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Abstract

Huntington's disease (HD), like many other neurological disorders, affects both lower and upper
limb function that is typically assessed in the clinic - providing a snapshot of disease symptoms.
Wearable sensors enable the collection of real-world data that can complement such clinical
assessments and provide a more comprehensive insight into disease symptoms. In this context,
almost all studies are focused on assessing lower limb function via monitoring of gait, physical

activity and ambulation.

In this study, we monitor upper limb function during activities of daily living in individuals with
HD (n=16), prodromal HD (pHD, n = 7), and controls (CTR, n = 16) using a wrist-worn wearable
sensor, called PAMSys ULM, over seven days. The participants were highly compliant in wearing
the sensor with an average daily compliance of 99% (100% for HD, 98% for pHD, and 99% for
CTR). Goal-directed movements (GDM) of the hand were detected using a deep learning model,
and kinematic features of each GDM were estimated. The collected data was used to predict
disease groups (i.e., HD, pHD, and CTR) and clinical scores using a combination of statistical and

machine learning-based models.

Significant differences in GDM features were observed between the groups. HD participants
performed fewer GDMs with long duration (> 7.5 seconds) compared to CTR (p-val = 0.021,d =
-0.86). In velocity and acceleration metrics, the highest effect size feature was the entropy of the
velocity zero-crossing length segments (HD vs CTR p-val <0.001, d = -1.67; HD vs pHD p-val =
0.043, d=-0.98; CTR vs pHD p-val = 0.046, d=0.96). In addition, this same variable showed a
strongest correlation with clinical scores. Classification models achieved good performance in
distinguishing HD, pHD and CTR individuals with a balanced accuracy of 67% and a 0.72 recall
for the HD group, while regression models accurately predicted clinical scores. Notably the
explained variance for the upper extremity function subdomain scale of Unified Huntington’s
Disease Rating Scale (UHDRS) was the highest, with the model capturing 60% of the variance.
Our findings suggest the potential of wearables and machine learning for early identification of
phenoconversion, remote monitoring in HD, and evaluating new treatments efficacy in clinical

trials and medicine.

Keywords: Huntington's disease, upper limb function, wearable sensors, accelerometer, digital

health biomarkers



1 Introduction

Huntington's disease (HD) poses significant challenges due to its complex motor, cognitive, and
behavioral symptoms. HD is an inherited autosomal dominant neurodegenerative disorder that
manifests in midlife and progresses steadily, affecting individuals' motor functions, cognition, and
behavior (Walker, 2007). Particularly intriguing is the period preceding clinical diagnosis, known
as prodromal HD (pHD), during which symptoms may emerge, offering a window for early
intervention (Papp et al., 2011). However, the lack of disease-modifying therapies underscores the
urgency of accurate and timely monitoring to facilitate early intervention. Currently, the Unified
Huntington’s Disease Rating Scale (UHDRS) is the primary tool used for assessing motor
function, cognitive abilities, and behavioral symptoms in HD. It provides a comprehensive
overview of a patient's functional capabilities and disease progression. While UHDRS provides
critical snapshots of a patient's condition at specific points in time, wearable technology can
supplement these by offering continuous, objective, and personalized data, thereby enhancing the
monitoring and management of HD.

In this context, frequent at-home monitoring emerges as a critical tool for tracking disease
progression and assessing treatment efficacy. Automated remote monitoring offers several
advantages over traditional clinic-based assessments, including increased frequency, reduced
subjectivity, and the ability to capture subtle changes in motor function (Andrzejewski et al., 2016;
Bennasar et al., 2018; Dorsey et al., 2017; O Breasail et al., 2021; Sharma et al., 2023). In addition,
remote monitoring technologies have the potential to reduce the burden of clinical care and
research by moving assessments from the clinic to the home, potentially expanding access for
diverse patient populations. In this context, the use of wearable sensors can provide a sensitive tool

for tracking upper limb function during activities of daily living (Bennasar et al., 2016; Tang et
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al., 2020; Troiano et al., 2014; Zhou et al., 2008). Specifically, goal-directed movements (GDMs),
which are fundamental to daily activities like reaching and grasping, serve as atomic components
of upper limb movements and offer valuable insights into motor function (Desmurget et al., 1998;
Elliott et al., 2010).

Recent advancements in deep learning have propelled the development of robust techniques for
automated GDM detection from accelerometer data (Elkholy et al., 2020; McLeod et al., 2016;
Panwar et al., 2019; Subash et al., 2022). Leveraging these advancements, we have developed
PAMSys ULM (ULM: upper limb monitoring; BioSensics LLC, Newton, MA), a wearable sensor
for continuous monitoring of features of GDMs during activities of daily living (A. S. Nunes et
al., 2023). PAMSys ULM has been used for monitoring upper limb (UL) function in several
neurodegenerative conditions including stroke (A. S. Nunes et al., 2023), Friedrich’s ataxia (R.
Mishra et al., 2024), and ALS (A. S. Nunes et al., 2024), as well as a recent study in inclusion body
myositis (R. K. Mishra et al., 2024). This study aims to validate the effectiveness of the PAMSys
ULM in assessing upper limb function in HD by examining the correlation between sensor-derived
features and established clinical scores. We postulated that GDM features would be able to identify
group differences between individuals with HD, pHD, and healthy controls (CTR), and that these
differences would be correlated with the clinical scores. In addition, we used machine learning-

based models to classify the groups based on the GDM features and predict their clinical scores.

2 Methods

2.1 Experimental Design

The experimental setup was previously reported in (A. Nunes et al., 2024), where speech data were

used. In brief, participants provided written informed consent and were enrolled in an investigator-
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initiated observational cohort study performed at the University of Rochester. The study was
reviewed and approved by the University of Rochester Institutional Review Board. The
longitudinal study included visits every three to 6 months, for up to 3 years of total follow-up.
During each visit, HD, and pHD participants were assessed via the UHDRS (Kieburtz et al., 1996)
and their demographics, concomitant medications, and health history were collected. To derive a
clinical assessment of the upper limb function, we use the upper extremity function subdomain
scale of UHDRS (UHDRS-UL). UHDRS-UL is calculated by adding the following UHDRS item
scores for both upper extremities: finger tapping, pronate/supinate, rigidity of the arms, maximal
dystonia, and maximal chorea of the upper limbs. Following the visit, all participants wore a wrist
sensor on the dominant hand and a pendant sensor on the chest for one week, with instructions to
wear the sensors continuously. This study uses solely the wrist sensor accelerometer data.
Similarly, for BioDigit Database CTR participants, the Penn State University Review Board

approved the study where participants wore a wrist sensor for a week.

2.2 Participants

16 individuals with HD, 7 individuals with pHD, and 11 CTR were included in the study. HD
status was confirmed clinically by a movement disorders specialist investigator and either a self-
reported first degree relative with HD or self-reported genetic test indicating a CAG expansion of
>36 in the huntingtin gene (Walker 2007). Prodromal HD participants were individuals with a self-
reported CAG expansion of >36 in the huntingtin gene (Walker 2007) without a clinical diagnosis
of HD. CTR participants were individuals in good health with no evidence of neurological
disorders likely to cause involuntary movements or gait disturbance, as determined by the
investigator. They were age-matched to the participants in the HD group. Age and sex were not

significantly different between HD and CTR groups, but pHD had significant differences for both


https://paperpile.com/c/Y5Mpyq/apM5

groups. Exclusion criteria included pregnancy and any neurological, medical, or psychiatric
conditions that would preclude participation in the activities in the investigator’s judgment. In
addition, we used data from 5 sex- and age-matched healthy CTR who underwent the same type
of monitoring for a week from BioDigit Database, a database of digital health data created and

maintained by BioSensics (Table 1).

23 Data analysis

Raw accelerometer data was preprocessed as described by Nunes et al. 2024. In brief, the data was
first bandpass filtered between 0.1 and 12 Hz with a 4th order Butterworth filter to remove the
inertial gravity component and high frequency activity, and then down sampled to 25 Hz. The
velocity was estimated by integrating the acceleration data. A deep learning model was used to
detect 3-second windows with a minimum 1.5 seconds of GDM. For each window, a total of 8
features for acceleration and for velocity magnitudes were calculated, including minimum,
maximum, and median features. For zero-crossing features, three-axis components were used to
calculate zero-crossing count, duration, and duration entropy. Zero crossing features in
acceleration and velocity analysis detect shifts in movement direction or speed by counting shifts
from positive to negative (or vice versa) and measuring the duration and variability of these shifts.
These features are important as they can capture chorea, tremor movement or overshooting
(Keenan & Wilhelm, 2005; Klapper et al., 2003). In addition, for each recording, the total count
and count per GDM duration were calculated. The features were grouped per day and the median
was extracted, then the mean across days was calculated. The median was used to avoid the

influence of any possible outlier.
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Statistical significance between groups was calculated with t-tests, and false discovery rate (FDR)
correction was applied to identify group differences that survived multiple comparisons. Spearman
correlations were used to assess the association between GDM features and the clinical

assessments, as clinical scores were reported on an ordinal scale.

Machine learning was used to classify individuals in HD, pHD, and CTR groups, and to predict
the clinical scores of UHDRS functional, UHDRS motor, total functional capacity, and UHDRS-
UL. Maximal correlation feature selection was used to select the top 5 features as input for the
models. An elasticnet regression model was trained for regularization, and a logistic layer was
added for classification. Leave-one-subject-out cross validation was used to test model
performance. In some instances a few subjects had one extra visit, thus, the total number of data
points for classification was HD: 18, pPH: 8, CTR: 21. For regression, the total number of data
points with available clinical scores was HD: 17, pPH: 8, CTR: 14. In the regression model and
correlation, all the groups were included to capture all the health spectrum, ensuring that models
performance are tested from high severity to healthy individuals. Classification performance was
tested using balanced accuracy and recall, and regression prediction performance with mean

squared error, mean absolute error, correlation score, and explained variance.

3 Results

The participants were highly compliant in wearing the PAMSys ULM wrist sensor with an average
daily compliance of 99% (100% for HD, 98% for pHD, and 99% for CTR) - In total, two
participants (one pHD and on CTR) did not wear the sensor for 1 days during the 7 day monitoring

period.



Features extracted from GDM periods and averaged per participant were compared between
groups. Several features were significantly different as presented in Table 2, with selected features
shown in Figure 1. Individuals with HD performed significantly fewer GDM movements with long
duration (> 7.5 seconds) compared to the CTR group (p-val = 0.021, d = -0.86). Notable
distinctions emerged in velocity-related features during GDMs between HD and CTR participants.
Specifically, median velocity (p-val = 0.019, Cohen’s d = -0.89), maximum velocity (p-val =0.01,
d = -0. 89), and velocity root mean squared (p-val = 0.015, d = -0.94) were greater in CTR
participants. Acceleration features that significantly differed between HD and CTR were zero-
crossing related, namely, the average number of zero-crossings (p-val = 0.018, d = 0. 92), the
entropy of the zero-crossing length (p-val = 0.01, d = 0. 98) and zero-crossing average duration
length (p-val = 0.012, d =-0. 99). This indicates that HD individuals have more jerky movements,
on average with shorter duration, while the distribution of the GDMs duration is more scattered.
As seen in Figure 1, features have a trend with CTR and HD mean values at opposite ends and
pHD mean values in between the two groups. However, with the current pHD sample size the

differences are not significant despite having similar effect sizes.

Correlations between count-based features and clinical scores were not significant. Median,
maximum, root mean squared, and zero-crossing duration entropy velocity features correlated
significantly with all the clinical scores with negative correlation values ranging from -0.71 to
0.59. Acceleration features that significantly correlated with all the clinical scores were entropy
and zero-crossing average duration, with correlation values ranging from -0.52 to 0.51. All the
correlations are illustrated in Figure 2A as a heatmap, and selected features plotted as a scatterplot
in Figure 2B. The correlation values and significance are provided in the supplementary materials

(Table S1)



A logistic regression with an elasticnet regularization was used to classify individuals in HD, pHD
and CTR groups. Balanced accuracy was used as the main metric of performance and the model
achieved a balanced accuracy of 0.67, with 0.33 being the chance level. The recall for the HD
group was 0.72, for the pHD 0.62 and for the CTR 0.67. Figure 3 shows the corresponding
confusion matrix. It can be noted that the model had more difficulties in distinguishing pHD from

controls, due to the small differences between them.

For predicting clinical scores, regression models with elasticnet regularization were used. Table 3
shows the models’ performance. The highest explained variance was achieved with the UHDRS
UL explaining 60%, showing that GDM features are good candidates for predicting upper limb
function. UHDRS motor scores were also predicted with good explained variance with 56% of the
variance captured by the model. Total Functional Capacity performance was moderate with 33%
of the explained variance captured by the model. Figure 4 shows the scatterplots of the actual and

predicted scores.

4 Discussion

The study presents a novel approach to monitoring upper limb function in individuals with HD
and pHD using accelerometer data collected over a span of seven days. This method offers several
advantages, including the ability to potentially provide more precise and frequent assessments in
a natural living condition and capturing subtle changes in motor function that may not be evident
during clinic-based evaluations. Our approach encompassed several key steps. Firstly, we
examined group differences and correlations in goal-directed movements (GDMs) between
individuals with HD, prodromal HD, and CTR participants. Subsequently, leveraging machine

learning techniques, we trained models to gauge the informative nature of GDM features for two



main purposes: classifying individuals into HD, prodromal HD and CTR groups, and predicting
clinical scores, including the UHDRS UL score. Through this multifaceted approach, we aimed to
elucidate the potential of accelerometer data for remote monitoring and early intervention
strategies in HD, specifically, how automated GDM detection can be used to monitor upper limb

function in HD.

Results from this study indicate significant differences in the number of GDM counts, velocity-
related GDM features between individuals with HD and CTR participants. Notably, HD
participants demonstrated fewer and shorter-duration GDMs, which could be due to increased
pauses during movements, potentially in the setting of emergent competing motor features (e.g.,
chorea). In addition, HD participants had lower median velocity, maximum velocity, and velocity
root mean squared values than CTR. Similarly, acceleration-related features, such as zero-crossing
metrics, differed significantly between HD and CTR groups, suggesting differences in movement
characteristics between the two cohorts. While decreased velocity indicates GDM movements that
are performed slower, zero-crossing features indicate jerkiness in the movements, being less
smooth with a zigzag pattern where acceleration changes signs. These results are in accordance
with previous studies that have shown upper limb difficulties in movement control characterized
by target overshooting and movement overcorrections when performing goal-oriented movements
(Gordon et al., 2019; Klein et al., 2011; Lemay et al., 2008), in addition to involuntary choreatic

movements (Mann et al., 2012; Reilmann et al., 2011)

Classification models utilizing machine learning techniques showed promising results in
classifying individuals into HD, prodromal HD, and CTR groups, with good performance
particularly in distinguishing the HD group with respect to several GDM-based features. To

potentially aid early identification, zero crossing entropy of velocity in particular exhibited
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significant difference between pHD and control groups, as this feature is governed by both the rate
of sign changes and uncertainty in the measured velocity. Moreover, regression models
demonstrated the ability to predict clinical scores with significant correlations, with the UHDRS
UL score showing the highest explained variance. This suggests that GDM features extracted from
accelerometer data could serve as valuable predictors of upper limb function, providing insights

for experts to monitor disease progression and treatment efficacy.

However, the study has some limitations, notably the small sample size, particularly in the
prodromal HD group, which may limit the generalizability of the findings. Effects sizes in pHD
were notable but due to the sample size significance was not reached. In addition, age and sex
differences in the pHD groups compared to the other groups might further hinder finding
significantly different features. Future studies with larger sample sizes, especially in prodromal
HD cohorts, would be beneficial to validate the efficacy of this approach in detecting subtle

changes in motor function.

In conclusion, the study highlights the potential of using accelerometer data and machine learning
techniques for remote monitoring of upper limb function in individuals with HD and prodromal
HD. The results suggest that this approach could serve as a valuable screening technique and aid
in early intervention strategies for individuals at risk of developing HD, particularly when
extended to larger sample sizes. Additionally, the ability to predict clinical scores, particularly the
UHDRS UL, underscores the importance of remote monitoring in assessing disease progression

and treatment response.
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Table 1. Participants Demographics and Clinical Characteristics (Mean + Standard Error)

HD (n=16) pHD (n=7) CTR (n=16)
Age, mean (SD) 51.9 (11.0) 36.5(13.1) 58.9 (12.2)
Female, n (%) 8 (50.0) 6 (85.7) 11 (68.5)
Education level, n (%)
Doctoral degree 1(6.25) 0(0.0) 0(0.0)
Master’s degree 1(6.25) 1(14.2) 0(0.0)
Some graduate school 0(0.0) 0(0.0) 2 (18.2)
Four-year college degree 5(31.25) 0(0.0) 3(27.3)
Two-year college degree 2 (12.5) 1(0.0) 4 (36.4)
Some college 1 (6.25) 2 (28.6) 1(9.1)
High school diploma/GED 6 (37.5) 3(42.9) 1(9.1)
Race, n (%)
American Indian or Alaska Native 0(0.0) 1(14.3) 0(0.0)
White 16 (100) 6 (85.7) 14 (100)
Ethnicity, n (%)
Not Hispanic or Latino 16 (100) 7 (100) 14 (100)
UHDRS (n=11)
Total Functional Capacity, mean (SD) 8.8 (3.14) 12.5(1.13) 12.7 (0.9)
Functional, mean (SD) 19.4 (4.5) 23.6 (1.1) 23.6 (1.2)
Motor, mean (SD) 45.7 (18.3) 1.7 (2.6) 0.7 (1.4)
CAG length, mean (SD) 45.7(5.2) 44 (3.9)

HD: Huntington’s disease, pHD: Prodromal Huntington'’s disease, CTR: Controls, UHDRS:
Unified Huntington's Disease Rating Scale, SD: Standard Error



Table 2. Group means and statistical significance. All GDM metrics are averaged daily values

measured over 7 consecutive days. The feature values are the daily averages. Bold statistics
indicate significant differences, and * indicates surviving multiple comparison corrections.

HD pHD CTR HD vs pHD HD vs CTR pHD vs CTR
Mean =+ std Mean =+ std Mean =+ std Cohen's D pval Cohen's D pval Cohen's D pval

Daily GDM counts
Daily GDMs, n 1110.6 = 427.1 1046.6  + 348 1217.36  + 4999 0.16 0.732 -0.23  0.521 0.37 0.428
Daily GDMs with
duration>4.5s, n 80592 + 3033 736.31 + 2265 | 796.04 £+ 271.11 0.25 0.594 0.03  0.9235 0.23 0.616
Daily GDMs with
duration>7.5s, n 98.98 +  46.99 102.53 + 51.76 286.9 + 304.19 | -0.07 0.873 -0.86  0.0211 0.71 0.131
Daily GDMs with
duration > 10.5 s, 35.59 + 18.87 37.46 + 22.59 121.94 + 136.17 | -0.09  0.839 -0.89  0.018 0.73 0.122
Daily GDMs with
duration > 13.5 s, n 13.77 + 795 15.28 + 10.56 56.17 +  66.85 -0.17  0.708 -0.89  0.017 0.72 0.127
Daily GDMs with
duration > 16.5 s, 5.1 + 299 5.96 + 438 26.86 + 344 -0.25  0.587 -0.89  0.017 0.72 0.129
Velocity features
Minimum velocity, m/s 18.46 + 453 20.8 + 3.11 19.21 + 449 -0.56  0.230 -0.17  0.638 -0.38  0.409
Median velocity, m/s

59.03 + 1441 69.97 + 7.85 69.77 + 928 -0.85  0.075 -0.89 0.0187 -0.02  0.961
Maximum velocity, n/s 109.95 + 2745 132.13 + 11.3 132.09 + 1423 -0.93  0.054 -1.01  0.008 0 0.995
Velocity root mean
squared, m/s 67.42 + 1657 80.51 + 8.19 80.4 +  9.69 -0.89  0.062 -0.96 0.011 -0.01 0.980
Entropy velocity 4.26 + 0.01 4.26 + 0 4.26 +  0.01 0.45 0.337 0.18 0.619 0.04 0.929
Velocity zero crossings
count, n 4.48 +  0.68 4.53 + 0.39 4.47 + 039 -0.08  0.868 0.03 0.943 -0.16  0.734
Velocity zero crossings
duration entropy 0.94 + 0.03 0.96 + 0.01 0.98 +  0.02 -0.98  0.043 -1.67 <0.001 0.96 0.046
Velocity zero crossings
average duration, n 38.02 +  2.58 39.25 + 1.22 40.38 + 294 -0.54  0.247 -0.85  0.022 0.44 0.340
Acceleration
features
Minimum acceleration,
m/s’ 0.73 + 0.23 0.92 + 0.16 0.89 + 0.18 -0.86  0.070 -0.77  0.036 -0.15  0.747
Median acceleration,
m/s’ 3.46 + 1 4.1 + 0.53 3.92 + 0.64 -0.71  0.130 -0.55  0.129 -0.29  0.532
Maximum acceleration,
m/s’ 10.32 + 298 11.09 + 0.89 10.64 + 1.38 -0.3 0.517 -0.14  0.704 -0.36  0.4363
Acceleration root mean
squared, m/s? 437 +  1.21 5 + 0.51 4.86 +  0.64 -0.6 0.198 -0.52  0.155 -0.23  0.615
Entropy acceleration 423 +  0.02 4.24 + 0 4.24 +  0.04 -0.77  0.105 -0.37  0.299 0 0.999
Acceleration zero
crossings count, n 35.47 +  6.46 32.71 + 3.43 31.07 + 339 0.48  0.3023 0.85 0.022 -0.48  0.298
Acceleration zero
crossings duration
entropy 1.04 +  0.02 1.03 + 0.01 1.02 + 0.0l 0.51 0.269 0.99 0.008 -0.65  0.169
Acceleration zero
crossings average
duration, n 7.15 + 149 7.88 + 0.85 9.11 + 236 -0.55  0.240 -0.99  0.009 0.6 0.202




HD: Huntington’s disease, pHD: Prodromal Huntington’s disease, CTR: Controls, SD:
Standard Error, pval: p-value, m: meters, s: seconds
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Figure 1. Scatterplot of GDM features across groups. The selected features were significantly
different between HD and CTR participants. Although pHDs were not significantly different in
the majority of features, it can be noted that the pHD mean lies in between the CTR and HD
levels. * indicate significance <0.05, ** <0.01, *** <0.001
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Figure 2. Correlations between GDM features and clinical assessment scores. A) heatmap
showing all the correlations. It can be noted that velocity and acceleration features correlate the
most with the clinical scores. B) Scatterplots for each clinical assessment and a GDM feature
which was significantly correlated.
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Figure 3. Confusion matrix for group classification. The percentage of subjects is presented in
each box. The diagonal values indicate the recall, the percentage of group subjects correctly
identified. Total data points per group was 18 HD, 8 pPH and 21 CTR.



Table 3. Model performance in predicting clinical scores.
MSE MAE R Explained variance

UHDRS Functional 11.5 24 045 0.18
UHDRS Motor 256.78 1243  0.75 0.56
TFC 6.07 1.88 0.58 0.33
UHDRS UL 31.28 4.1 0.77 0.6

MSE: mean squared error, MAE: mean absolute error, R: correlation score, TFC: Total
functional capacity, UL: upper limb
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Supplementary material

Table S1. GDM features correlations with clinical assessment scores. All GDM metrics are
averaged daily values measured over 7 consecutive days. Bold statistics indicate significant
differences, and * indicates surviving multiple comparison corrections.

UHDRS Functional UHDRS Motor TFC UHDRS UL
corr pval corr pval corr pval corr pval

GDM counts features
GDM, n 0.09  0.607 0.12  0.510 0.00  0.999 0.02 0923
GDM with a duration <4.5 s, n 0.02 0921 020  0.280 -0.08  0.640 0.10  0.587
GDM with a duration > 7.5 s, n 020  0.264 -0.01 0977 0.14 0432 -0.07  0.681
GDM with a duration > 10.5 s, n 022 0213 -0.04 0817 0.16  0.369 -0.11  0.520
GDM with a duration > 13.5 s, n 024  0.171 -0.04  0.819 0.18  0.300 -0.10  0.565
GDM with a duration > 16.5 s, n 020  0.266 0.00  0.998 0.15  0.402 -0.06  0.741
Velocity features
Minimum velocity, m/s 029  0.093 034 0.058 028  0.108 -0.34  0.046
Median velocity, m/s 039  0.021 -0.50  0.004 *| 041 0.016 -0.52  0.002
Maximum velocity, m/s 0.46  0.006 -0.53  0.002 *| 047 0.005 *| -0.56 0.001
Velocity root mean squared, /s 042 0.015 -0.51  0.003 0.44  0.010 *| -0.53  0.001
Entropy velocity 021 0225 026  0.155 029  0.102 030  0.083
Velocity zero crossings count, n 0.03  0.880 0.07  0.694 0.04 0813 0.02 0921
Velocity zero crossings duration entropy | 048 0.004 071 0.000 *| 059 0.000 *| -0.67 0.000
Velocity zero crossings average
duration, n 021 0236 032 0.071 027  0.124 -0.30  0.082
Acceleration features
Minimum acceleration, m/s® 043 0012 -0.51  0.003 *| 044 0009 *| -0.54  0.001
Median acceleration, m/s® 035  0.044 039 0.027 036  0.040 -0.42  0.014
Maximum acceleration, 72/s” 0.15  0.406 0.19 0296 0.10  0.566 0.16 0362
Acceleration root mean squared, 7/s> 030  0.088 -0.36  0.043 029  0.093 -0.36  0.035
Entropy acceleration 035  0.042 -0.50 0.003 *| 041 0.016 -0.46  0.006
Acceleration zero crossings count, 031 0.073 031 0.082 037 0.030 0.40  0.020
Acceleration zero crossings duration
entropy 028  0.116 035  0.050 -0.34  0.049 0.38  0.026
Acceleration zero crossings average
duration, 042 0.013 047 0007 *| 051 0002 *| -052  0.001

TFC: Total functional capacity, UL: upper limb, pval: p-value, m:

correlation

meters, S. SQCOI’ldS, corr:




