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Abstract: 

Spiking neural network, consisting of spiking neurons and plastic synapses, is a 

promising but relatively underdeveloped neural network for neuromorphic computing. 

Inspired by the human brain, it provides a unique solution for highly efficient data 

processing. Recently, memristor-based neurons and synapses are becoming intriguing 

candidates to build spiking neural networks in hardware, owing to the close resemblance 

between their device dynamics and the biological counterparts. However, the 

functionalities of memristor-based neurons are currently very limited, and a hardware 

demonstration of fully memristor-based spiking neural networks supporting in situ 

learning is very challenging. Here, a hybrid spiking neuron by combining the memristor 

with simple digital circuits is designed and implemented in hardware to enhance the 

neuron functions. The hybrid neuron with memristive dynamics not only realizes the 

basic leaky integrate-and-fire neuron function but also enables the in situ tuning of the 

connected synaptic weights. Finally, a fully hardware spiking neural network with the 

hybrid neurons and memristive synapses is experimentally demonstrated for the first time, 

with which in situ Hebbian learning is achieved. This work opens up a way towards the 

implementation of spiking neurons, supporting in situ learning for future neuromorphic 

computing systems. 

mailto:qi_liu@fudan.edu.cn


Introduction  

Inspired by the human brain, the spiking neural networks (SNNs) encode timing signals 

into the computing process, where the spike-based temporal processing allows sparse and 

efficient information transfer, conversion, and storage1,2. Building an SNN system in 

hardware is promising and attractive for performing edge tasks with great efficiency in 

the big-data era3. Lately, significant efforts with impressive progress have been made 

towards the implementation of SNN chips based on CMOS (complementary metal-oxide-

semiconductor) technology, such as TrueNorth from IBM4, Loihi from Intel5, and Tianjic 

from Tsinghua University6, et al. Nevertheless, due to the lack of similarities between 

CMOS devices and biological components at physical mechanism level, the CMOS 

devices without the intrinsic neuronal dynamics can only simulate rather than faithfully 

emulate neurons functions. Even the simplest simulation of neuron functions would 

require such silicon neurons to have a fairly complex circuit7-9, which further grows 

quickly with more fidelity and functionalities10,11. Therefore, compared to the biological 

neurons, these bulky neuron circuits are less area or energy efficiency, which will limit its 

edge applications due to energy constraints as well as its cloud application due to the 

limited number of neurons that can be integrated on chips. 

To achieve the area and energy efficiency comparable to the neurons in the human 

brain, nanoscale emerging memristive devices, such as ion-based threshold switching (TS) 

devices12-15, Mott-transition devices16-20, resistive switching (RS) memory21-23, phase-

change memory24,25, magnetic memory26-28, and ferroelectric memory29-32, have recently 

been demonstrated to emulate spiking neurons. For example, Tuma et al24 used a single 

phase-change device to realize an integrate-and-fire neuron function with stochastic 



dynamics and the detection of temporal correlations. Subsequently, the same group 

further combined this neuron with phase-change synapses and demonstrated the detection 

of multiple temporal correlations through using level-tuned neuronal characteristics25. 

Wang et al12 used the dynamic migration of Ag in a host dielectric material to emulate the 

stochastic leaky integrate-and-fire (LIF) process in neurons and demonstrate a fully 

memristive SNN system with unsupervised learning. Attributing to the intrinsic dynamics 

in a single memristive device, neurons in these works are more energy and area efficient 

than CMOS-based ones. However, these memristor-based neurons focus on the emulation 

of single neuron’s functionalities, without considering the actual requirements for system 

realization in hardware. Thus, the functional diversity (such as generating in situ learning 

and lateral inhibition signals) of these neurons remains to be demonstrated, the stability 

(such as firing under continuous stimuli inputs) needs great improvement, and the fully 

hardware system-level demonstration is primitive. 

Here, we design a hybrid memristor-CMOS leaky integrate-and-fire (LIF) spiking 

neuron to enhance the fidelity and functionality of memristor-based neurons. In this 

neuron circuit, a single TS memristor serves as the dynamic integrator of the post-

neurons to collect input signals from the pre-neurons and determines whether to fire or 

not. Simple digital circuits detect the fire event and output reproducible spike signals, as 

well as ensuring the stable firing of the memristor under pulse train inputs by supplying a 

refractory period (RP) signal. In the hybrid neuron, the TS memristor provides the 

dynamics for neuromorphic functions, and transistors supply the signal amplification to 

enable larger and multilayer networks. For performing in situ learning operations on 

memristive synapses, potentiation, depression, and lateral inhibition signals are 



introduced into the neuron successfully, and a lateral inhibition array (LIA) is specifically 

designed. Using the hybrid neurons and LIA, we further experimentally demonstrate a 30 

× 10 ×10 fully hardware multilayer SNN (MSNN) with RS synapses. In this MSNN, the 

training processes are in situ, 10 hidden neurons perform feature extraction with the LIA 

in the first layer, and 10 output neurons serve for further recognition in the second layer. 

The experimental results show that the hybrid neurons could perform in situ tuning on RS 

synapses and have the potential to build self-adaptive spiking neuromorphic systems. 

 

Fig. 1. Biological neural system vs. memristive system. a, Schematic of a biological neural 

system. The post-neuron receives input signals from the pre-neurons through the connected 

synapses and changes its membrane potential. An action potential generates at the axon hillock 

once the membrane potential surpasses a threshold value. The fired neuron could inhibit 

neighboring neurons through interneurons. The relative timing of pre- and postsynaptic spikes 

could in situ modify the synaptic strength, i.e., the spike-timing-dependent plasticity (STDP) 



learning rule. b, Frame diagram of the hybrid neuron driven memristive system. The resistive 

switching (RS) memristor serves as synapses and lateral inhibition connection. The hybrid neuron 

contains a threshold switching (TS) memristor and simple digital units (CMOS), in which the TS 

devices perform the leaky integrate-and-fire neuron function, and the digital units generate active 

spikes, refractory period (RP) signals, in situ weight updating signals, and lateral inhibition 

signals. 

Results 

Design principles of the neuron circuits  

Figure 1a shows the schematic of a biological neural system, constructed with a variety 

of neurons and connected plastic synapses. In such a system, a typical neuron mainly 

includes numerous dendrites, a soma, and an axon33,34. Together with the soma, the 

dendrites of post-neurons receive and integrate the excitatory or inhibitory signals from 

pre-neurons and raise the membrane potential34,35. Once the membrane potential 

surpasses a threshold, the axon hillock generates an “all-or-none” action potential (AP) 

through the opening or closing of the voltage-gated ion channels. The “all-or-none” 

feature of AP makes the biological neuron perform the signal gain function and ensure 

the AP transmission in a deep network. After firing, the membrane potential recovers to 

the resting state within a refractory period and prepares for the next spiking event. Thus, 

the neuron could fire continuously under a string of AP inputs. The axon-terminals (of 

the pre-neuron) and dendrite-terminals (of the post-neuron) form the synapses whose 

strength (synaptic weight) dictates the intensity of the signal passing from the pre-

neurons to the post-neurons. Importantly, the synaptic weight can be in situ modified 

according to the relative timing of pre- and postsynaptic spikes (spike-timing-dependent 

plasticity (STDP) learning rule)36-38, which is believed to be one of the key mechanisms 



for organisms to learn and dynamically adapt to the external environment. Furthermore, 

the lateral inhibition between post-neurons through inhibition interneuron is another key 

feature in biological systems, in which the excited neurons inhibit other nearby or 

connected neurons39. The lateral inhibition behavior enables the brain to manage the 

sensory inputs, avoid information overload, and support a network to perform 

competitive learning39,40.  

Inspired by the biological system, we design a hybrid spiking neuron to construct a 

memristive SNN in hardware, as schematically shown in Fig. 1b. In this neuron circuit, 

the TS memristor serves as a gated membrane to dynamically integrate the input signals 

through the growth of Ag filaments and induce a fire event determined by the TS 

switching nature of the device (abrupt switching from a highly resistive OFF state to a 

highly conductive ON state). The CMOS units shape a fixed output spike for performing 

the signal gain function and ensure the continuously firing behavior of the TS memristor 

under pulse train stimuli through supplying a refractory period (RP) feedback signal. 

Within the RP, the device spontaneously relaxes back to its initial state, without needing 

any reset operation. This is attributed to the self-rupture of Ag-channel by interfacial 

energy minimization between Ag and dielectrics, or Thomson-Gibbs effect12,41,42. Under 

the help of the CMOS units, the weight updating signals are successfully introduced into 

the neuron circuits to in situ modulate the RS synaptic weights. Furthermore, to support 

competitive learning in a network, the CMOS units also supply a lateral inhibition signal 

to other neurons through RS devices (more circuit details are presented in Fig. 3). 



 

Fig. 2. Characteristics of the TS device. a, Scanning electron microscope (SEM) image of the 

TS array, includes 32 discrete devices (4 µm × 4 µm). The inset shows a zoom-in image of a 

single device. b, 100 typical I-V switching curves of the device under positive voltage sweeps. 

Inset: the device structure used in this work. c, The current response of the device under a 1.2 V 

pulse (1 ms width) followed by a 0.05 V monitor voltage. Inset: the schematic of the testing 

circuit. d, The statistical data of the integration time and relaxation time as a function of the pulse 

amplitudes under 1 ms pulse width. e, The integration behavior of the TS device under multiple 

pulses (1.1 V, 250 µs width, 250 µs interval time) with 0.05 V monitor voltage between pulses. 

After the first fire, the device cannot completely return to its initial HRS due to the interval time 

is not enough for finishing a complete relaxation, and thus induces a sub-threshold firing. f, The 

statistical data of the required pulse number for the first firing under different pulse voltages (with 

250 µs width and interval time). Fewer integration pulses are required under higher voltages.  

Neural characteristics of the TS memristor 

As mentioned before, the TS memristor plays a key role in the hybrid neuron. To obtain a 

stable spiking behavior of the neuron and apply it for networks, a TS memristor array that 



contains 32 discrete devices was fabricated, as shown in Fig. 2a, and the TS device with 

Au/Ag/SiO2:Ag/Au structure is shown in the inset of Fig. 2b. Initially, the device is in a 

high resistance state (HRS) and features forming-free owning to the doping technology43-

45, which is important for large-scale integration. The fabrication process is described in 

Methods. Fig. 2b shows typical volatile I-V switching curves of the TS memristor under 

100 positive voltage sweeps. During the switching process, once the applied voltage 

surpasses a threshold, the device switches from an HRS to a low resistance state (LRS) 

because the Ag-channel(s) is formed within the SiO2 dielectric46-49. When the applied 

voltage is below a hold value, the device relaxes back to an HRS due to the Ag-channel’s 

spontaneous rupture42,46,49,50. It should be noted that the growth and rupture processes of 

the Ag-channel have stochastic physical dynamics, indicating the switching voltages 

between each cycle follow a probability distribution function (see statistical data in 

Supplementary Fig. 1). This provides the stochastic neuronal behavior inherent to the 

memristor-based neuron, thus does not need any external random number generators 

required in CMOS-based neurons11.  

To further study the device characteristics for emulating LIF neurons, we switched the 

device with pulses, as shown in Fig. 2c. During the measurement, we used a transistor 

instead of a fixed resistor to limit the current to protect the TS device (inset of Fig. 2c). 

The transistor also serves as a read-out resistor that is beneficial for integration in the 

designed hybrid neuron. The dynamic response of the device under a 1.2 V/1 ms post-

synaptic pulse monitored by 0.05 V read voltage was observed. Within a certain delay 

time, the Ag atoms gradually accumulate in the SiO2 dielectric layer with the effect of the 

electric field and redox reaction41,46,47,51, corresponding to the integration process. 



Eventually, an Ag-channel forms and induces an LRS of the device, representing the fire 

behavior of neurons. When the applied trigger voltage is ceased, the device relaxes back 

to its HRS spontaneously, indicating the “leaky” feature of the biological neuron 

membrane. Compared with the non-volatile memristor-based neuron24, the TS device’s 

volatile feature allows our artificial neuron to automatically recover to its resting state 

after firing and without the need for extra reset operations, just like the biological neurons, 

thus reduces the circuit complexity and energy consumption. To study the effect of the 

pulse amplitude on integration time and relaxation time, pulses with different amplitudes 

but fixed 1 ms width were applied on the device, and the statistical data are shown in Fig. 

2d. The results show that with increasing the pulse amplitudes from 1.0 V to 1.4 V, the 

integration time decreases while the relaxation time increases. In other words, a higher 

post-synaptic voltage needs a shorter time to fire the post neurons and vice versa, which 

is similar to what observed in biological neurons33. Both the required integration time and 

relaxation time under different amplitudes show a probability distribution (see 

Supplementary Fig. 2) because of the stochastic growth and rupture processes of the Ag-

channel(s). These features equip the TS memristors with the highly desirable stochastic 

neuronal dynamics and spontaneous repolarization capabilities in biological neurons52. 

Recently, the stochasticity has been successfully demonstrated in PCM-based neurons 

and presents the potential for population code24. 

Here, for performing the LIF behavior of neurons under multiple stimuli, pulses with 

shorter width (250 µs) and interval time (250 µs) were operated as the input signals, as 

shown in Fig. 2e. Four pulses are required to trigger the first fire event, indicating a 

multiple pulse LIF process. The statistical data of the pulse number for firing under 



different pulse amplitudes is shown in Fig. 2f. Fewer integration pulses are required 

under higher amplitudes. Hence, the neuron firing rates can be modulated by the post-

synaptic action potential that depends on the connected synaptic weights. It is worth 

nothing that, to prepare for the next LIF behavior, the waiting time after firing must be 

longer than the device’s relaxation time. Therefore, after the first firing event (Fig. 2e), 

the device cannot decay to its initial HRS before the next input pulse coming because the 

interval time is insufficient. This phenomenon indicates that the simple TS device cannot 

fire continuously under pulse train stimuli, which is a general challenge observed in 

capacitor-less memristor-based neurons12,15,18,30,32. For pursuing a practical application, a 

refractory period is needed to enable the device to recover to its HRS and perform 

continuous LIF behavior under the pulse train inputs. Thus, in this work, we introduce an 

RP feedback signal into the hybrid neuron circuit to solve this problem (more details are 

presented in Fig. 3). 

 



Fig. 3. Hybrid memristor-CMOS neuron circuit and characteristics. a, Schematic of the 

hybrid neuron circuit. A single TS device serves as the gated membrane for performing the leaky 

integrate-and-fire neuron function. Two D-type latches (L1 and L2) and a AND gate (G1) are 

used to shape the fire signal to a fixed spike signal. The output signal from L2 is applied to the 

gate terminal of T1 to make the node 1 virtual ground, which is for performing synaptic 

potentiation operation and supplying a refractory period (RP). A buffer, a transistor T3, and a 

AND gate (G2) construct the depression module. An OR gate G3 that receives inputs from L1 

and L2 serves as the lateral inhibition output. b, The sequence diagram of the output values on 

five key nodes under continuous input pulses (1.8 V, 2 kHz, 250 µs width) within two continuous 

firing cycles when disabling the depression feedback circuit. c, The continuous spiking behavior 

under different input voltages on VIN1. d, The statistical results of spiking frequencies as the 

function of the input pulses amplitudes, the frequency increases with increasing the input pulse 

amplitudes. 

Hybrid neuron circuit and the characteristics  

Figure 3a shows the details of the hybrid neuron circuits, whose area is estimated to be 

about 50 × less than a 1 pF NMOS capacitor on a 14 nm technology node24. The CMOS 

units include two D-type latches (L1 and L2), an AND gate (G1), an OR gate (G3), and a 

depression module. The G1 generates the output spike signal, and G3 generates the 

lateral inhibition signal. The output of the L2 serves as both the potentiation and 

refractory period signal to control the transistor T1. The output of L1 triggers the 

depression feedback circuit that consists of a AND gate (G2), a buffer, and a switch 

transistor T3. Under a resting state, the transistor T1 is in an off-state, and the electrical 

potential of node 1 is the post-synaptic action potential. When the TS device fires, a 

feedback signal from L2 makes the T1 in an on-state, and node 1 is a virtual ground. The 



virtual ground of node 1 leaves a refractory period for TS memristor relaxing back to its 

HRS and potentiates the related synaptic weights that with input pulses. Initially, the 

depression module can be considered as an open circuit because the voltage on the T3 

gate is zero. When the TS device fires, the output signal from L1 activates the depression 

module and lifts the potential of node 1 (see Supplementary Fig. 3), thus depressing the 

synapses whose inputs are zero. Given the opening of T1 and T3 happens within two 

different clock periods, the potentiation and depression operations do not conflict with 

each other, and the neuron could support an optimized Hebbian learning rule36,53 (see 

Supplementary Fig. 4). Fig. 3b shows the measured output sequence diagram of five 

critical nodes in the neuron circuit within two adjacent firing cycles. Noting that for 

clearly present the voltage evolution on critical nodes, the depression module is disabled 

during the measurement. Here, two fixed resistors are performed as RS synapses (S1 = 10 

kΩ and S2 = 40 kΩ). VIN1 receives input pulses, and VIN2 is grounded. On the fifth input 

pulse within the first firing cycle, the TS memristor fires, leading to an abrupt increment 

of the voltage on node 2. Then voltage on node 2 serves as the input of L1 and induces a 

high-level output of L1 under the control of the CLK signal. Subsequently, the output of 

L1 (the input of L2) activates the L2 to output a high-level voltage that turns on the T1. 

When the T1 is on, the potential on node 1 is nearly zero, which offers the TS memristor 

a sufficient time (refractory period (500 µs) + interval time (250 µs)) to decay to its initial 

HRS state and prepare for the next firing event. During this period, the G1 generates an 

output spike by carrying out the ‘AND’ logic operation of ‘L2 OUTPUT’ and ‘CLK’. 

The CLK signals are provided by a global (shared) signal generator, with 2 kHz and 50% 

duty cycle. All output spikes are identical because the output spike results from the 



“AND” operation of the L2 output and the global CLK signal. Thus, the circuit could 

output a fixed spike signal, emulating the “all-or-none” feature of the action potential in 

biological neurons33.  

The continuous firing behavior of the neuron under pulse train with different 

amplitudes (from 1.4 V to 2.0 V, 2 kHz frequency, 250 µs width) are shown in Fig. 3c, 

equivalent to the firing behaviors under identical input pre-neuron pulses but different 

synaptic weights. Intuitively, the spiking frequency increases with increasing the 

amplitudes, demonstrating that the neuron could classify different stimuli intensity by 

giving a different spiking frequency. Identical forms of all output spikes are observed 

(2.0 V, 250 µs width, the visual error results from the read fluctuation, see the zoomed-in 

view in Supplementary Fig. 5). Figure 3d shows the spiking frequency’s statistical results 

as a function of the input pulse amplitudes, further confirming that the neural spiking 

frequency increases with increasing the input pulse amplitudes. Besides, attributing to the 

active digital components, the hybrid neuron could enable the adjacent neurons directly. 

The spiking behavior of two connected neurons was tested (see supplementary Fig. 6). 

The results indicate that the proposed hybrid neuron could propagate the spiking signals 

in multilayer networks through connected synapses, just like what observed in biological 

systems.  

To further demonstrate the neuron’s feasibility for performing in situ learning, two RS 

synapses (Ta/HfO2/Pd) are connected to the neuron circuits (see Supplementary Fig. 3a). 

Initially, the synapses S1 and S2 are programmed into a medium resistance state (~ 400 

µS @ 0.2 V). Then a series of pulses are applied on the input terminal VIN1, and VIN2 is 

zero. Compared to Wang’s work12, both the synaptic potentiation and depression 



operations are performed within the neuron and avoid using any external depression 

control circuits, which in some certain decrease the system hardware overhead and more 

faithfully implement the Hebbian learning process in the biological system36,53. During 

learning, the increased potential of node 1 is clearly observed (Supplementary Fig. 3b), 

which used to depress the synapse S2. After learning, the synapses S1 and S2 are 

respectively programmed into an LRS (~980 µS @ 0.2 V) and an HRS (~42 µS @ 0.2 V), 

as shown in Supplementary Fig. 3c. Corresponding to the evolution of S1 and S2, the 

output spiking frequency increases with increasing the input pulse counts during the 

learning process (Supplementary Fig. 3d), demonstrating the in situ learning capability of 

the hybrid neuron.  

 

Fig. 4. Lateral inhibition circuits for the winner-take-all learning rule. a, Schematic of the 

lateral inhibition array (LIA) circuit for ten neurons, which contains a resistive switching (RS) 

array and comparators. The outputs of LIA are applied to the shared gates of 1T1R synapses to 
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implement lateral inhibition. The lateral inhibition signals (VL1−VL10) from neurons serve as the 

inputs of the LIA, and the outputs of the comparators are applied to the shared gates of 1T1R 

synapses. VBIAS: 1.5 V, VRef: 50 mV. b, The pre-programmed weight conductance of the 

memristor array used in the LIA circuit for ten neurons. c, Two input conditions of the LIA while 

performing lateral inhibition operation, the input signals are the neurons’ lateral inhibition signals. 

d, The corresponding outputs of all the LIA (LG1−LG10) when two conditions in c serve as the 

inputs of the LIA. c & d, The Y-axis unit is volt (V). e, The moment when the neuron outputs 

lateral inhibition signal. Two firing cycles are presented. 

Lateral inhibition circuits for the WTA learning rule 

Lateral inhibition is a crucial feature for unsupervised learning40, and it could support the 

implementation of the winner-take-all (WTA) learning rule. The WTA rule indicates that 

once the winner neuron fires, other neurons are inhibited. To perform the WTA learning 

rule using the proposed neuron circuits, we design a lateral inhibition array (LIA) 

contains RS array and comparators, as shown in Fig. 4a. The LIA for ten post-neurons is 

presented and will remain feasible within thousands of neurons by simply increasing the 

array size (n×(n+1), n is the WTA neuron numbers). For carrying out the lateral 

inhibition operation within post-neurons, the LIA should possess two features: First, 

when no neuron fires, all lateral inhibition signals from neurons (VL1−VL10) are “0”. Thus, 

all outputs of the LIA (LG1−LG10) should be “1” to active all synapses for an inference 

operation. Second, when the winner neuron fires (i.e., N1), the lateral inhibition signal of 

N1 is “1”, and all other neurons’ lateral inhibition signals are “0”. In this case, the LG1 of 

the LIA outputs should be “1” and other outputs (LG2−LG10) are “0”. Correspondingly, 

only the winner neuron’s synapses are active, and other neurons’ synapses are inhibited, 



followed by the in situ learning operation on the winner neuron’s synapses. Here, a bias 

input is introduced into the LIA to make the lateral inhibition weights valid (see 

mathematical analysis in Supplementary Note1). It is worthy to note that the comparators’ 

positive terminals serve as the reference terminals, and the negative terminals receive 

signals from the RS array. In such a method, negative weight values could be avoided to 

reduce the hardware overhead of using differential resistor pairs54. Fig. 4b shows the pre-

programmed weight conductance of the LIA according to the calculated weight value.  

To demonstrate the performance of the LIA, we carried out the test on LIA under two 

input conditions: all neurons’ VLs are “0” (0 V), and only the winner neuron’s VL is “1” 

(1.5 V), as shown in Fig. 4c. In detail, for the input condition that all neurons’ VLs are 

“0”, no neuron fires at the beginning, and the lateral inhibition outputs (VL1−VL10) are “0” 

(0 V). Thus, the inputs of the lateral inhibition array are “0” (0 V), except that the bias 

input is “1” (1.5 V) (left part of Fig. 4c). In this case, all the LIA outputs (LG1−LG10) are 

“1” (3 V), which is used to activate all synapses, as shown in the left part of Fig. 4d. The 

input condition under which only the winner neuron fires, corresponding to the case when 

only the winner neuron’s lateral inhibition signal is “1” (1.5 V) and other neurons are 

silent (right part of Fig. 4c). In this case, only the winner neuron’s LG is “1” (3 V), while 

other LIA outputs that correspond to loser neurons are “0” (0 V), as shown in the right 

part of Fig. 4d. Thus, only the winner neuron’s synapses could be programmed. It is clear 

that the lateral inhibition signal of the fired neuron happens when the TS device switches 

on (Fig. 4e), indicating that the lateral inhibition signal is triggered timely. These 

experimental results show that the LIA circuits actually possess two features as 



mentioned above, thus are decent for supporting the proposed hybrid neuron to perform 

the lateral inhibition operation and unsupervised learning with the WTA rule. 

 

Fig. 5. Fully hardware multilayer SNNs. a, The digital patterns used for learning, every pattern 

includes 30 pixels (6 × 5). b, Frame diagram of the constructed SNNs (30 × 10 × 10). The first 

layer is constructed with a 30 × 10 array and the second layer is with a 10 × 10 array. A 11 × 10 

array with a bias input is used for lateral inhibition of the first layer output neurons. c, The 

detailed circuit schematic of the whole system. d & h, The initialized weight map of the first 

layer and second layer before learning. e & i, The evolution of the synaptic weights of the neuron 

“1” after 30 firing events when the digit “1” as input pattern. f & j, The final weight map of the 

first and second layers after learning, respectively. Clear weight distribution is observed. d, e, f, h, 
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i &j, Presented under the same color bar. g & k, The firing rates of the output neurons in first and 

second layers under different input digits with noise pixels during inference processes.  

Fully hardware multilayer SNNs 

Based on the proposed hybrid neurons and the lateral inhibition circuits, we further 

demonstrate a fully hardware multilayer SNN for performing in situ learning. Fig. 5a 

shows the digital patterns that are used for learning. Each pattern includes 30 pixels (6 × 

5). In real operations, the black pixels are recognized as “1” and then programmed into 

positive pulses (1.6 V, 250 µs width, and 2 kHz). The white pixels are recognized as “0” 

and thus grounded. The network is constructed with a 30 × 10 × 10 structure, as shown in 

Fig. 5b. The 10 winner-take-all hidden neurons receive input signals from the 30 input 

neurons of the first layer, which can program the 30 × 10 RS synapses in an unsupervised 

way with the help of the introduced LIA circuits. The second layer (10 × 10) is used for 

digits recognition with supervised learning. Fig. 5c illustrates the detailed circuit 

schematic of the SNN, and the related hardware image is shown in Supplementary Fig. 7. 

We first performed the unsupervised learning on the first layer to pre-encode the input 

pattern (see Methods for more details). Before training, for clearly demonstrating the 

evolution of the synaptic devices, we set the device conductance to a medium value (~ 

400 µs), as shown in Fig. 5d. During training, the weight modulation (conductance 

change) follows the optimized Hebbian rule (Supplementary Fig. 4). Fig. 5e shows the 

evolution of the synaptic weights of neuron “1” after 30 firing events when the digit “1” 

is used as the input. The conductance of synapses is clearly programmed upon the firing 

events. Supplementary Fig. 8 shows the synaptic weights of the other neurons under 

different input digital patterns. The weight map after learning is shown in Fig. 5f, a clear 



conductance distribution is observed. Furthermore, the inference firing rates under 

different input digits with noise pixels are shown in Fig. 5g and Supplementary Fig. 9. 

The results show that both neuron “6” and neuron “5” fire when the input digit is “5” (or 

digit “6”), as well as neuron “8” and neuron “9” when input digit is “8” (or digit “9”). 

This is because the hamming distance between these patterns is small55, which results in 

nearly the same post-synaptic membrane potential (see Supplementary Fig. 10). It is 

worth noting that attributing to the stochasticity of neurons, the ‘greedy’ neuron is 

successfully suppressed during the learning process, which is critical to perform the 

WTA rule with an unsupervised way52,56. For comparison, a simulation is performed on 

the neurons without stochasticity. The results show that all patterns are trapped by a 

greedy neuron and cannot carry out clustering normally (see Supplementary Fig. 11). 

Then, we trained the second layer in a supervised way by applying a constant voltage 

on the shared gates of 1T1R synapses of the corresponding post-neurons (see methods in 

the experimental section). The conductance of synapses is initialized to ~ 40 µS (low 

conductance state), as shown in Fig. 5h. Fig. 5i shows the corresponding synaptic 

conductance evolution of digit “1” in the first 30 training iterations after applying the 

output signals from neuron 2 in the hidden layer. We noted that the potentiation operation 

of the target synapses is done within one-cycle, indicating a fast learning process, which 

is because the input pulse is strong enough to directly set the synaptic devices. This one-

cycle learning might limit the pattern amounts learned in a large scale network but could 

be alleviated by adopting some optimized methods. Such as, using faster TS devices48,49 

that support shorter pulses to achieve analog switching of synaptic devices57, or introduce 

the synaptic switching probability into the learning process56,58, which requires further 



study. The other corresponding synaptic devices, whose input terminals are grounded, 

remain nearly unchanged because the initial low conductance cannot be further 

programmed. The synaptic weight evolutions of the other neurons are shown in 

Supplementary Fig. 12. After training, the weight map of the second layer is shown in Fig. 

5j. In each neuron’s synapses, only one related synapse is potentiated. The locations of 

the potentiated synapses just right cater to the neurons with the highest rate in the hidden 

layer. Fig. 5k shows the firing rates of the second layer neurons under different input 

digital patterns with noise pixels, where clear recognition results are observed (see 

Supplementary Fig. 13 for spike outputs). These results demonstrate that the proposed 

neuron circuit could successfully perform in situ learning on RS synapse networks, 

suggesting that the hybrid neuron circuit has the potential to build a high-dense spiking 

neuromorphic machine with in situ learning capability. 

Discussion 

In this work, a hybrid memristor-CMOS stochastic LIF neuron s is designed to enable 

fully hardware implementation of SNNs. The hybrid neuron is equipped with two key 

features: first, the TS device brings in the highly desirable diffusion dynamics for 

efficiently and faithfully performing the leaky integrate-and-fire functions. Second, the 

simple digital circuits serve as an active pump to output “all-or-none” spikes, as well as 

introducing potentiation, depression, refractory period, and lateral inhibition signals into 

the neuron circuit. These features render the compact neurons capable of tuning synaptic 

weights for in situ Hebbian learning. Moreover, the digital module makes the neuron 

circuit active, which could be used to enable deep spiking neural networks. 



It is worthy to note that the pulse parameter used in this study is just an example of a 

demonstration. The pulse width that serves as input could be scaled to µs, even ns level 

according to recent experimental data of the TS memristor48,49, and thus could implement 

faster computing. Furthermore, the presented hybrid design concept may extend to other 

memristor technologies, such as NbO2 and VO2 that have shown promising dynamics for 

emulating spiking neurons17,20. 

To perform unsupervised learning with the WTA rule, an LIA circuit that consists of 

an RS array and comparators is devised to work with the hybrid neurons. By combining 

the LIA circuit and hybrid neurons, we further experimentally demonstrated a fully 

hardware two-layer (30 × 10 × 10) SNNs, on which in situ learning operations has been 

successfully performed. This work paves the way towards hardware implementation of 

sophisticated and yet highly efficient spiking processors by leveraging the advantages of 

both emerging and CMOS devices. 

Methods  

TS memristor fabrication: The TS memristor used in the demonstration were fabricated 

on p-type (100) Si wafers with 100 nm thick thermal oxide. The fabrication processes of 

the Ti/Au/SiO2:Ag/Ag/Au devices are as follows. First, vertical lines of Ti/Au (10/40 nm) 

as bottom electrodes were deposited on the SiO2/Si substrate by e-beam evaporation after 

the first lithography process and released by the first lift-off process. Then, after the 

second lithography process, 10 nm SiO2 co-sputtered with Ag was deposited to form the 

functional layer followed by the second lift-off process. Finally, after the last lithography 

step, horizontal lines of Ag/Au (10/40 nm) as top electrodes were deposited on the SiO2 

film by magnetron sputtering, and then the Ti/Au/SiO2:Ag/Ag/Au devices were released 



by the third lift-off process. The area of the devices used for experimental demonstration 

is 4 µm × 4 µm.  

Synaptic devices fabrication: The synaptic devices and lateral inhibition array used in the 

system are a 1T1R array with Pd/HfO2/Ta structure offered by the University of 

Massachusetts. The front-end and part of the back-end process for the transistor array 

were implemented in a commercial fab. Before fabricating the RS devices, argon plasma 

treatment was performed to remove the native metal oxide layer to make a good 

connection between the fab metal layers and the memristors. Then Ta/Pd (5/60 nm) 

bottom electrodes were deposited by sputtering and patterned by lift-off. The 10 nm HfO2 

switching layer was deposited by atomic layer deposition at 250oC. The patterning of the 

switching layer was operated by photolithography and reactive ion etching. At last, the 

top electrodes of 50 nm Ta were sputtered and lifted off.  

Measurement method: In the electrical experiment, the electrical characteristics 

evaluation experiments of a single Ti/Au/SiO2:Ag/Ag/Au device are performed on an 

Agilent B1500A. During the pulse measurement, an external transistor (BS170) was 

connected to the TS device by a transfer box, and a DC power source was connected to 

the gate of the transistor. For the neuron circuit measurement in Fig. 3, we manufactured 

a printed circuit board (PCB) first, as shown in Supplementary Fig. 4. The TS memristors 

are connected to the PCB by a chip holder. The model numbers and the supplied source 

voltages of the used CMOS digital chips are listed in Supplementary Table SI. A 

Keysight 81160A pulse generator was used as the power source to generate input signals, 

and a Keysight InfiniiVision MSO-X 3104T oscilloscope was performed to measure the 

signal evolution of different nodes. As to the system measurement, the synaptic devices 



were connected by the probes, and we directly connected the neurons to the synaptic 

array by electrical cables. Then we used the MATLAB to control the Keysight 81160A 

pulse generator to generate input signals. A PicoScope 4000 series oscilloscope and an 

InfiniiVision MSO-X 3104T oscilloscope were performed to measure 10 channels signals 

simultaneously. The digital models and circuit parameters used in this work are presented 

in Supplementary Table I. 

Training method: The experimental processes include two parts: the learning process and 

the inference process. For the learning process, due to the limited number of 

measurement channels (10 channels) at the same time, we trained the SNNs one by one 

layer. To train the first layer with the WTA learning rule, the patterns in Fig. 5a were 

utilized as the learning object. The white pixels in patterns are recognized as “0”, thus the 

inputs corresponding to these pixels are grounded. The black pixels in the patterns are 

recognized as “1” and mapped to 1.6 V inputs pulses (2 kHz, 250 µs width). For getting 

the evolution of the synaptic devices, the synaptic devices are initialized to a medium 

value (~ 400 µS). Then the input pulse number that applied on the input terminals 

increases gradually until a fire event is observed, as shown in Supplemental Fig. 7b. 

During training the second layer with supervised learning, the synaptic devices are 

initialized to a low value (~ 40 µS). The shared gate of synapses of the target neuron is 

activated by applying a 3.0 V voltage, and other gates are inhibited by grounding. Then 

the input pulse number that applied on the selected input terminals increases gradually 

until a fire event is observed, as shown in the Supplemental Fig. 7c. The simulation for 

Supplementary Fig. 11 is conducted on a Matlab platform, in which the neurons have no 

stochasticity. 
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Figures

Figure 1

Biological neural system vs. memristive system. a, Schematic of a biological neural system. The post
neuron receives input signals from the pre neurons through the connected synapses and changes its
membrane potential. An action potential generates at the axon hillock once the membrane potential
surpasses a threshold value. The �red neuron could inhibit neighboring neurons through interneurons.
The relative timing of pre and postsynaptic spikes could in situ modify the synaptic strength, i.e., the
spike timing dependent plasticity (STDP) learning rule. b, Frame diagram of the hybrid neuron driven
memristive system. The resistive switching (RS) memristor serves as synapses and lateral inhibition
connection. The hybrid neuron contains a threshold switching (TS) memristor and simple digital units
(CMOS), in which the TS devices perform the leaky integrate-and-�re neuron function, and the digital units
generate active spikes, refractory period (RP) signals, in situ weight updating signals, and lateral
inhibition signals.



Figure 2

Characteristics of the TS device. a, Scanning electron microscope (SEM) image of the TS array, includes
32 discrete devices (4 μm × 4 μm). The inset shows a zoom in image of a single device. b, 100 typical I V
switching curves of the device under positive voltage sweeps. Inset: the device structure used in this work.
c, The current response of the device under a 1.2 V pulse (1 ms width) followed by a 0.05 V monitor
voltage. Inset: the schematic of the testing circuit. d, The statistical data of the integration time and
relaxation time as a function of the pulse amplitudes under 1 ms pulse width. e, The integration behavior
of the TS device under multiple pulses (1.1 V, 250 μs width, 250 μs interval time) with 0.05 V monitor
voltage between pulses. After the �rst �re, the device cannot completely return to its initial HRS due to the
interval time is not enough for �nishing a complete relaxation, and thus induces a sub-threshold �ring. f,
The statistical data of the required pulse number for the �rst �ring under different pulse voltages (with
250 μs width and interval time). Fewer integration pulses are required under higher voltages.



Figure 3

Hybrid memristor CMOS neuron circuit and characteristics. a, Schematic of the hybrid neuron circuit. A
single TS device serves as the gated membrane for performing the leaky integrate-and-�re neuron
function. Two D-type latches (L1 and L2) and a AND gate (G1) are used to shape the �re signal to a �xed
spike signal. The output signal from L2 is applied to the gate terminal of T1 to make the node 1 virtual
ground, which is for performing synaptic potentiation operation and supplying a refractory period (RP). A
buffer, a transistor T3, and a AND gate (G2) construct the depression module. An OR gate G3 that
receives inputs from L1 and L2 serves as the lateral inhibition output. b, The sequence diagram of the
output values on �ve key nodes under continuous input pulses (1.8 V, 2 kHz, 250 μs width) within two
continuous �ring cycles when disabling the depression feedback circuit. c, The continuous spiking
behavior under different input voltages on VIN1. d, The statistical results of spiking frequencies as the
function of the input pulses amplitudes, the frequency increases with increasing the input pulse
amplitudes.



Figure 4

Lateral inhibition circuits for the winner take all learning rule. a, Schematic of the lateral inhibition array
(LIA) circuit for ten neurons, which contains a resistive switching (RS) array and comparators. The
outputs of LIA are applied to the shared gates of 1T1R synapses to implement lateral inhibition. The
lateral inhibition signals (VL1−VL10) from neurons serve as the inputs of the LIA, and the outputs of the
comparators are applied to the shared gates of 1T1R synapses. VBIAS: 1.5 V, VRef: 50 mV. b, The pre
programmed weight conductance of the memristor array used in the LIA circuit for ten neurons. c, Two
input conditions of the LIA while performing lateral inhibition operation, the input signals are the neurons’
lateral inhibition signals. d, The corresponding outputs of all the LIA (LG1−LG10) when two conditions in
c serve as the inputs of the LIA. c & d, The Y axis unit is volt (V). e, The moment when the neuron outputs
lateral inhibition signal. Two �ring cycles are presented.



Figure 5

Fully hardware multilayer SNNs. a, The digital patterns used for learning, every pattern includes 30 pixels
(6 × 5). b, Frame diagram of the constructed SNNs (30 × 10 × 10). The �rst layer is constructed with a 30
× 10 array and the second layer is with a 10 × 10 array. A 11 × 10 array with a bias input is used for lateral
inhibition of the �rst layer output neurons. c, The detailed circuit schematic of the whole system. d & h,
The initialized weight map of the �rst layer and second layer before learning. e & i, The evolution of the
synaptic weights of the neuron “1” after 30 �ring events when the digit “1” as input pattern. f & j, The �nal
weight map of the �rst and second layers after learning, respectively. Clear weight distribution is
observed. d, e, f, h, i &j, Presented under the same color bar. g & k, The �ring rates of the output neurons in
�rst and second layers under different input digits with noise pixels during inference processes.
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