
PI-MAE Supplementary

Luke McEvoy1*, Daniel Tafone1, 2, Yong Meng Sua1, 2, 3,
Yuping Huang1, 2, 3

1*Physics Department, Stevens Institute of Technology, 1 Castle Point,
Hoboken, 07030, NJ, USA.

2*Center for Quantum Science and Engineering, Stevens Institute of
Technology, 1 Castle Point, Hoboken, 07030, NJ, USA.

3*Quantum Computing Inc., 5 Marine View Plaza, Hoboken, 07030, NJ,
USA.

*Corresponding author(s). E-mail(s): lmcevoy@stevens.edu;
Contributing authors: dtafone@stevens.edu; ysua@stevens.edu;

yhuang5@stevens.edu;

1 LiDAR System Design

A further illustration of the single-photon LiDAR system that we used to image
the physically masked data is shown in Figure 1.

2 Transformers

The introduction of the Transformer model in 2017 marked a significant milestone
in Artificial Intelligence, propelling an AI boom with its novel encoder-decoder archi-
tecture that leverages multihead attention mechanisms. This architecture surpassed
the capabilities of traditional Recurrent Neural Networks (RNNs), such as Long-short-
term memory (LSTM) units and Gated Recurrent Units (GRU), by offering a more
efficient and scalable approach to processing sequences. Initially, Transformers were
designed for Natural Language Processing (NLP) tasks, setting a new standard for
performance in this domain.

Transformers rely on a mechanism known as scaled dot product attention to assess
the significance of different sections of the input relative to each other. Within this
framework, three matrices are generated from the input: a query matrix Q, a key
matrix K, and a value matrix V . The transformer model produces its output by

1



Fig. 1 System Design

calculating a weighted sum of the values, where the weights are derived from the dot
product between each query and its corresponding keys, adjusted by dividing by the
square root of the dimensionality of the keys, dk.

Attention(Q, K, V) = softmax

(
QKT

√
dk

)
For any given pair of query and key vectors, a single score can be computed as

ai,j = softmax

(
qik

T
j√
dk

)
This process, known as self-attention, focuses on identifying interactions within the

dataset, as depicted in Figure 2. Advancing to Multi-Head Self Attention (MHSA), this
technique enhances self-attention by processing the inputs in smaller, parallel batches
across multiple subspaces. This approach significantly outperforms the sequential pro-
cessing of recurrent neural networks (RNNs), where each computation depends on the
output of the previous layer. In MHSA, the results of these independent attention
calculations are merged as they are computed in parallel on a GPU.

head = Attention
(
XqW

q
i , XkW

k
i , XvW

v
i

)
MultiHeadAttention (Xq, Xk, Xv) = ([head1, ...,headh])W

o

2



Fig. 2 Self Attention Computation

Here, W q, W k, and W v denote the weight matrices for the query, key, and value,
respectively, while Xq, Xk, and Xv represent the corresponding elements transformed
into embedding vectors. Multiplication of these weight matrices with the embedding
vectors produces the inputs for the self-attention mechanism. In the case of MHSA,
the results of each self-attention calculation are combined and then multiplied by an
output weight matrix W o, which determines the relative influence of each head within
the MHSA module. The distribution of influence among heads in a MHSA module
typically varies, with h indicating the total number of heads.

Discussing the encoder-decoder structure, the encoder utilizes Multi-Head Self
Attention (MHSA) to create an attention-focused representation of the input. This
representation enables the identification and retrieval of specific information or con-
cepts from a vast latent space. Structurally, the encoder consists of a repeated module,
executed six times, featuring two key components: a MHSA layer and a fully connected
feed-forward neural network (FFNN). In an FFNN, information progresses in a singu-
lar direction—forward—without any backloops or cycles characteristic of a Recurrent
Neural Network (RNN). Additionally, each sub-module is enhanced with a residual
connection and layer normalization for improved performance and stability.

Turning to the decoder, its role within the transformer architecture is to extract and
interpret information from the encoder’s output. While the decoder’s design mirrors
that of the encoder, a notable distinction is the inclusion of an extra MHSA sub-module
in the decoder, making two in total. The initial MHSA layer in the decoder is designed
to be masked, obscuring future information embeddings. This masking ensures that
the decoder cannot prematurely access information about upcoming events, aligning
the model’s predictions more closely with actual sequential dependencies.

Positional encoding is pivotal due to the permutation invariance of self-attention;
that is, the order of data input or processing does not influence the model. To counter-
act this, positional encoding is essential to impart sequence awareness to the model.
Without such encoding, transformers would lack the capability to discern the sequence

3



of words in text or the order of patches in an image. These positional embeddings are
designed to match the dimensionality of the input embeddings, allowing for integration
with the input data.

3 Masked Autoencoder

Transformers expanded beyond NLP with the introduction of Vision Transformers
(ViT) in June 2021, which applied the Transformer architecture to Computer Vision
(CV) without relying on Convolutional Neural Networks (CNNs). This approach,
which treats images as sequences of patches, similar to words in a sentence, opened
new avenues for applying attention mechanisms to visual data.

Following ViT, Facebook AI Research (FAIR) unveiled Masked Autoencoders
(MAE) in December 2021. MAEs extend the Transformer’s application by masking a
significant portion of the input image during training, pushing the boundaries of self-
supervised learning. This method allows the model to reconstruct images from sparse
inputs, demonstrating the Transformer’s versatility and the power of self-attention in
learning high-level data representations. MAEs utilize an asymmetric encoder-decoder
architecture, where the encoder processes visible patches, and the lightweight decoder
focuses on reconstructing the entire image.

4 Physics Informed Masked Autoencoder

Our PI-MAE model differs from MAE in that the scanning pattern is communi-
cated with the patch encoder. Without this optimization, there is no way to reconstruct
the physically masked images with MAE. The reason being that MAE randomly masks
an unmasked input. Therefore, if we input a physically masked image into MAE,
MAE will further mask it, causing further information loss. However, with PI-MAE,
we inform the patch encoder on where we looked by providing the scanning pattern.
Therefore, the Patch Encoder can intelligently decide where to mask and where to
unmask, without losing information. All masked patches will be areas that we did not
observe, and all unmasked patches will be areas that we did observe. Although we
observed a patch, that does not mean there is data, but this itself is informative. In
the same way observing an edge gives us information on the boundaries of an object,
a patch with no data informs us that we have surpassed the boundary of our scanned
object.

MAE does the following. MAE gets an input image with 100% of the data present.
MAE then passes this input image into its Patch Encoder. The Patch Encoder turns
the input image into patches. Next, the patches are turned into embeddings, positions,
and indices of patches. The masking procedure occurs in the past step, in the Patch
Encoder. Here, the input image randomly goes from 100% to 25% (if there were a
75% masking percentage set). We will revisit the Patch Encoder for PI-MAE discussion
as key optimizations in this module allow for physically masked single-photon image
reconstruction without the ground truth image. With the unmasked 25% of the image,
its corresponding embeddings are passed into the encoder. It is key to note that the
patch encoder and the encoder are two different modules. In addition to receiving

4



the embeddings of unmask patches, we provide the corresponding positions of these
unmasked patches to Encoder.

Now that the lightweight encoder has been provided the information on unmasked
patches it needs, we move on to the Decoder. We input the encoder outputs and
the masked embeddings (the embeddings corresponding to masked patches) into the
Decoder. This input is then decoded in the Decoder and then turned into patches via
the Patch Layer. We are now left with an array of reconstructed patches, which we
can reshape back into the input image dimensions.

PI-MAE is provided an input image with 25% of the data. It is important to note
how this differs from MAE. PI-MAE is provided with masked data with no ground
truth, unlike MAE. Furthermore, PI-MAE receives the scanning pattern that was used
to acquire this 25% physically masked image. Instead of passing the input image into
the Patch Encoder and having it randomly mask the input image like MAE, PI-MAE
provides the scanning pattern and the input image to the Patch Encoder. The Patch
Encoder in PI-MAE then intelligently uses the scanning pattern to align the mask
and unmask patch locations with that of the scanning pattern. Therefore, in PI-MAE,
all the locations that the scanning apparatus viewed are unmasked patches, and all
the locations that the scanning apparatus did not view are masked patches. This key
optimization with the Patch Encoder (from the original MAE architecture) allows for
the reconstruction of physically masked images without a ground-truth image, which
MAE cannot do. The rest of the operations with the Encoder and Decoder are the
same as those of MAE after this patch encoder optimization in PI-MAE.

Operational Comparison

MAE Workflow: MAE starts with a fully unmasked input image, which is seg-
mented into patches by the Patch Encoder. These patches are then randomly masked
according to a set percentage, significantly reducing the data used for encoding. The
encoder module receives only the embeddings of the unmasked patches, along with
their spatial information, before passing them to the decoder for reconstruction.

PI-MAE Workflow: PI-MAE begins with an input image that is already 25%
unmasked, reflecting the physically observed data without ground truth. The Patch
Encoder, informed by the scanning pattern, aligns masking with unobserved areas,
ensuring a direct correlation between scan patterns and patch encoding. This crucial
adjustment enables PI-MAE to reconstruct images from physically masked inputs effec-
tively, a feat unachievable by MAE. The subsequent encoding and decoding processes
mirror those of MAE, albeit optimized for physically masked inputs.

5



Fig. 3 PI-MAE Model Architecture

6



Fig. 4 Reconstructed images by PI-MAE for (a) 75% noise masking and (b) 90% noise masking. In
each group of (a) and (b), the leftmost column is the scanning pattern, the middle is the sparse image
collected by the LiDAR system, the rightmost column is the reconstructed images. (c) An example
acquired noise masked data. (d) and (e) are the Ground-truth LiDAR scans for letters and numbers,
respectively, which are what the data would have looked like if there had been no noise mask.

7


	LiDAR System Design
	Transformers
	Masked Autoencoder
	Physics Informed Masked Autoencoder

