the Hebbian learning process in the biological system**>?. During
learning, the increased potential of node 1 is clearly observed (Supplementary Fig. 3b),
which used to depress the synapse S2. After learning, the synapses S1 and S2 are
respectively programmed into an LRS (~980 uS @ 0.2 V) and an HRS (~42 uS @ 0.2 V),
as shown in Supplementary Fig. 3c. Corresponding to the evolution of S1 and S2, the
output spiking frequency increases with increasing the input pulse counts during the

learning process (Supplementary Fig. 3d), demonstrating the in situ learning capability of

the hybrid neuron.
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Fig. 4. Lateral inhibition circuits for the winner-take-all learning rule. a, Schematic of the
lateral inhibition array (LIA) circuit for ten neurons, which contains a resistive switching (RS)

array and comparators. The outputs of LIA are applied to the shared gates of 1TIR synapses to



implement lateral inhibition. The lateral inhibition signals (VLi—Vwio) from neurons serve as the
inputs of the LIA, and the outputs of the comparators are applied to the shared gates of 1TIR
synapses. Vaias: 1.5 V, Vgt 50 mV. b, The pre-programmed weight conductance of the
memristor array used in the LIA circuit for ten neurons. ¢, Two input conditions of the LIA while
performing lateral inhibition operation, the input signals are the neurons’ lateral inhibition signals.
d, The corresponding outputs of all the LIA (Lgi—Lgio) when two conditions in ¢ serve as the
inputs of the LIA. ¢ & d, The Y-axis unit is volt (V). e, The moment when the neuron outputs

lateral inhibition signal. Two firing cycles are presented.

Lateral inhibition circuits for the WTA learning rule

Lateral inhibition is a crucial feature for unsupervised learning*’, and it could support the
implementation of the winner-take-all (WTA) learning rule. The WTA rule indicates that
once the winner neuron fires, other neurons are inhibited. To perform the WTA learning
rule using the proposed neuron circuits, we design a lateral inhibition array (LIA)
contains RS array and comparators, as shown in Fig. 4a. The LIA for ten post-neurons is
presented and will remain feasible within thousands of neurons by simply increasing the
array size (nx(n+1), n is the WTA neuron numbers). For carrying out the lateral
inhibition operation within post-neurons, the LIA should possess two features: First,
when no neuron fires, all lateral inhibition signals from neurons (Vr1—VLi0) are “0”. Thus,
all outputs of the LIA (Lgi—Lc10) should be “1” to active all synapses for an inference
operation. Second, when the winner neuron fires (i.e., N1), the lateral inhibition signal of
N is “1”, and all other neurons’ lateral inhibition signals are “0”. In this case, the Lgi of
the LIA outputs should be “1” and other outputs (Lc>—Lagio) are “0”. Correspondingly,

only the winner neuron’s synapses are active, and other neurons’ synapses are inhibited,



followed by the in situ learning operation on the winner neuron’s synapses. Here, a bias
input is introduced into the LIA to make the lateral inhibition weights valid (see
mathematical analysis in Supplementary Notel). It is worthy to note that the comparators’
positive terminals serve as the reference terminals, and the negative terminals receive
signals from the RS array. In such a method, negative weight values could be avoided to
reduce the hardware overhead of using differential resistor pairs>*. Fig. 4b shows the pre-
programmed weight conductance of the LIA according to the calculated weight value.

To demonstrate the performance of the LIA, we carried out the test on LIA under two
input conditions: all neurons’ Vs are “0” (0 V), and only the winner neuron’s Vi is “1”
(1.5 V), as shown in Fig. 4c. In detail, for the input condition that all neurons’ Vs are
“0”, no neuron fires at the beginning, and the lateral inhibition outputs (VL1—VLi0) are “0”
(0 V). Thus, the inputs of the lateral inhibition array are “0” (0 V), except that the bias
input is “1” (1.5 V) (left part of Fig. 4c). In this case, all the LIA outputs (Lci—Lg10) are
“1” (3 V), which is used to activate all synapses, as shown in the left part of Fig. 4d. The
input condition under which only the winner neuron fires, corresponding to the case when
only the winner neuron’s lateral inhibition signal is “1” (1.5 V) and other neurons are
silent (right part of Fig. 4c). In this case, only the winner neuron’s Lg is “1” (3 V), while
other LIA outputs that correspond to loser neurons are “0” (0 V), as shown in the right
part of Fig. 4d. Thus, only the winner neuron’s synapses could be programmed. It is clear
that the lateral inhibition signal of the fired neuron happens when the TS device switches
on (Fig. 4e), indicating that the lateral inhibition signal is triggered timely. These

experimental results show that the LIA circuits actually possess two features as



mentioned above, thus are decent for supporting the proposed hybrid neuron to perform

the lateral inhibition operation and unsupervised learning with the WTA rule.
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Fig. 5. Fully hardware multilayer SNNs. a, The digital patterns used for learning, every pattern
includes 30 pixels (6 x 5). b, Frame diagram of the constructed SNNs (30 x 10 x 10). The first
layer is constructed with a 30 x 10 array and the second layer is with a 10 x 10 array. A 11 x 10
array with a bias input is used for lateral inhibition of the first layer output neurons. ¢, The
detailed circuit schematic of the whole system. d & h, The initialized weight map of the first
layer and second layer before learning. e & i, The evolution of the synaptic weights of the neuron
“1” after 30 firing events when the digit “1” as input pattern. f & j, The final weight map of the

first and second layers after learning, respectively. Clear weight distribution is observed. d, e, f, h,



i &j, Presented under the same color bar. g & k, The firing rates of the output neurons in first and

second layers under different input digits with noise pixels during inference processes.

Fully hardware multilayer SNNs
Based on the proposed hybrid neurons and the lateral inhibition circuits, we further
demonstrate a fully hardware multilayer SNN for performing in situ learning. Fig. Sa
shows the digital patterns that are used for learning. Each pattern includes 30 pixels (6 X
5). In real operations, the black pixels are recognized as “1” and then programmed into
positive pulses (1.6 V, 250 ps width, and 2 kHz). The white pixels are recognized as “0”
and thus grounded. The network is constructed with a 30 x 10 x 10 structure, as shown in
Fig. 5b. The 10 winner-take-all hidden neurons receive input signals from the 30 input
neurons of the first layer, which can program the 30 x 10 RS synapses in an unsupervised
way with the help of the introduced LIA circuits. The second layer (10 x 10) is used for
digits recognition with supervised learning. Fig. S5c illustrates the detailed circuit
schematic of the SNN, and the related hardware image is shown in Supplementary Fig. 7.
We first performed the unsupervised learning on the first layer to pre-encode the input
pattern (see Methods for more details). Before training, for clearly demonstrating the
evolution of the synaptic devices, we set the device conductance to a medium value (~
400 ups), as shown in Fig. 5d. During training, the weight modulation (conductance
change) follows the optimized Hebbian rule (Supplementary Fig. 4). Fig. 5e shows the
evolution of the synaptic weights of neuron “1” after 30 firing events when the digit “1”
is used as the input. The conductance of synapses is clearly programmed upon the firing
events. Supplementary Fig. 8 shows the synaptic weights of the other neurons under

different input digital patterns. The weight map after learning is shown in Fig. 5f, a clear



conductance distribution is observed. Furthermore, the inference firing rates under
different input digits with noise pixels are shown in Fig. 5g and Supplementary Fig. 9.
The results show that both neuron “6” and neuron “5” fire when the input digit is “5” (or
digit “6), as well as neuron “8” and neuron “9” when input digit is “8” (or digit “9”).
This is because the hamming distance between these patterns is small®, which results in
nearly the same post-synaptic membrane potential (see Supplementary Fig. 10). It is
worth noting that attributing to the stochasticity of neurons, the ‘greedy’ neuron is
successfully suppressed during the learning process, which is critical to perform the
WTA rule with an unsupervised way>>%. For comparison, a simulation is performed on
the neurons without stochasticity. The results show that all patterns are trapped by a
greedy neuron and cannot carry out clustering normally (see Supplementary Fig. 11).
Then, we trained the second layer in a supervised way by applying a constant voltage
on the shared gates of 1TIR synapses of the corresponding post-neurons (see methods in
the experimental section). The conductance of synapses is initialized to ~ 40 uS (low
conductance state), as shown in Fig. 5h. Fig. 51 shows the corresponding synaptic
conductance evolution of digit “1” in the first 30 training iterations after applying the
output signals from neuron 2 in the hidden layer. We noted that the potentiation operation
of the target synapses is done within one-cycle, indicating a fast learning process, which
is because the input pulse is strong enough to directly set the synaptic devices. This one-
cycle learning might limit the pattern amounts learned in a large scale network but could

be alleviated by adopting some optimized methods. Such as, using faster TS devices*3#

57

that support shorter pulses to achieve analog switching of synaptic devices’’, or introduce

56,58

the synaptic switching probability into the learning process ~°, which requires further



study. The other corresponding synaptic devices, whose input terminals are grounded,
remain nearly unchanged because the initial low conductance cannot be further
programmed. The synaptic weight evolutions of the other neurons are shown in
Supplementary Fig. 12. After training, the weight map of the second layer is shown in Fig.
5j. In each neuron’s synapses, only one related synapse is potentiated. The locations of
the potentiated synapses just right cater to the neurons with the highest rate in the hidden
layer. Fig. 5k shows the firing rates of the second layer neurons under different input
digital patterns with noise pixels, where clear recognition results are observed (see
Supplementary Fig. 13 for spike outputs). These results demonstrate that the proposed
neuron circuit could successfully perform in sifu learning on RS synapse networks,
suggesting that the hybrid neuron circuit has the potential to build a high-dense spiking
neuromorphic machine with in situ learning capability.

Discussion

In this work, a hybrid memristor-CMOS stochastic LIF neuron s is designed to enable
fully hardware implementation of SNNs. The hybrid neuron is equipped with two key
features: first, the TS device brings in the highly desirable diffusion dynamics for
efficiently and faithfully performing the leaky integrate-and-fire functions. Second, the
simple digital circuits serve as an active pump to output “all-or-none” spikes, as well as
introducing potentiation, depression, refractory period, and lateral inhibition signals into
the neuron circuit. These features render the compact neurons capable of tuning synaptic
weights for in situ Hebbian learning. Moreover, the digital module makes the neuron

circuit active, which could be used to enable deep spiking neural networks.



It is worthy to note that the pulse parameter used in this study is just an example of a
demonstration. The pulse width that serves as input could be scaled to us, even ns level

4849 and thus could implement

according to recent experimental data of the TS memristor
faster computing. Furthermore, the presented hybrid design concept may extend to other
memristor technologies, such as NbOz and VO that have shown promising dynamics for
emulating spiking neurons!’°.

To perform unsupervised learning with the WTA rule, an LIA circuit that consists of
an RS array and comparators is devised to work with the hybrid neurons. By combining
the LIA circuit and hybrid neurons, we further experimentally demonstrated a fully
hardware two-layer (30 x 10 x 10) SNNs, on which in situ learning operations has been
successfully performed. This work paves the way towards hardware implementation of
sophisticated and yet highly efficient spiking processors by leveraging the advantages of
both emerging and CMOS devices.

Methods

TS memristor fabrication: The TS memristor used in the demonstration were fabricated
on p-type (100) Si wafers with 100 nm thick thermal oxide. The fabrication processes of
the Ti/Au/Si0O2:Ag/Ag/Au devices are as follows. First, vertical lines of Ti/Au (10/40 nm)
as bottom electrodes were deposited on the Si02/Si substrate by e-beam evaporation after
the first lithography process and released by the first lift-off process. Then, after the
second lithography process, 10 nm SiOz co-sputtered with Ag was deposited to form the
functional layer followed by the second lift-off process. Finally, after the last lithography

step, horizontal lines of Ag/Au (10/40 nm) as top electrodes were deposited on the SiO2

film by magnetron sputtering, and then the Ti/Au/Si102:Ag/Ag/Au devices were released



by the third lift-off process. The area of the devices used for experimental demonstration
is4 um x 4 um.

Synaptic devices fabrication: The synaptic devices and lateral inhibition array used in the
system are a 1T1R array with Pd/HfO»/Ta structure offered by the University of
Massachusetts. The front-end and part of the back-end process for the transistor array
were implemented in a commercial fab. Before fabricating the RS devices, argon plasma
treatment was performed to remove the native metal oxide layer to make a good
connection between the fab metal layers and the memristors. Then Ta/Pd (5/60 nm)
bottom electrodes were deposited by sputtering and patterned by lift-off. The 10 nm HfO;
switching layer was deposited by atomic layer deposition at 250°C. The patterning of the
switching layer was operated by photolithography and reactive ion etching. At last, the
top electrodes of 50 nm Ta were sputtered and lifted off.

Measurement method: In the electrical experiment, the electrical characteristics
evaluation experiments of a single Ti/Au/Si102:Ag/Ag/Au device are performed on an
Agilent B1500A. During the pulse measurement, an external transistor (BS170) was
connected to the TS device by a transfer box, and a DC power source was connected to
the gate of the transistor. For the neuron circuit measurement in Fig. 3, we manufactured
a printed circuit board (PCB) first, as shown in Supplementary Fig. 4. The TS memristors
are connected to the PCB by a chip holder. The model numbers and the supplied source
voltages of the used CMOS digital chips are listed in Supplementary Table SI. A
Keysight 81160A pulse generator was used as the power source to generate input signals,
and a Keysight InfiniiVision MSO-X 3104T oscilloscope was performed to measure the

signal evolution of different nodes. As to the system measurement, the synaptic devices



were connected by the probes, and we directly connected the neurons to the synaptic
array by electrical cables. Then we used the MATLAB to control the Keysight 81160A
pulse generator to generate input signals. A PicoScope 4000 series oscilloscope and an
InfiniiVision MSO-X 3104T oscilloscope were performed to measure 10 channels signals
simultaneously. The digital models and circuit parameters used in this work are presented
in Supplementary Table I.

Training method: The experimental processes include two parts: the learning process and
the inference process. For the learning process, due to the limited number of
measurement channels (10 channels) at the same time, we trained the SNNs one by one
layer. To train the first layer with the WTA learning rule, the patterns in Fig. 5a were
utilized as the learning object. The white pixels in patterns are recognized as “0”, thus the
inputs corresponding to these pixels are grounded. The black pixels in the patterns are
recognized as “1” and mapped to 1.6 V inputs pulses (2 kHz, 250 pus width). For getting
the evolution of the synaptic devices, the synaptic devices are initialized to a medium
value (~ 400 pS). Then the input pulse number that applied on the input terminals
increases gradually until a fire event is observed, as shown in Supplemental Fig. 7b.
During training the second layer with supervised learning, the synaptic devices are
initialized to a low value (~ 40 uS). The shared gate of synapses of the target neuron is
activated by applying a 3.0 V voltage, and other gates are inhibited by grounding. Then
the input pulse number that applied on the selected input terminals increases gradually
until a fire event is observed, as shown in the Supplemental Fig. 7c. The simulation for
Supplementary Fig. 11 is conducted on a Matlab platform, in which the neurons have no

stochasticity.



Supporting Information

Supporting Information accompanies this paper at....

Acknowledgements

The authors thank J. Joshua Yang from University of Massachusetts, Ambherst, for supplying
synaptic array and helpful discussion on the system design. Also, thank Z. Wang, W. Song, Y.
Zhuo, R. Midya, and S. Asapu for helpful discussion on the circuit optimization and device
mechanisms analysis. The authors thank the National High Technology Research Development
Program under Grant Nos. 2018YFA(07001500 and 2017YFB0405600, the National Natural
Science Foundation of China under Grant Nos. 61825404, 61732020, 61821091, 61851402,
61751401 and 61804171, the Strategic Priority Research Program of the Chinese Academy of
Sciences under Grant No. XDB44000000, Major Scientific Research Project of Zhejiang Lab (No.
2019KCO0ADO2) and Beijing Academy of Artificial Intelligence (BAAI).

Author contributions

X.Z. and Q.L. designed the experiments. X.Z. carried out the electrical experiments. X.Z., J. L.
and J. W designed the hybrid neuron circuits and fabricated the PCB. X.Z. designed the LIA

circuit. X.Z., R. W. and. Q. L. designed and fabricated the TS devices. T. S., C. D.,Z. W, D. S,
and G. X. helped with data analysis. X.Z., and Q. L. prepared the paper. Q.L. and M.L.

supervised the research.

Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff))

Published online: ((will be filled in by the editorial staff))



References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Maass W. Networks of spiking neurons: The third generation of neural network
models. Neural Netw. 10, 1659-1671 (1997).

Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with
neuromorphic computing. Nature 575, 607-617 (2019).

Lavalle S, et al. Big Data, Analytics and the Path From Insights to Value. MIT
Sloan Management Review 52, 21-32 (2011).

Merolla PA, et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668-673 (2014).

Davies M, et al. Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning. IEEE Micro., 82-99 (2018).

Pei J, et al. Towards artificial general intelligence with hybrid Tianjic chip
architecture. Nature 572, 106-111 (2019).

Indiveri G, et al. Neuromorphic silicon neuron circuits. Front. Neurosci. S, 73
(2011).

Xinyu W, Vishal S, Kehan Z, Sakkarapani B. A CMOS Spiking Neuron for
Brain-Inspired Neural Networks With Resistive Synapses and In Sifu Learning.
IEEE Transactions on Circuits and Systems —I1: EXPRESS BRIEFS 62, (2015).
Ishii M, et al. On-Chip Trainable 1.4M 6T2R PCM Synaptic Array with 1.6K
Stochastic LIF Neurons for Spiking RBM. In: 2019 leee International Electron
Devices Meeting (IEDM), 14.2.1-14.2.4 (2019).

Wijekoon JH, Dudek P. Compact silicon neuron circuit with spiking and bursting
behaviour. Neural Netw. 21, 524-534 (2008).

Cassidy AS, et al. Cognitive Computing Building Block: A Versatile and
Efficient Digital Neuron Model for Neurosynaptic Cores. In: 2013 International
Joint Conference on Neural Networks (IJCNN) (IEEE (2013).

Wang Z, et al. Fully memristive neural networks for pattern classification with
unsupervised learning. Nat. Electron. 1, 137-145 (2018).

Zhang XM, et al. An Artificial Neuron Based on a Threshold Switching
Memiristor. leee Electron Device Lett. 39, 308-311 (2018).

Wang Z, et al. Capacitive neural network with neuro-transistors. Nat. Commun. 9,
3208 (2018).

Zhang Y, et al. Highly Compact Artificial Memristive Neuron with Low Energy
Consumption. Small, €1802188 (2018).

Pickett MD, Medeiros-Ribeiro G, Williams RS. A scalable neuristor built with
Mott memristors. Nat. Mater. 12, 114-117 (2013).

Yi W, et al. Biological plausibility and stochasticity in scalable VO, active
memristor neurons. Nat. Commun. 9, 4661 (2018).

Stoliar P, et al. A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott
Insulator. Adv. Funct. Mater., 1604740 (2017).

Lin J, et al. Low-voltage artificial neuron using feedback engineered insulator-to-
metal-transition devices. In: 2016 leee International Electron Devices Meeting
(IEDM), 34.5.1-34.5.4 (2016).

Zhang X, et al. An artificial spiking afferent nerve based on Mott memristors for
neurorobotics. Nat. Commun. 11, 51 (2020).



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Mehonic A, Kenyon AJ. Emulating the Electrical Activity of the Neuron Using a
Silicon Oxide RRAM Cell. Front. Neurosci. 10, 57 (2016).

Wang J1J, et al. Handwritten-Digit Recognition by Hybrid Convolutional Neural
Network based on HfO> Memristive Spiking-Neuron. Sci. Rep. 8, 12546 (2018).
Huang HM, et al. Quasi-Hodgkin-Huxley Neurons with Leaky Integrate-and-Fire
Functions Physically Realized with Memristive Devices. Adv. Mater. 31,
e1803849 (2019).

Tuma T, et al. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693-699
(2016).

Pantazi A, Wozniak S, Tuma T, Eleftheriou E. All-memristive neuromorphic
computing with level-tuned neurons. Nanotechnology 27, 355205 (2016).
Torrejon J, et al. Neuromorphic computing with nanoscale spintronic oscillators.
Nature 547, 428-431 (2017).

Sengupta A, et al. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking
Neurons. Sci. Rep. 6, 30039 (2016).

Wu MH, et al. Extremely Compact Integrate-and-Fire STT-MRAM Neuron: A
Pathway toward All-Spin Artificial Deep Neural Network. In: 2019 Symposium
on VISI Circuits (VLSI), T34-T35, Ieee (2019).

Mulaosmanovic H, et al. Mimicking biological neurons with a nanoscale
ferroelectric transistor. Nanoscale 10, 21755-21763 (2018).

Chen C, et al. Bio-Inspired Neurons Based on Novel Leaky-FeFET with Ultra-
Low Hardware. In: 2019 Symposium on VISI Circuits (VLSI), T136-T137, leee
(2019).

Dutta S, et al. Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire
Neuron. In: 2019 Symposium on VISI Circuits (VLSI), T140-T141, leee (2019).
Luo J, et al. Capacitor-less Stochastic Leaky-FeFET Neuron of Both Excitatory
and Inhibitory Connections for SNN with Reduced Hardware Cost. In: 2018 leee
International Electron Devices Meeting (IEDM). 6.4.1-6.4.4, Teee (2019).

Purves D, et al. Neuroscience, 3rd ed. Sinauer Associates (2012).

Tang J, et al. Bridging Biological and Artificial Neural Networks with Emerging
Neuromorphic Devices: Fundamentals, Progress, and Challenges. Adv. Mater. 31,
1902761 (2019).

Urbanczik R, Senn W. Learning by the dendritic prediction of somatic spiking.
Neuron 81, 521-528 (2014).

Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-
timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919-926 (2000).

Froemke RC, Dan Y. Spike-timing-dependent synaptic modification induced by
natural spike trains. Nature 416, 433-438 (2002).

Shouval HZ, Wang SS, Wittenberg GM. Spike timing dependent plasticity: a
consequence of more fundamental learning rules. Front. Comput. Neurosci. 4,
(2010).

Amari SI. Dynamics of Pattern Formation in Lateral-Inhibition Type Neural
Fields. Biol. Cybern. 27, 77-87 (1977).

Diehl PU, Cook M. Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Front. Comput. Neurosci. 9,99 (2015).



41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

38.

Valov I, et al. Nanobatteries in redox-based resistive switches require extension
of memristor theory. Nat. Commun. 4, 1771 (2013).

Wang W, et al Surface diffusion-limited lifetime of silver and copper
nanofilaments in resistive switching devices. Nat. Commun. 10, 81 (2019).

Pan F, et al. Recent progress in resistive random access memories: Materials,
switching mechanisms, and performance. Mat. Sci. Eng. R-Reports 83, 1-59
(2014).

Long BM, Mandal S, Livecchi J, Jha R. Effects of Mg-Doping on HfO>-Based
ReRAM Device Switching Characteristics. leee Electron Device Lett. 34, 12477-
1249 (2013).

Mondal S, et al. Effect of Ti doping concentration on resistive switching
behaviors of Yb2O3 memory cell. Appl. Phys. Lett. 101, 083506 (2012).

Wang Z, et al. Memristors with diffusive dynamics as synaptic emulators for
neuromorphic computing. Nat. Mater. 16, 101-108 (2016).

Liu Q, et al Real-Time Observation on Dynamic Growth/Dissolution of
Conductive Filaments in Oxide-Electrolyte-Based ReRAM. Adv. Mater. 24, 1844-
1849 (2012).

Midya R, et al. Anatomy of Ag/Hafnia-Based Selectors with 10'° Nonlinearity.
Adv. Mater. 29, 1604457 (2017).

Zhao X, et al. Breaking the Current-Retention Dilemma in Cation-Based
Resistive Switching Devices Utilizing Graphene with Controlled Defects. Adv.
Mater. 30, 1705193 (2018).

Sun H, et al. Direct Observation of Conversion Between Threshold Switching and
Memory Switching Induced by Conductive Filament Morphology. Adv. Funct.l
Mater. 24, 5679-5686 (2014).

Yang Y, et al. Electrochemical dynamics of nanoscale metallic inclusions in
dielectrics. Nat. Commun. §, 4232 (2014).

Maass W. Noise as a Resource for Computation and Learning in Networks of
Spiking Neurons. Proceedings of the leee 102, 860-880 (2014).

Caporale N, Dan Y. Spike timing-dependent plasticity: a Hebbian learning rule.
Annu. Rev. Neurosci. 31, 25-46 (2008).

Alibart F, Zamanidoost E, Strukov DB. Pattern classification by memristive
crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013).
Ge N, et al. An efficient analog Hamming distance comparator realized with a
unipolar memristor array: a showcase of physical computing. Sci. Rep. 7, 40135
(2017).

Serb A, et al. Unsupervised learning in probabilistic neural networks with multi-
state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).

Jiang H, et al. Sub-10 nm Ta Channel Responsible for Superior Performance of a
HfO, Memristor. Sci. Rep. 6, 28525 (2016).

Srinivasan G, Sengupta A, Roy K. Magnetic Tunnel Junction Based Long-Term
Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip
STDP Learning. Sci. Rep. 6, 29545 (2016).



Figures

Inhibitory
interneuron

Ll

Competing outputs

“__ Synapse - Biological system

b LT e T =T —

*Weight update  4RP [ 1 oo RS

—p— — 3 Inhibded
e ()
Hybrid neuron igrats

L1 ]

Competing outputs

g
g

inputs

Figure 1

Biological neural system vs. memristive system. a, Schematic of a biological neural system. The post
neuron receives input signals from the pre neurons through the connected synapses and changes its
membrane potential. An action potential generates at the axon hillock once the membrane potential
surpasses a threshold value. The fired neuron could inhibit neighboring neurons through interneurons.
The relative timing of pre and postsynaptic spikes could in situ modify the synaptic strength, i.e., the
spike timing dependent plasticity (STDP) learning rule. b, Frame diagram of the hybrid neuron driven
memristive system. The resistive switching (RS) memristor serves as synapses and lateral inhibition
connection. The hybrid neuron contains a threshold switching (TS) memristor and simple digital units
(CMOS), in which the TS devices perform the leaky integrate-and-fire neuron function, and the digital units
generate active spikes, refractory period (RP) signals, in situ weight updating signals, and lateral
inhibition signals.
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Figure 2

Characteristics of the TS device. a, Scanning electron microscope (SEM) image of the TS array, includes
32 discrete devices (4 pm x 4 ym). The inset shows a zoom in image of a single device. b, 100 typical | V
switching curves of the device under positive voltage sweeps. Inset: the device structure used in this work.
¢, The current response of the device under a 1.2 V pulse (1 ms width) followed by a 0.05 V monitor
voltage. Inset: the schematic of the testing circuit. d, The statistical data of the integration time and
relaxation time as a function of the pulse amplitudes under 1 ms pulse width. e, The integration behavior
of the TS device under multiple pulses (1.1 V, 250 ps width, 250 ps interval time) with 0.05 V monitor
voltage between pulses. After the first fire, the device cannot completely return to its initial HRS due to the
interval time is not enough for finishing a complete relaxation, and thus induces a sub-threshold firing. f,
The statistical data of the required pulse number for the first firing under different pulse voltages (with
250 ps width and interval time). Fewer integration pulses are required under higher voltages.
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Figure 3

Hybrid memristor CMOS neuron circuit and characteristics. a, Schematic of the hybrid neuron circuit. A
single TS device serves as the gated membrane for performing the leaky integrate-and-fire neuron
function. Two D-type latches (L1 and L2) and a AND gate (G1) are used to shape the fire signal to a fixed
spike signal. The output signal from L2 is applied to the gate terminal of T1 to make the node 1 virtual
ground, which is for performing synaptic potentiation operation and supplying a refractory period (RP). A
buffer, a transistor T3, and a AND gate (G2) construct the depression module. An OR gate G3 that
receives inputs from L1 and L2 serves as the lateral inhibition output. b, The sequence diagram of the
output values on five key nodes under continuous input pulses (1.8 V, 2 kHz, 250 ps width) within two
continuous firing cycles when disabling the depression feedback circuit. ¢, The continuous spiking
behavior under different input voltages on VIN1. d, The statistical results of spiking frequencies as the

function of the input pulses amplitudes, the frequency increases with increasing the input pulse
amplitudes.
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Figure 4

Lateral inhibition circuits for the winner take all learning rule. a, Schematic of the lateral inhibition array
(LIA) circuit for ten neurons, which contains a resistive switching (RS) array and comparators. The
outputs of LIA are applied to the shared gates of 1T1R synapses to implement lateral inhibition. The
lateral inhibition signals (VL1-VL10) from neurons serve as the inputs of the LIA, and the outputs of the
comparators are applied to the shared gates of 1T1R synapses. VBIAS: 1.5V, VRef: 50 mV. b, The pre
programmed weight conductance of the memristor array used in the LIA circuit for ten neurons. ¢, Two
input conditions of the LIA while performing lateral inhibition operation, the input signals are the neurons’
lateral inhibition signals. d, The corresponding outputs of all the LIA (LG1-LG10) when two conditions in
c serve as the inputs of the LIA. ¢ & d, The Y axis unit is volt (V). e, The moment when the neuron outputs
lateral inhibition signal. Two firing cycles are presented.
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Figure 5

Fully hardware multilayer SNNs. a, The digital patterns used for learning, every pattern includes 30 pixels
(6 x 5). b, Frame diagram of the constructed SNNs (30 x 10 x 10). The first layer is constructed with a 30
x 10 array and the second layer is with a 10 x 10 array. A 11 x 10 array with a bias input is used for lateral
inhibition of the first layer output neurons. ¢, The detailed circuit schematic of the whole system. d & h,
The initialized weight map of the first layer and second layer before learning. e & i, The evolution of the
synaptic weights of the neuron “1” after 30 firing events when the digit “1” as input pattern. f & j, The final
weight map of the first and second layers after learning, respectively. Clear weight distribution is
observed. d, g, f, h, i &j, Presented under the same color bar. g & k, The firing rates of the output neurons in
first and second layers under different input digits with noise pixels during inference processes.
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