
Supplementary information
This is a supplementary material caused restrict by the length of the main text.

1 More Ablation Study Results
We conducted comparative tests on the M4Netbase.

Fig. S1 shows the ablation study results of different multi-head weights. Dynamic means the weights from a FC layer,
according the experiments, finally we choose a set of static parameter.
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Figure S1. The impact of weight on accuracy.

Fig. S2 shows the ablation study results of different activation functions. It can be seen from the line chart and violin
chart that the ReLU series(ReLU, ELU, and RReLu) activation function have slightly better convergence speed, train loss and
volatility than Sigmoid, but there is no significant difference in the quantitative and qualitative test.
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Figure S2. Comparing the training losses of 8 commonly used activation functions.

2 More Qualitative Experiment Results
We provide additional visual results in this section to further demonstrate the effectiveness of this method, testing images from
the FOA1 and UFDD2.

FOA avatars are collected from various artworks, with pixel features significantly differing from real human faces. As
shown in Fig. S3, our method exhibits good robustness, successfully completing tasks such as landmark detection, head pose
estimation, and dense face alignment (3D mesh reconstruction). However, this example also reveals limitations of 3DMM-based
approach: while the mean face model is derived from real individuals and can adequately fit head poses and facial landmarks, it
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cannot precisely reconstruct exaggerated cartoon facial features. Consequently, the generated faces lack expressiveness in terms
of personalization.

UFDD datasets divided into several sub-datasets by different scenes, following the original partitioning of the datasets, we
present partial visual results for seven scenes: focus, haze, illumination and lens, motion, snow and rain, in Figures S4, S5,
S6, S7 and S8, respectively. From these results, it is evident that our method performs well in complex lighting conditions
and scenes obstructed by rain, snow, or fog. When dealing with scenes containing multiple individuals in a single image, the
industry typically adopts two approaches: top-down and bottom-up.

By the way, we follow the mainstream method3–5 to employ a top-down approach, incorporating a third-party facial
detection module for face detection, Specifically, this paper followed SynergyNet3 use Faceboxs6. The cropped facial region
information is then fed into our model, enabling multi-person detection without the need for additional training.
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Figure S3. Visualization of 3D face geometry prediction on FOA1 from M4Netbase. Row 1-4: Landmarks, Head Pose
Estimation, 3D face mesh(translucent), 3D face mesh(solid).
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Figure S4. Visualization of 3D face geometry prediction on UFDD(Scene: Focus)2 from M4Netbase.
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Figure S5. Visualization of 3D face geometry prediction on UFDD(Scene: Haze)2 from M4Netbase.
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Figure S6. Visualization of 3D face geometry prediction on UFDD(Scene: Illumination and lens)2 from M4Netbase.
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Figure S7. Visualization of 3D face geometry prediction on UFDD(Scene: Motion)2 from M4Netbase.

7/8



Figure S8. Visualization of 3D face geometry prediction on UFDD(Scene: Snow and Rain)2 from M4Netbase.
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