Supplementary Information

Biocatalytic enantioselective formation and ring-opening of oxetanes

Xia Hua^{1,2,3}, Yuan-Fei Wang^{1,2,3}, Xiao Jin^{1,2}, Hong-Yin Yu^{1,2}, Hui-Hui Wang^{1,2}, Yong-Zheng Chen^{1,2}, and Nan-Wei Wan^{1,2,*}

¹Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.

²Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University.

*Corresponding author. Email: nanweiwan@zmu.edu.cn.

Table of contents

1. Materials and methods	S1
2 Supplementary Tables 1-11	S10
3. Supplementary Figures 1-2	S21
4. Chemical synthesis and characterization of racemic compounds	S23
5. Biocatalytic enantioselective formation of oxetanes.	S41
6. Biocatalytic enantioselective ring-opening of oxetanes	S61
7. Large-scale reactions.	S81
8. Biocatalytic cascades	S81
9. Transformations of chiral products	S82
10. Copies of NMR spectra	S92
11. Chiral HPLC/GC traces	S192
12. References	S297

³These authors contributed equally: Xia Hua, Yuan-Fei Wang.

1. Materials and methods

General.

¹H-NMR (400 MHz) and ¹³C-NMR (100 MHz) were recorded on Agilent Technologies 400 MR. Chemical shifts were reported in parts per million (ppm) relative to residual signals of the solvent. The following abbreviations are used to indicate multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double of doublets, td = triple of doublets, tt = triple of triplets, dt = double of triplets, ddd = double of double of doublets. High-resolution mass spectra (HRMS) was recorded by ESI ionization sources. Flash column chromatography was carried out with 200-400 mesh silica gel. Melting point was uncorrected.

Chemicals (rac)-1a, (S)-1a, (rac)-1f, (rac)-1da, and (rac)-1ea were obtained from commercial suppliers. Other racemic γ -haloalcohols (rac)-a, oxetanes (rac)-b, γ -azidoalcohols (rac)-c, γ -cyanohydrin (rac)-1d, and γ -nitroalcohol 1e were obtained by chemical synthesis. Isopropyl- β -D-thiogalactopyranoside (IPTG) and kanamycin sulfate (Kan) were purchased from Solarbio (Beijing, China). PrimeSTAR DNA polymerase and Dpn I endonuclease were purchased from Takara. Cells were grown using or terrific broth (TB) medium. Phosphate buffer (PB, KH₂PO₄-Na₂HPO₄) was used as a buffering system for whole cell biotransformations, unless otherwise specified. Unless otherwise noted, all the other reagents and solvents were purchased from commercial sources and used as such without further purification.

Safety concerning statements

Organic azides are potentially explosive substances that can decompose with minimal energy input from external sources. When preparing and using organic azides, we consistently adhere to the following equation which accounts for all nitrogen atoms in the organic azide, not just those in the azido group. It is crucial to handle organic azides and sodium azide with care. Moreover, we have implemented strict safety protocols and, fortunately, have never experienced a safety incident with these experiments.

$$\frac{\mathbf{n}(C)+\mathbf{n}(O)}{\mathbf{n}(N)} \ge 3$$
, **n** sigifies the number of atoms.

Chromatography.

The enantiomeric excess (e.e.) values of chiral compounds and analytic yields were determined by chiral HPLC or GC analysis. The chiral HPLC was performed on Shimadzu LC-20A, equipped

with Chiralcel AD-H chiral column (4.6 mm Φ × 250 mmL, particle size 5 µm), Chiralcel OJ-H chiral column (4.6 mm Φ × 250 mmL, particle size 5 µm), Chiralcel OD-H chiral column (4.6 mm Φ × 250 mmL, particle size 5 µm), Chiralcel OD-H chiral column (4.6 mm Φ × 250 mmL, particle size 5 µm), Chiralcel OX-3 chiral column (4.6 mm Φ × 250 mmL, particle size 3 µm), Chiralcel IA-3 chiral column (4.6 mm Φ × 250 mmL, particle size 3 µm), Chiralcel IH chiral column (4.6 mm Φ × 250 mmL, particle size 5 µm), Chiralcel IC-3 chiral column (4.6 mm Φ × 250 mmL, particle size 3 µm). Chiral GC analysis was performed on Agilent 7890B gas chromatograph equipped with a flame ionization detector (FID) using Rt-bDEXcst column or CYCLODEX-B column with nitrogen as the carrier gas.

Preparation and screening of HHDH.

The recombinant E. coli (HHDH) strains were constructed to express the corresponding halohydrin dehalogenase (HHDH) genes, which have been preserved in our laboratory^{1,2}. All variants described in this paper were cloned and expressed using plasmid pET-28b(+) as the vector and Escherichia coli BL21 (DE3) as the host. E. coli (HHDH) cells were cultured in TB medium containing 50 µg/mL kanamycin at 37 °C until the optical density at 600 nm (OD₆₀₀) reached a range of 0.6-0.8. IPTG was then added to a final concentration of 0.2 mM to induce enzyme expression. The culture was then further incubated at 28 °C for an additional 12-14 h. Recombinant E. coli (HHDH) cells expressing the target HHDH were harvested by centrifugation at $8800 \times g$ for 3 min at 4 °C. The collected cell pellet was resuspended in phosphate buffer (PB, KH₂PO₄-Na₂HPO₄) to reach the desired cell density for the biotransformation reactions. The model dehalogenation reaction was carried out with 10 mM (rac)-1a and 10 g dcw/L (about OD₆₀₀= 20) E. coli (HHDH) cells in 5 mL PB buffer (50 mM, pH 8.5) at 30 °C for 8 h. The model ring-opening reaction was carried out with 10 mM (rac)-1b, 10 mM NaN₃ and 10 g dcw/L (about OD₆₀₀= 20) E. coli (HHDH) cells in 5 mL PB buffer (50 mM, pH 7.5) at 30 °C for 10 h. After the reactions were completed, the reaction mixtures were extracted using 5 mL of ethyl acetate. The organic phases were separated, dried over anhydrous Na₂SO₄, and analyzed by chiral HPLC. Chiral analysis of **1a**: Chiralpak OX-3, *n*-hexane/ i PrOH = 99/1, flaw rate = 0.5 mL/min, λ = 210 nm, $t_{(S)}$ - $_{1a}$ = 44.8 min, $t_{(R)-1a}$ = 48.7 min. Chiral analysis of 1b and 1c: Chiralpak OX-3, n-hexane/ i PrOH = 97/3, flaw rate = 0.7 mL/min, λ = 210 nm, $t_{(S)-1b}$ = 10.1 min, $t_{(R)-1b}$ = 11.3 min; $t_{(S)-1c}$ = 15.3 min, $t_{(R)}$ 1c = 16.6 min.

Docking study.

The predicted structure model (AFDB code: AF-N6YXW4-F1) of the wild type HheD8 (HheD8-WT) was obatined AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk). Docking studies of (*R*)-**1b** in the active site of enzyme HheG-WT/AF model was carried out using AutoDock 4.0 software³. The docking study was performed using "Genetic Algorithm" search parameters and default docking parameters. The possible docking pose with hydrogen bonds between oxetane ring of substrate (*R*)-**1b** and S117-OH, Y130-OH was chosen for further analysis with the PyMOL software⁴. Residues F19, A69, Y168, M124, R127, Q160, N161 and R182 were identified as hot-spots for site saturation mutagenesis study.

Directed evolution of HheD8.

Mutagenesis and cultivation: Site-saturation mutagenesis experiments were carried out using QuickChange PCR with degenerate codons. The resulting PCR products were purified, digested with Dpn I and directly transformed into E. coli BL21(DE3) competent cells via the heat-shock method. Single colonies of E. coli cells were picked and cultured in 2-mL 96-deep-well plates containing TB-Kan medium (300 μL per well, 50 μg/mL kanamycin) at 37°C for 5 h. Subsequently, 900 μL of TB-Kan medium with IPTG (to achieve a final concentration of 0.2 mM) was added to each well, and the plates were shaken at 28°C and 900 rpm for 12 h. Induced cells were harvested by centrifugation at $1600 \times g$ for 15 min at 4 °C and subsequently utilized for biotransformation.

Screeing for dehalogenation reaction: To resuspend the *E. coli* (HheD8) cells, 500 μ L of PB buffer (50 mM, pH 8.5) containing 10 mM (*rac*)-**1a** was added. The plates containing the cell and substrate suspensions were shaken at 30 °C and 900 rpm for 8 h. After completion of the incubation, the reaction mixtures were extracted using 700 μ L of ethyl acetate. The organic phases were separated, dried over anhydrous Na₂SO₄, and analyzed by chiral HPLC.

Screeing for ring-opening reaction: To resuspend the *E. coli* (HheD8) cells, 500 μ L of PB buffer (50 mM, pH 7.5) containing 10 mM (*rac*)-**1b** and 10 mM NaN₃ was added. The plates containing the cell and substrate suspensions were shaken at 30 °C and 900 rpm for 10 h. After completion of the incubation, the reaction mixtures were extracted using 700 μ L of ethyl acetate. The organic phases were separated, dried over anhydrous Na₂SO₄, and analyzed by chiral HPLC.

The mutants demonstrating improved catalytic activity and/or enantioselectivity were further verified using 5 mL biotransformation reactions, followed by preservation and gene sequencing

analysis. The reaction conditions were consistent with those described for the earlier enzyme screening reactions.

Primers for site saturation mutagenesis

Mutation site	Primer	Primer sequence
F19	F19-F	5'-GGCAGATGCA <u>NNK</u> ATGGGTCCTGCAC-3'
	F19-R	5'-CAGGACCCATMNNTGCATCTGCCTGG-3'
A69	A69-F	5'-CTGGCAATTCCG <u>NNK</u> CCGAGCACACCG-3'
AUJ	A69-R	5'-ACCGGTGTGCTCGG <u>MNN</u> CGGAATTGCC-3'
M124 for M2	M124-M2-F	5'-CAGCAGCACTGCGTGGT <u>NNK</u> GCACTGCTGAGCAGC-3'
W1124 101 W12	M124-M2-R	5'-CTGCTCAGCAGTGC <u>MNN</u> ACCACGCAGTGCTGC-3'
M124 f N/5	M124-M5-F	5'-CAGCAGCACTGCGTGGT <u>NNK</u> GCACTGGGGAGCAGC-3'
M124 for M5	M124-M5-R	5'-CTGCTCCCAGTGCMNNACCACGCAGTGCTGCTGC-3'
D127	R127-F	5'-GGTATGGCACTG <u>NNK</u> AGCAGCTATGCAG-3'
R127	R127-R	5'-GCTGCATAGCTGCTMNNCAGTGCCATAC-3'
0160	Q160-F	5'-GGTTAATGCAATTGCC <u>NNK</u> AATTTTGTTGAAAACC-3'
Q160	Q160-R	5'-GGGTTTTCAACAAAATT <u>MNN</u> GGCAATTGCATTAAC-3'
N161	N161-F	5'-GCAATTGCCCAG <u>NNK</u> TTTGTTGAAAAC-3'
N101	N161-R	5'-GGTTTTCAACAAA <u>MNN</u> CTGGGCAATTG-3'
V160	Y168-F	5'-TTGAAAACCCGACC <u>NNK</u> TTTCCGCCAG-3'
Y168	Y168-R	5'-TGAACTTCTGGCGGAAA <u>MNN</u> GGTCGGG-3'
D103	R182-F	5'-CGGCATTTAAAGAT <u>NNK</u> CTGAAATGGCAGG-3'
R182	R182-R	5'-CCTGCCATTTCAGMNNATCTTTAAATGCCGG-3'

Enzyme expression and purification.

To purify the HheD8-M3 mutant, we introduced a 6×His tag at its *N*-terminus, constructing the recombinant strain designated as *E. coli* (HheD8-M3-His). A single colony from this strain was used to inoculate 100 mL of LB medium supplemented with 50 μ g/mL kanamycin. The culture was incubated overnight at 37 °C and 220 rpm. Subsequently, 4 liters of LB medium, also containing 50 μ g/mL kanamycin, were inoculated with a 1:100 dilution of the overnight culture. This larger culture was then incubated at 37 °C and 220 rpm until the OD₆₀₀ reached approximately 0.8 (3-5 h). To induce the expression of the recombinant protein, IPTG was added to the culture to achieve a final concentration of 0.5 mM, followed by further incubation at 16 °C and 220 rpm for another overnight. The cells were pelleted by centrifugation (8800×*g*, at 4 °C for 4 min), resuspended in lysis buffer A (25 mM Tris, pH 8.0, 350 mM NaCl), and lysed by sonication. Cell

debris was removed by centrifugation (11000×g and 4 °C for 15 min) to obtain a clarified supernatant. The resulting supernatant harboring HheD8-M3 with *N*-terminal 6× His-tag was subsequently loaded onto a Ni-NTA affinity column (GE Healthcare) that had been preequilibrated with buffer A. To remove nonspecifically bound proteins, the column was washed with 20 column volumes of buffer B (25 mM Tris, 350 mM NaCl, 20 mM imidazole, pH 8.0). The bound target protein was then eluted using elution buffer C (25 mM Tris, 300 mM NaCl, 200 mM imidazole, pH 8.0) and the eluate was collected. The fractions were pooled and subsequently concentrated using a 10 kDa ultrafiltration cube (Amicon® Ultra-15, Millipore). The concentrated protein sample was filtered through a 0.2 μm filter and further purified with an anion exchange Q Sepharose column (HiTrap Q HP, GE Healthcare) eluting with buffer D (10 mM Tris, pH 8.0, 500 mM NaCl, 1 mM DTT) at a flow rate of 1 mL/min. Protein-containing fractions were collected and then concentrated to a final concentration of 20 mg/mL, in preparation for the subsequent crystallization experiments.

Crystallization and structure determination.

The crystallization experiment for HheD8-M3 was conducted at 18 °C using 96-well sitting-drop vapor diffusion plates in combination with commercial crystallization screen kits. In general, each drop was set up with 100 nL of the protein sample at a concentration of either 10 or 20 mg/mL, mixed with 100 nL of crystallization reagent, and the mixture was then equilibrated against 100 μL of reservoir solution. Crystals of HheD8-M3 were successfully grown in conditions containing 1.8 M ammonium sulfate. The crystals were rapidly soaked in the reservoir solution containing 20% (v/v) glycerol as cryo-protectant, mounted on loops, and flash-cooled at 100 K in a nitrogen gas cryo-stream. Crystal diffraction data were collected from a single crystal at the Shanghai Synchrotron Radiation Facility (SSRF, Shanghai, China) in BL02U beamline with a wavelength of 0.9791 Å at 100 K. The diffraction data obtained from the HheD8-M3 crystals were processed and scaled using the X-ray Diffraction Software (XDS) ⁵. The structure of HheD8-M3 was then solved by the molecular replacement method using the predicted HheD8 structure (with an accession number AF-N6YXW4-F1 from the AlphaFold Protein Structure Database, https://alphafold.ebi.ac.uk) as the initial search model ⁶. The initial model was built using PHENIX autobuild ⁷, and manual adjustment of the model was carried out using the program COOT ⁸. Afterward, the models were refined by PHENIX refinement ⁷ and Refmac5 ⁹. Finally, the stereochemical quality of the refined structure was checked using ¹⁰. The final validation of the HheD8-M3/Cl⁻ crystal structure was performed with Protein Data Bank ADIT Servers. The Ramachandran plot for HheD8-M3/Cl⁻ showed 95.51% of residues to be situated in the most favoured regions, 4.09% in additional allowed and 0.00% residues in outlier regions. Diffraction data and coordinates were deposited in the Protein Data Bank (PDB) with the accession number 8XXB (2.40 Å). All crystallographic figures were prepared using the PyMOL molecular graphics software package (Schrodinger, LLC)¹¹.

Gene and protein sequences of HheD8 enzymes.

>HheD8-WT (gene sequence)

>HheD8-WT (protein sequence)

MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV LNLAIPAPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGMA LRSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDRLKWQVP LGRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M1 (gene sequence)

>HheD8-M1 (protein sequence)

 $MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV\\ LNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGMA$

LRSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDRLKWQVPLGRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M2 (gene sequence)

>HheD8-M2 (protein sequence)

MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV LNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGMA LGSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDRLKWQVP LGRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M3 (gene sequence)

>HheD8-M3 (protein sequence)

MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV LNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGPAL GSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDRLKWQVPL GRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M4 (gene sequence)

ATGGCCCATGCAATTAGCCTGAGCGGTCGTCGTGTTCTGGTTACCCAGGCAGATGCATTTAT GGGTCCTGCACTGTGTGATGCATTTCGTGCAGCCGGTGCAGAAGTTGTTCCGGATCGTAGCG CACTGCTGGAACGTGGTGCAGGTCGTGCAGTTATTGAAGCAGCAGGTCGTATTGATGTTCTG GTGCTGAATCTGGCAATTCCGTTTCCGAGCACACCGGTTCATCAGGTTAGCGGTGGTGAATG GGAAACCACCTTTGCAGCACTGGTTCATCCGATGCGTGAAATGGTTGCAGCAGTTCTGCCGC AGATGATTGAACGTAAAGCAGGTAAAATTCTGCTGATGGGTAGCGCAGCACTGCGTGG TCCGGCACTGGGGAGCAGCACTATTCAGGC AGTTGGTGTTGAAGCCGCAGCACATGGTTTCAGGTTAATGCAATTTGCCAGAATTTTGTTG AAAACCCGACCTATTTTCCGCCAGAAGTTCAGGCAACACCCGGCATTTAAAGATTGGCTGAAA

>HheD8-M4 (protein sequence)

MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV LNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGPAL GSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDWLKWQVP LGRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M5 (gene sequence)

>HheD8-M5 (protein sequence)

MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV LNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGMA LLSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDRLKWQVP LGRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M6 (gene sequence)

>HheD8-M6 (protein sequence)

MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV LNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGPAL LSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDRLKWQVPL GRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M7 (gene sequence)

ATGGCCCATGCAATTAGCCTGAGCGGTCGTCGTGTTCTGGTTACCCAGGCAGATGCATTTAT GGGTCCTGCACTGTGTGATGCATTTCGTGCAGCCGGTGCAGAAGTTGTTCCGGATCGTAGCG CACTGCTGGAACGTGGTGCAGGTCGTGCAGTTATTGAAGCAGCAGGTCGTATTGATGTTCTG

>HheD8-M7 (protein sequence)

MAHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGRIDVLV LNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAALRGPAL LSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDWLKWQVPL GRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

>HheD8-M3+N-His-tag (gene sequence)

ATGGCCCATCATCATCATCACGCAATTAGCCTGAGCGGTCGTCGTGTTCTGGTTACCCA
GGCAGATGCATTTATGGGTCCTGCACTGTGTGATGCATTTCGTGCAGCCGGTGCAGAAGTTG
TTCCGGATCGTAGCGCACTGCTGGAACGTGGTGCAGGTCGTGCAGTTATTGAAGCAGCAGGT
CGTATTGATGTTCTGGTGCTGAATCTGGCAATTCCGTTTCCGAGCACACCGGTTCATCAGGTT
AGCGGTGGTGAATGGGAAACCACCTTTGCAGCACTGGTTCATCCGATGCGTGAAATGGTTGC
AGCAGTTCTGCCGCAGATGATTGAACGTAAAGCAGGTAAAATTCTGCTGATGGGTAGCGCA
GCAGCACTGCGTGGTCCGGCACTGGGGGAGCAGCTATGCAGCAGCCCGTGGTGCACAGCTG
GCATATATTCAGGCAGTTGGTGTTGAAGCCGCAGCACATGGTGTTCAGGTTAATGCAATTGC
CCAGAATTTTGTTGAAAACCCGACCTATTTTCCGCCAGAAGTTCAGGCAACACCGGCATTTA
AAGATCGTCTGAAATGGCAGGTTCCGCTGGGTCGTCTGGTTACAGCAGATGAAGATGCGAG
CTTTGCAGTTTATCTGTGTAGCGAAGCAGCCAATTGTTTTTGTTGGTCAGGTTTTTCCGGTTTG
TGGTGGTTGGGTTAATCGTTAA

>HheD8-M3+ *N*-His-tag (protein sequence)

MAHHHHHHAISLSGRRVLVTQADAFMGPALCDAFRAAGAEVVPDRSALLERGAGRAVIEAAGR IDVLVLNLAIPFPSTPVHQVSGGEWETTFAALVHPMREMVAAVLPQMIERKAGKILLMGSAAAL RGPALGSSYAAARGAQLAYIQAVGVEAAAHGVQVNAIAQNFVENPTYFPPEVQATPAFKDRLK WQVPLGRLVTADEDASFAVYLCSEAANCFVGQVFPVCGGWVNR

2. Supplementary Tables 1-11

Supplementary Table 1. Recombinant $E.\ coli\ (HHDH)$ strains used in this study.

HHDHs	Source	Accession	Identified in Ref.
HheA2	Arthrobacter sp. AD2	AAK92100	12
HheA5	Tistrella mobilis KA081020-065	WP_014743557	13
HheA8	alpha proteobacterium Mf 1.05b.01	WP_051402546	14
HheA10	Tsukamurella sp. 1534	WP_019201195	14
HheA11	Reyranella massiliensis 521	WP_020698933	14
HheA13	Pseudomonas sp. G5(2012)	WP_042955870	14
HheB3	marine metagenome	EBL02020	13
HheB4	marine metagenome	EBP61646	13
HheB6	marine metagenome	EDB56284	13
HheC	Agrobacterium tumefaciens AD1	AAK92099	12
HheD	Dechloromonas aromatica RCB	WP_011285856	13
HheD2	gamma proteobacterium HTCC2207	WP_007233072	13
HheD6	Marinobacter nanhaiticus D15-8W	WP_004579485	14
HheD7	Thauera sp. 27	WP_002926105	14
HheD8	Thauera aminoaromatica S2	WP_004302136	14
HheD14	Gammaproteobacteria bacterium MOLA455	WP_035490777	14
HheD15	Candidatus Competibacter denitrificans Run_A_D11	WP_048670059	14
HheD16	Methylibium sp. T29	WP_036236554	14
HheE	marine metagenome	EBP63112	13
HheE5	marine metagenome	WP_009577001	13
HheF	uncultured bacterium	BAH89601	13
HheG	Ilumatobacter coccineus YM16-304	WP_015443096	13
HheG2	Ilumatobacter nonamiensis YM16-303	WP_040495182	14
HHDHn1	Rhodobiaceae bacterium	PCJ71437.1	15
HHDHn2	Alphaproteobacteria bacterium HGW-Alphaproteobacteria-3	YJ5359PY013	15
HHDHn3	Alphaproteobacteria bacterium 46_93_T64	OUR79898	15
HHDHn4	Reyranella massiliensis	WP_020698933.1	15
HHDHn5	Alphaproteobacteria bacterium 65-37	OJU34764.1	15
HHDHn6	Rhodospirillales bacterium URHD0017	WP_092824593.1	15
HHDHn7	Alphaproteobacteria bacterium RIFCSPHIGHO2_12_FULL_66_14	OFW98094.1	15
HHDHn8	Enhydrobacter aerosaccus	WP 085934632.1	15
HHDHn9	Rhodospirillaceae bacterium TMED8	OUT52242.1	15
HHDHn10	Rhodomicrobium	WP_088343515.1	15
HHDHn11	Aurantiochytrium sp. FCC1311	GBG24028.1	15
HHDHamb	Acidimicrobiia bacterium	MSO17354.1	16
HHDHapb	Alphaproteobacteria bacterium 32-64-14	OYX46376.1	16
HHDHabb	Actinobacteria bacterium IMCC26256	AKL74579.1	16
HHDHnsr	Novosphingobium resinovorum	WP_069709913.1	16

Supplementary Table 2. Screening of HHDHs for the dehalogenation reaction of (rac)-1a.a

	,		. , . ,	, , , ,	
entry	biocatalyst	yield 1b (%) ^b	e.e. 1b (%) ^b	e.e. 1a (%) ^b	E^c
1	-	NR	ND	<5	ND
2	E. coli	NR	ND	<5	ND
3	E. coli (HheA2)	NR	ND	<5	ND
4	E. coli (HheA5)	13	97 (<i>R</i>)	15 (S)	76
5	E. coli (HheA8)	trace	>99 (<i>R</i>)	<5	ND
6	E. coli (HheA10)	NR	ND	<5	ND
7	E. coli (HheA11)	NR	ND	<5	ND
8	E. coli (HheA13)	NR	ND	<5	ND
9	E. coli (HheB3)	trace	>99 (<i>R</i>)	<5	ND
10	E. coli (HheB4)	trace	>99 (<i>R</i>)	<5	ND
11	E. coli (HheB6)	8	89 (<i>R</i>)	8 (S)	18
12	E. coli (HheC)	26	86 (S)	38 (R)	19
13	E. coli (HheD)	6	35 (<i>R</i>)	<5	ND
14	E. coli (HheD2)	16	33 (<i>R</i>)	7 (S)	2
15	E. coli (HheD6)	28	38 (<i>R</i>)	17 (S)	3
16	E. coli (HheD7)	5	14 (<i>S</i>)	<5	ND
17	E. coli (HheD8)	18	83 (<i>R</i>)	21 (S)	13
18	E. coli (HheD14)	13	31 (<i>R</i>)	<5	ND
19	E. coli (HheD15)	28	30 (<i>R</i>)	13 (S)	2
20	E. coli (HheD16)	28	53 (<i>R</i>)	23 (S)	4
21	E. coli (HheE)	trace	90 (<i>R</i>)	<5	ND
22	E. coli (HheE5)	5	86 (<i>R</i>)	<5	ND
23	E. coli (HheF)	NR	ND	<5	ND
24	E. coli (HheG)	NR	ND	<5	ND
25	E. coli (HheG2)	NR	ND	<5	ND
26	E. coli (HHDHn1)	trace	98 (<i>R</i>)	<5	ND
27	E. coli (HHDHn2)	NR	ND	<5	ND
28	E. coli (HHDHn3)	trace	44 (<i>R</i>)	<5	ND
29	E. coli (HHDHn4)	trace	89 (<i>R</i>)	<5	ND
30	E. coli (HHDHn5)	trace	78 (<i>R</i>)	<5	ND
31	E. coli (HHDHn6)	trace	55 (R)	<5	ND
32	E. coli (HHDHn7)	trace	92 (<i>R</i>)	<5	ND
33	E. coli (HHDHn8)	trace	93 (<i>R</i>)	<5	ND
34	E. coli (HHDHn9)	NR	ND	<5	ND
35	E. coli (HHDHn10)	NR	ND	<5	ND
36	E. coli (HHDHn11)	NR	ND	<5	ND
37	E. coli ((HHDHamb)	NR	ND	<5	ND
38	E. coli (HHDHapb)	7	68 (R)	<5	ND
39	E. coli (HHDHabb)	NR	ND	<5	ND
40	E. coli (HHDHnsr)	NR	ND	<5	ND

"The reactions were carried out in triplicate with 10 mM (rac)-1a and 10 g dcw/L E. coli (HHDH) cells in 5 mL PB buffer (50 mM, pH 8.5) at 30 °C for 8 h. "The yields and e.e. values were deteremined by chiral HPLC. "Calculated enantioselectivity: $E = \ln[(1-ee_{1a})/(1+ee_{1a}/ee_{1b})]/\ln[(1+ee_{1a})/(1+ee_{1a}/ee_{1b})]$. NR= no reaction. ND= not detected.

Supplementary Table 3. Screening of HHDHs for the ring-opening reaction of (rac)-1b.

entry	biocatalyst	yield $1c (\%)^b$	e.e. 1c (%) ^b	e.e. 1b (%) ^b	$E^{\mathcal{C}}$
1	-	NR	ND	<5	ND
2	E. coli	NR	ND	<5	ND
3	E. coli (HheA5)	trace	<5	<5	ND
4	E. coli (HheA8)	trace	25 (R)	<5	ND
5	E. coli (HheB3)	trace	55 (R)	<5	ND
6	E. coli (HheB4)	trace	57 (R)	<5	ND
7	E. coli (HheB6)	trace	56 (R)	<5	ND
8	E. coli (HheC)	trace	>99 (<i>S</i>)	<5	ND
9	E. coli (HheD)	6	31 (<i>R</i>)	<5	ND
10	E. coli (HheD2)	trace	<5	<5	ND
11	E. coli (HheD6)	trace	16 (<i>R</i>)	<5	ND
12	E. coli (HheD7)	5	18 (S)	<5	ND
13	E. coli (HheD8)	18	74 (<i>R</i>)	18 (S)	8
14	E. coli (HheD14)	trace	6 (<i>R</i>)	<5	ND
15	E. coli (HheD15)	7	24 (<i>R</i>)	<5	ND
16	E. coli (HheD16)	trace	37 (<i>R</i>)	<5	ND
17	E. coli (HheE)	trace	46 (<i>R</i>)	<5	ND
18	E. coli (HheE5)	trace	45 (<i>R</i>)	<5	ND
19	E. coli (HHDHn1)	trace	29 (S)	<5	ND
20	E. coli (HHDHn3)	trace	49 (S)	<5	ND
21	E. coli (HHDHn4)	trace	45 (R)	<5	ND
22	E. coli (HHDHn5)	trace	41 (<i>R</i>)	<5	ND
23	E. coli (HHDHn6)	trace	34 (<i>R</i>)	<5	ND
24	E. coli (HHDHn7)	trace	<5	<5	ND
25	E. coli (HHDHn8)	trace	69 (<i>R</i>)	<5	ND
26	E. coli (HHDHapb)	trace	11 (<i>R</i>)	<5	ND

^aThe reactions were carried out in triplicate with 10 mM (rac)-**1b**, 10 mM NaN₃ and 10 g dcw/L E. coli (HHDH) cells in 5 mL PB buffer (50 mM, pH 7.5) at 30 °C for 10 h. ^bThe yields and e.e. values were deteremined by chiral HPLC. ^cCalculated enantioselectivity: $E = \ln[(1-ee_{1b})/(1+ee_{1b}/ee_{1c})]/\ln[(1+ee_{1b}/(ee_{1c})]$. NR= no reaction. ND= not detected.

Supplementary Table 4. Directed evolution of HheD8 for enantioselective dehalogenation of γ -haloalcohol (rac)-1a. a

entry	HheD8	mutation	conc. 1a (mM)	<i>ee</i> (<i>R</i>)- 1b (%) ^b	ee (S)- 1a (%) ^b	conv. 1a (%) ^c	E^d
1	WT	-	10	82	21	20	12
2	M1	A69F	10	98	22	18	123
3	M2	A69F/R127G	10	98	54	36	170
4	M3	A69F/R127G/M124P	10	98	96	50	>200
5	M3	A69F/R127G/M124P	20	>99	76	43	>200
6	M4	A69F/R127G/M124P/R182W	20	>99	94	49	>200
7	M5	A69F/R127L	10	91	5	5	22
8	M6	A69F/R127L/M124P	10	99	38	28	>200
9	M7	A69F/R127L/M124P/R182W	20	>99	36	27	>200

^aThe reactions were carried out in triplicate with 10 mM (rac)-**1a** and 10 g dcw/L E. coli (HHDH) cells in 5 mL PB buffer (50 mM, pH 8.5) at 30 °C for 8 h. ^bThe e.e. values were deteremined by chiral HPLC. ^cCalculated conversions: conv. = $ee_{1a}/(ee_{1a}+ee_{1b})$. ^dCalculated enantioselectivity: $E = ln[(1-ee_{1a})/(1+ee_{1a}/ee_{1b})]/ln[(1+ee_{1a}/(ee_{1a}/ee_{1b})]$.

Supplementary Table 5. Directed evolution of HheD8 for enantioselective ring-opening of oxetane (rac)-1b with azide.

entry	HheD8	mutation	conc. 1b (mM)	<i>ee</i> (<i>R</i>)- 1c (%) ^b	<i>ee</i> (<i>S</i>)- 1b (%) ^b	conv. 1b (%) ^c	E^d
1	WT	-	10	75	21	22	9
2	M1	A69F	10	>99	17	15	>200
3	M5	A69F/R127L	10	99	31	24	>200
4	M6	A69F/R127L/M124P	10	>99	75	43	>200
5	M6	A69F/R127L/M124P	20	>99	64	39	>200
6	M7	A69F/R127L/M124P/R182W	20	>99	84	46	>200
7	M2	A69F/R127G	10	>99	19	16	>200
8	M3	A69F/R127G/M124P	20	99	82	45	>200
9	M4	A69F/R127G/M124P/R182W	20	99	>99	50	>200

^aThe reactions were carried out in triplicate with 10 mM (rac)-**1b**, 10 mM NaN₃ and 10 g dcw/L E. coli (HHDH) cells in 5 mL PB buffer (50 mM, pH 7.5) at 30 °C for 10 h. ^bThe e.e. values were deteremined by chiral HPLC. ^cCalculated conversions: conv. = $ee_{1b}/(ee_{1b}+ee_{1c})$. ^dCalculated enantioselectivity: $E = ln[(1-ee_{1b})/(1+ee_{1b}/ee_{1c})]/ln[(1+ee_{1b})/(1+ee_{1b}/ee_{1c})]$.

Supplementary Table 6. Scope of the biocatalytic enantios elective dehalogenation of γ -haloalcohols.^a

OH E. coli (HheD8-mutant) cells PB buffer, 30 °C
$$R^1$$
 R^2 R^2 R^2 R^2 R^2 R^3 R^4 R^2 R^4 R^2 R^2 R^3 R^4 R^2 R^3 R^4 R^2 R^4 R^2 R^3 R^4 R^2 R^4 R^4

Substrate	Product	T (h)	yield b (%) ^b	<i>ee</i> (<i>R</i>)- b (%) ^c	yield \mathbf{a} $(\%)^b$	ee (S)- a (%) ^c	conv. a $(\%)^d$	E^e
1a	1b	8	41	98	50	>99	50	>200
2a	2 b	6	39	98	49	98	50	>200
3a	3 b	24	43	97	51	94	49	>200
4a	4b	24	46	96	50	93	49	168
5a	5b	24	33	99	50	93	48	>200
6a	6b	12	36	>99	47	94	49	>200
7a	7 b	48	45	98	48	93	49	>200
8a	8b	48	43	95	50	92	49	129
9a	9b	24	34	99	51	91	48	>200
10a	10b	48	43	97	51	91	48	>200
11a	11b	12	34	>99	52	93	48	>200
12a	12b	48	37	>99	50	93	48	>200
13a	13b	48	42	98	50	92	48	>200
$14a^f$	14b	82	37	93	53	86	48	77
15a	15b	12	32	98	51	92	48	>200
$16a^g$	16b	82	37	>99	50	96	49	>200
17a	17b	1.5	36	>99	49	>99	50	>200
18a	18b	77	42	97	50	89	48	198
19a ^f	19b	48	44	96	48	97	50	>200
20a	20b	12	NI	NI	50	>99	ND	ND
$21a^f$	21b	60	35	>99	48	>99	49	>200
22a	1b	6	30	92	50	>99	50	126
23a	1b	1.5	39	93	48	>99	50	145

^aThe reactions were carried out with 20 mM (rac)-a and 10 g dcw/L E. coli (HHD8-M4) cells in 100 mL PB buffer (50 mM, pH 8.5) at 30 °C. ^bThe isolated yield were obtained by silica gel chromatography. ^cThe e.e. values were deteremined by chiral HPLC/GC. ^dCalculated conversions: conv. = $ee_a/(ee_a+ee_b)$. ^fCalculated enantioselectivity: $E = ln[(1-ee_a)/(1+ee_a/ee_b)]/ln[(1+ee_a)/(1+ee_a/ee_b)$. ^fReactions were carried out at the substrate concentration of 10 mM. ^gReaction was carried out with E. coli (HHD8-M3) cells. NI: the oxetane **20b** was not isolated due to its unstable properties. ND= not detected.

Supplementary Table 7. Scope of the biocatalytic enantioselective ring-opening of oxetanes.^a

Substrate	Product	T (h)	yield c/d/e/f (%) ^b	ee (R)- c/d/e/f (%) ^c	yield b (%) ^b	<i>ee</i> (<i>S</i>)- b (%) ^c	conv. b (%) ^d	E^e
1b	1c	10	47	97	33	>99	51	>200
2b	2c	10	48	98	35	>99	50	>200
3 b	3c	37	48	94	42	92	49	106
4 b	4c	60	44	91	48	93	51	72
5 b	5c	33	44	97	30	97	50	>200
6b	6c	12	47	>99	38	>99	50	>200
7 b	7c	24	47	97	46	94	49	>200
8b	8c	23	48	95	48	95	50	146
9b	9c	24	48	98	37	94	49	>200
10b	10c	24	43	95	42	95	50	146
11b	11c	16	50	98	36	>99	50	>200
12b	12c	11	48	99	45	97	49	>200
13b	13c	26	47	98	42	98	50	>200
14b ^f	14c	45	41	94	49	86	48	90
15b	15c	16	43	>99	42	>99	50	>200
16b ^g	16c	45	43	95	35	98	51	180
$\mathbf{17b}^h$	17c	14	39	>99	27	85	46	>200
$18b^i$	18c	26	48	98	45	99	50	>200
19b ^j	19c	30	49	>99	46	95	49	>200
$21b^k$	21c	96	43	97	32	89	48	198
$\mathbf{1b}^{l}$	1d	22	46	>99	37	97	49	>200
$\mathbf{1b}^m$	1e 1f	24	23 19	>99 88	43	>99	50	>200 82

"The reactions were carried out with 20 mM (*rac*)-**b**, 20 mM NaN₃ and 10 g dcw/L *E. coli* (HHD8-M4) cells in 100 mL PB buffer (50 mM, pH 7.5) at 30 °C.

"The isolated yield were obtained by silica gel chromatography.

"The e.e. values were deteremined by chiral HPLC/GC.

"Calculated conversions: *conv*. = ee_b/(ee_b+ee_c).

"Calculated enantioselectivity: *E* = ln[(1-ee_b)/(1+ee_b/ee_c)]/ln[(1+ee_b)/(1+ee_b/ee_c).

"The reaction was carried out with 5 mM (*rac*)-**14b**, 5 mM NaN₃ and 10 g dcw/L *E. coli* (HHD8-M4) cells.

"The reaction was carried out with 5 mM (*rac*)-**17b**, 15 mM NaN₃ and 10 g dcw/L *E. coli* (HHD8-M7) cells in 100 mL Gly-NaOH buffer (300 mM, pH 9.5).

"The reaction was carried out with 20 mM (*rac*)-**18b**, 20 mM NaN₃ and 10 g dcw/L *E. coli* (HHD8-M4) cells in 100 mL PB buffer (50 mM, pH 6.5).

"The reaction was carried out with 10 mM (*rac*)-**19b**, 10 mM NaN₃ and 10 g dcw/L *E. coli* (HHD8-M4) cells in 100 mL PB buffer (50 mM, pH 6.5).

"The reaction was carried out with 5 mM (*rac*)-**19b**, 10 mM NaN₃ and 10 g dcw/L *E. coli* (HHD8-M4) cells in 200 mL round-bottom flask with 5 mM (*rac*)-**21b**, 15 mM NaN₃ and 30 g dcw/L *E. coli* (HHD8-M4) cells.

"The reaction was carried out with 40 mM mandelonitrile and 10 g dcw/L *E. coli* (HHD8-M4) cells.

"The reaction was carried out with 40 mM mandelonitrile and 10 g dcw/L *E. coli* (HHD8-M4) cells.

"The reaction was carried out with 40 mM (*rac*)-**1b**, 40 mM NaNO₂ and 10 g dcw/L *E. coli* (HHD8-M4) cells in 200 mL PB buffer (50 mM, pH 7.5).

Supplementary Table 8. Ring-opening of (rac)-1b with cyanate and thiocyanate.^a

entry	Nucleophile (NaNu)	NaNu: 1b	Conversion 1b $(\%)^b$	$ee(S)$ - 1b (%) b	E^c
1	NaOCN	1:1	28	8	2
2	NaOCN	1:3	29	8	2
3	NaSCN	1:1	29	7	2
4	NaSCN	1:3	32	11	2

^aThe reactions were carried out in triplicate with 5 mM (rac)-**1b**, 5 or 15 mM NaNu and 20 g dcw/L E. coli (HheD8-M4) cells in 5 mL PB buffer (50 mM, pH 7.5) at 30 °C for 24 h. ^bThe conversions and ee values of **1b** were deteremined by chiral HPLC. ^cCalculated enantioselectivity: $E = \ln[(1-c)/(1-ee_s)]/\ln[(1-c)/(1+ee_s)]$. $c = \text{Conversion of } \mathbf{1b}$; $ee_s = e.e.$ values of (S)-**1b**.

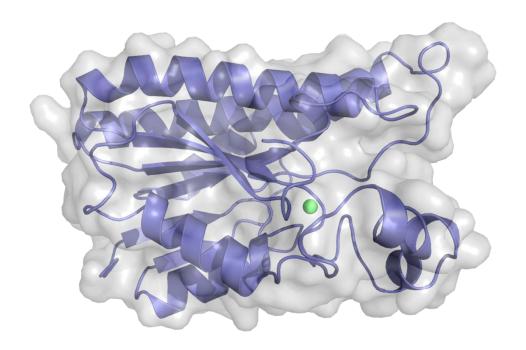
Supplementary Table 9. Time-course studies of the enantioselective dehalogenation reaction of (rac)-1a at different substrate concentrations.

Concentration 1a (mM)	T (h)	ee (R)- 1b (%) ^b	ee (S)-1a (%) ^b	Conversion (%) ^c	E^d
	3	>99	96	49	>200
40 —	6	>99	>99	50	>200
40	12	>99	>99	50	>200
	24	>99	>99	50	>200
	3	>99	44	31	>200
<u> </u>	6	>99	80	44	>200
	12	>99	92	48	>200
80	24	>99	96	49	>200
	36	>99	98	49	>200
	48	>99	97	49	> 200
<u> </u>	3	>99	32	24	> 200
	6	>99	57	36	>200
100	12	>99	79	44	>200
100	24	>99	92	48	>200
	36	>99	94	48	>200
	48	>99	96	49	>200
<u></u>	3	>99	26	21	>200
	6	>99	44	31	>200
120 —	12	>99	67	40	>200
120	24	>99	85	46	>200
	36	>99	91	48	>200
	48	>99	92	48	>200
	3	>99	22	18	>200
	6	>99	39	28	>200
140	12	>99	57	36	>200
140 —	24	>99	75	43	>200
	36	>99	84	46	>200
	48	>99	87	47	>200

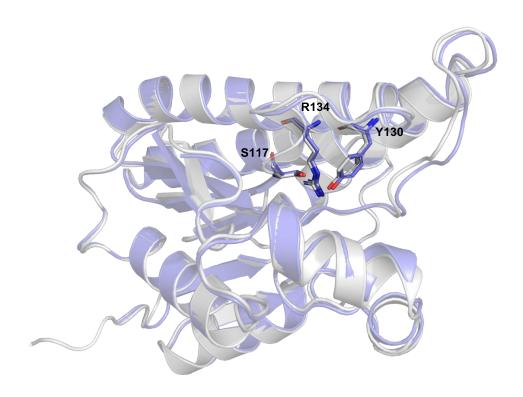
^aThe reactions were carried out at 30 °C within a two-phase system (PB buffer, 5 mL, 200 mM, pH 8.5; n-hexane, 1 mL) containing 40-140 mM (rac)-1a and 10 g dcw/L E. coli (HHD8-M4) cells. ^bThe e.e. values were deteremined by chiral HPLC. ^cCalculated conversions: conv. = $ee_{1a}/(ee_{1a}+ee_{1b})$. ^dCalculated enantioselectivity: $E = \ln[(1-ee_{1a})/(1+ee_{1a}/ee_{1b})]/\ln[(1+ee_{1a})/(1+ee_{1a}/ee_{1b})$.

Supplementary Table 10. Time-course studies of the enantioselective azide-mediated ringopening reaction of (*rac*)-1b at different substrate concentrations.^a

Concentration 1b (mM)	T (h)	ee (R)-1c (%) ^b	ee (S)- 1b (%) ^b	Conversion (%) ^c	E^{e}
	3	>99	44	31	>200
	6	>99	81	45	>200
40	12	>99	99	50	>200
	24	>99	>99	50	>200
	36	>99	>99	50	>200
	3	>99	25	20	>200
	6	>99	51	34	>200
80	12	>99	87	47	>200
	24	>99	>99	50	>200
	36	>99	>99	50	>200
	3	>99	25	20	>200
	6	>99	46	32	>200
120	12	>99	80	44	>200
	24	>99	>99	50	>200
	36	>99	>99	50	>200
	3	>99	18	15	>200
	6	>99	33	25	>200
160	12	>99	63	39	>200
	24	>99	96	49	>200
	36	>99	>99	50	>200
	3	>99	14	12	>200
	6	>99	28	22	>200
200	12	>99	51	34	>200
	24	>99	92	48	>200
	36	>99	99	50	>200


^aThe reactions were carried out at 30 °C within a two-phase system (PB buffer, 5 mL, 300 mM, pH 7.0; n-hexane, 1 mL) containing 40-200 mM (rac)-**1b**, 1 equivalent NaN₃, and 10 g dcw/L E. coli (HHD8-M4) cells. ^bThe e.e. values were deteremined by chiral HPLC. ^cCalculated conversions: conv. = $ee_{1b}/(ee_{1b}+ee_{1c})$. ^dCalculated enantioselectivity: $E = \ln[(1-ee_{1b})/(1+ee_{1b}/ee_{1c})]/\ln[(1+ee_{1b})/(1+ee_{1b}/ee_{1c})$.

Supplementary Table 11. Crystal data and structure refinement for (*R*)-1cb.


Identification code	(R)-1cb
Empirical formula	$C_{17}H_{25}NO_2$
Formula weight	275.38
Temperature/K	99.98(11)
Crystal system	monoclinic
Space group	$P2_1$
a/Å	6.0384(3)
b/Å	7.4549(4)
c/Å	17.5882(11)
α/°	90
β/°	99.789(6)
γ/°	90
Volume/Å ³	780.22(8)
Z	2
$\rho_{calc}g/cm^3$	1.172
μ /mm ⁻¹	0.596
F(000)	300.0
Crystal size/mm ³	$0.14\times0.12\times0.11$
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	5.098 to 148.018
Index ranges	$-7 \le h \le 6, -9 \le k \le 6, -21 \le l \le 21$
Reflections collected	7816
Independent reflections	$2532 \; [R_{int} = 0.0232, R_{sigma} = 0.0154]$
Data/restraints/parameters	2532/1/185
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0266, wR_2 = 0.0675$
Final R indexes [all data]	$R_1 = 0.0268$, $wR_2 = 0.0676$
Largest diff. peak/hole / e Å-3	0.20/-0.12
Flack/Hooft parameter	0.08(9)/0.09(6)

3. Supplementary Figures 1-2

Supplementary Fig. 1 | Cartoon and surface representation of the mutant HheD8-M3 complex with chloride. The ligand Cl^- is highlighted in green sphere.

Supplementary Fig. 2 | **Overlap structure analysis of the mutant HheD8-M3 with HheD8-WT/AF.** HheD8-M3 (PDB code: 8XXB) is shown as blue cartoon. HheD8-WT/AF (AFDB code: AF-N6YXW4-F1) is shown as gray cartoon. Catalytic triads S117-Y130-R134 are highlighted in sticks.

4. Chemical synthesis and characterization of racemic compounds Synthesis of racemic γ-haloalcohols:

Method A

Method B

Method C

Racemic γ -haloalcohols **2-16a** and **18-22a** were synthesized from the corresponding vinyl ketones (Method A)^{17,18}. General procedure: To a 100-mL round-bottom flask, 20 mmol of vinyl ketone substrates was added, followed by the addition of 10 mL HCl (4 M in 1,4-dioxane). The reaction mixture was then stirred at room temperature for 12 h. Afterward, the reaction mixture was concentrated under reduced pressure to obtain the crude β -halo ketone intermediates. To a 100-mL round-bottom flask cooled with an ice bath, 15 mmol (1.0 eq.) crude β -halo ketones and 20 mL of methanol were added, followed by the addition of 18 mmol (1.2 eq.) NaBH₄. The reaction mixture was then stirred at room temperature for 1 h. Afterward, the methanol solvent was removed under reduced pressure, followed by the addition of 10 mL distilled water to the flask. The mixture was then extracted with ethyl acetate (3 × 10 mL) and saturated brine (twice). The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 30:1 ~ 15:1; dichloromethane : ethyl acetate = 6:1 ~ 3:1) to afford the racemic γ -haloalcohols (rac)-a.

Racemic γ -chloroalcohol **17a** was synthesized from the corresponding β -halo ketone (Method B)¹⁹. To a 200-mL round-bottom flask, 5.6 g (22.6 mmol) of anhydrous CeCl₃ and 40 mL of dry tetrahydrofuran (THF) were added under under nitrogen atmosphere. The reaction mixture was

then stirred at room temperature for 3.5 h and cooled to -78 °C, followed by the addition of 40 mL methylmagnesium bromide (1M in THF). The reaction was allowed to proceed at -78 °C for 2 h. Then, 3.4 g (20 mmol) 3-chloro-1-phenylpropan-1-one in 30 mL dry THF was added dropwise to the reaction mixture. The temperature was then gradually raised to 8 °C and the reaction was allowed to proceed for 18 h. Afterward, the reaction mixture was quenched with 15 mL of saturated NH₄Cl solution, extracted with ethyl acetate (3 × 20 mL), and washed with saturated brine. The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = $30:1\sim20:1$) to afford the racemic γ -chloroalcohol (rac)-17a.

Racemic γ -iodoalcohol **23a** was synthesized from racemic **1a**²⁰. To a 100-mL round-bottom flask, 1.0 g (5.89 mmol) of (rac)-**1a** and 25 mL of acetone were added, followed by the addition of 1.5 g (9.96 mmol) sodium iodide. The temperature was then gradually raised to 70 °C and the reaction was refluxed for 16 h. Afterward, the acetone was removed under reduced pressure, followed by the addition of 10 mL distilled water to the flask. The mixture was then extracted with ethyl acetate (3 × 10 mL) and saturated brine (twice). The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the racemic γ -iodoalcohol (rac)-**23a**.

(rac)-3-chloro-1-(2-fluorophenyl)propan-1-ol [(rac)-2a]

¹H NMR (400 MHz, CDCl₃) δ 7.45 (td, J = 7.5, 1.8 Hz, 1H), 7.29 - 7.24 (m, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.05 - 7.00 (m, 1H), 5.22 (dd, J = 8.5, 4.3 Hz, 1H), 3.77 - 3.71 (m, 1H), 3.61 (dt, J = 11.0, 6.0 Hz, 1H), 2.27 - 2.11 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8 (d, J = 245.0 Hz), 130.6 (d, J = 13.0 Hz), 129.4 (d, J = 8.0 Hz), 127.4 (d, J = 5.0 Hz), 124.5 (d, J = 3.0 Hz), 115.6 (d, J = 22.0 Hz), 65.9, 41.6, 40.2 (d, J = 1.0 Hz).

(rac)-3-chloro-1-(2-chlorophenyl)propan-1-ol [(rac)-3a]

The NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.6, 1.7 Hz, 1H), 7.35 - 7.28 (m, 2H), 7.22 (td, J = 7.7, 1.8 Hz, 1H), 5.34 (dd, J = 9.0, 3.3 Hz, 1H), 3.83 - 3.76 (m, 1H), 3.71 - 3.65 (m, 1H), 2.25 - 2.17 (m, 2H), 2.14 - 2.05 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 131.8, 129.7, 128.9, 127.4, 127.1, 68.1, 41.8, 39.8.

(rac)-1-(2-bromophenyl)-3-chloropropan-1-ol [(rac)-4a]

Br OH 1H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 11.8, 8.1 Hz, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.15 (t, J = 7.7 Hz, 1H), 5.28 (d, J = 9.3 Hz, 1H), 3.83 - 3.77 (m, 1H), 3.71 - 3.66 (m, 1H), 2.41 (s, 1H), 2.25 - 2.17 (m, 1H), 2.10 - 2.01 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ 142.8, 132.9, 129.2, 128.0, 127.3, 121.8, 70.3, 41.8, 39.8.

(rac)-3-chloro-1-(o-tolyl)propan-1-ol [(rac)-5a]

OH NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.6 Hz, 1H), 7.27 - 7.14 (m, 3H), 5.20 (dd, J = 8.8, 3.7 Hz, 1H), 3.86 - 3.79 (m, 1H), 3.68 - 3.62 (m, 1H), 2.36 (s, 3H), 2.17 - 2.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 134.5, 130.6, 127.6, 126.5, 125.1, 67.6, 42.2, 40.6, 19.0.

(rac)-3-chloro-1-(3-fluorophenyl)propan-1-ol [(rac)-6a]

¹H NMR (400 MHz, CDCl₃) δ 7.32 (td, J = 8.1, 6.2 Hz, 1H), 7.13 - 7.06 (m, 2H), 6.98 (td, J = 8.4, 2.6 Hz, 1H), 4.94 (dd, J = 8.8, 4.6 Hz, 1H), 3.76 - 3.70 (m, 1H), 3.55 (dt, J = 11.0, 5.8 Hz, 1H), 2.31 (d, J = 13.8 Hz, 1H), 2.22 - 2.14 (m, 1H), 2.10 - 2.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1 (d, J = 245.0 Hz), 146.5 (d, J = 6.0 Hz), 130.3 (d, J = 7.0 Hz), 121.4, 114.8 (d, J = 21.0 Hz), 112.8 (d, J = 22.0 Hz), 70.7 (d, J = 11.0 Hz), 41.6, 41.4.

(rac)-3-chloro-1-(3-chlorophenyl)propan-1-ol [(rac)-7a]

OH TH NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.32 - 7.22 (m, 3H), 4.93 (dd, Cl J = 8.3, 4.3 Hz, 1H), 3.78 - 3.71 (m, 1H), 3.59 - 3.53 (m, 1H), 2.23 - 2.02 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 134.7, 130.1, 128.1, 126.1, 124.0, 70.8, 41.6, 41.2.

(rac)-1-(3-bromophenyl)-3-chloropropan-1-ol [(rac)-8a]

OH 1H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.42 (dt, J = 7.7, 1.6 Hz, 1H), 7.29 - 7.21 (m, 2H), 4.94 - 4.91 (m, 1H), 3.78 - 3.71 (m, 1H), 3.56 (dt, J = 11.0, 5.7 Hz, 1H), 2.23 -2.14 (m, 2H), 2.10 - 2.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 131.1, 130.4, 129.0, 124.5, 122.9, 70.7, 41.6, 41.5.

(rac)-3-chloro-1-(m-tolyl)propan-1-ol [(rac)-9a]

OH ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, J = 7.5 Hz, 1H), 7.17 - 7.10 (m, 3H), 4.88 (dd, J = 8.6, 4.7 Hz, 1H), 3.75 - 3.69 (m, 1H), 3.55 (dt, J = 10.9, 6.0 Hz, 1H), 2.36 (s, 3H), 2.26 - 2.17 (m, 1H), 2.12 - 2.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 138.5, 128.8, 128.7, 126.6, 122.9, 71.4, 41.9, 41.5, 21.6.

(rac)-3-chloro-1-(3-methoxyphenyl)propan-1-ol [(rac)-10a]

OH NMR (400 MHz, CDCl₃) δ 7.27 (t, J = 7.6 Hz, 1H), 6.94 - 6.90 (m, 2H), 6.84- 6.81 (m, 1H), 4.89 (dd, J = 8.5, 4.6 Hz, 1H), 3.80 (s, 3H), 3.76 - 3.69 (m, 1H), 3.58 - 3.51 (m, 1H), 2.26 - 2.16 (m, 2H), 2.11 - 2.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 145.5, 129.8, 118.1, 113.4, 111.3, 71.3, 55.3, 41.8, 41.5.

(rac)-3-chloro-1-(4-fluorophenyl)propan-1-ol [(rac)-11a]

OH 1H NMR (400 MHz, CDCl₃) δ 7.28 - 7.23 (m, 2H), 7.00 (t, J = 8.6 Hz, 2H), 4.84 (dd, J = 8.6, 5.1 Hz, 1H), 3.67 - 3.60 (m, 1H), 3.48 - 3.41 (m, 1H), 3.06 (s, 1H), 2.16 - 2.07 (m, 1H), 2.02 - 1.93 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 244.0 Hz), 139.5 (d, J = 3.0 Hz), 127.6 (d, J = 8.0 Hz), 115.6 (d, J = 21.0 Hz), 70.7 (d, J = 11.0 Hz), 41.7, 41.5.

(rac)-3-chloro-1-(4-chlorophenyl)propan-1-ol [(rac)-12a]

OH 1H NMR (400 MHz, CDCl₃) δ 7.29 (q, J = 8.4 Hz, 4H), 4.91 (dt, J = 8.7, 4.1 Hz, 1H), 3.75 - 3.68 (m, 1H), 3.51 (dt, J = 11.0, 5.9 Hz, 1H), 2.29 (d, J = 4.8 Hz, 1H), 2.22 - 2.13 (m, 1H), 2.07 - 1.99 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 133.6, 128.9, 127.3, 70.7, 41.7, 41.4.

(rac)-1-(4-bromophenyl)-3-chloropropan-1-ol [(rac)-13a]

(rac)-3-chloro-1-(4-(trifluoromethyl)phenyl)propan-1-ol [(rac)-14a]

OH ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.0 Cl Hz, 2H), 5.02 (dd, J = 8.8, 4.4 Hz, 1H), 3.79 - 3.73 (m, 1H), 3.56 (dt, J = 11.0, 5.7 Hz, 1H), 2.39 (s, 1H), 2.22 - 2.15(m, 1H), 2.11 - 2.02 (m, 1H). (d, J = 32.0 Hz), 127.2, 125.7 (q, J = 3.0 Hz), 125.5 (t, J = 270.0 Hz), 70.7, 41.6, 41.5.

(rac)-3-chloro-1-(3,5-difluorophenyl)propan-1-ol [(rac)-15a]

OH NMR (400 MHz, CDCl₃) δ 6.89 (d, J = 6.0 Hz, 2H), 6.72 (tt, J = 8.8, 2.5 Hz, 1H), 4.94 (dd, J = 8.4, 4.0 Hz, 1H), 3.78 - 3.72 (m, 1H), 3.59 - 3.53 (m, 1H), 2.19 - 2.10 (m, 1H), 2.08 - 2.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) 163.3 (dd, J = 248.0, 13.0 Hz), 148.0 (t, J = 9.0 Hz), 108.7 (dd, J = 19.0, 7.0 Hz), 103.2 (t, J = 25.0 Hz), 70.4 (d, J = 12.0 Hz), 41.4 (d, J = 10.0 Hz).

(rac)-3-chloro-1-(naphthalen-2-yl)propan-1-ol [(rac)-16a]

¹H NMR (400 MHz, CDCl₃) δ 8.13 - 8.10 (m, 1H), 7.90 - 7.88 (m, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.57 - 7.46 (m, 3H), 5.73 (dd, J = 8.9, 3.5 Hz, 1H), 3.94 - 3.88 (m, 1H), 3.68 (dt, J = 10.8, 4.8 Hz, 1H), 2.36 - 2.20 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 133.9, 130.2, 129.1, 128.4, 126.4, 125.8, 125.6, 123.0, 122.8, 68.0, 42.4, 40.8.

(rac)-4-chloro-2-phenylbutan-2-ol [(rac)-17a]

¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.41 (m, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.29 - 7.25 (m, 1H), 3.58 - 3.51 (m, 1H), 3.37 - 3.31 (m, 1H), 2.37 - 2.26 (m, 2H), 1.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 128.6, 127.1, 124.6, 74.4, 46.7, 40.6, 31.0.

(rac)-1-(5-bromopyridin-3-yl)-3-chloropropan-1-ol [(rac)-18a]

OH Solution of the NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 2.2 Hz, 1H), 8.45 (d, J = 1.9 Hz, 1H), 7.90 (t, J = 2.0 Hz, 1H), 5.01 (dd, J = 9.1, 4.1 Hz, 1H), 3.83 -

3.76 (m, 1H), 3.60 (dt, J = 11.1, 5.4 Hz, 1H), 2.24 - 2.15 (m, 1H), 2.10 - 2.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 145.7, 141.5, 136.5, 121.2, 68.1, 41.4, 41.3.

(rac)-3-chloro-1-(quinolin-3-yl)propan-1-ol [(rac)-19a]

OH 1H NMR (400 MHz, CDCl₃) δ 8.68 - 8.64 (m, 1H), 8.06 (s, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 5.11 - 5.08 (m, 1H), 3.83 - 3.77 (m, 1H), 3.56 (dt, J = 11.3, 5.4 Hz, 1H), 2.28 - 2.20 (m, 1H), 2.12 - 2.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 147.2, 137.1, 133.2, 129.7, 128.6, 127.9, 127.8, 127.1, 68.7, 41.6, 41.4.

(rac)-3-chloro-1-(thiophen-2-yl)propan-1-ol [(rac)-20a]

¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 5.0, 1.4 Hz, 1H), 7.02 - 6.96 (m, 2H), 5.20 (dd, J = 8.5, 5.2 Hz, 1H), 3.78 - 3.72 (m, 1H), 3.58 (dt, J = 10.9, 5.9 Hz, 1H), 2.37 - 2.28 (m, 2H), 2.24 - 2.15 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 126.9, 125.1, 124.3, 67.2, 41.6.

(rac)-3-chloro-1-cyclohexylpropan-1-ol [(rac)-21a]

OH 1H NMR (400 MHz, CDCl₃) δ 3.70 - 3.66 (m, 2H), 3.58 - 3.53 (m, 1H), 1.98 (s, 1H), 1.93 - 1.71 (m, 5H), 1.65 (d, J = 10.7 Hz, 1H), 1.35 - 0.90 (m, 6H). 13C NMR (100 MHz, CDCl₃) δ 73.0, 43.8, 42.2, 36.8, 29.1, 28.0, 26.5, 26.3, 26.1.

(rac)-3-bromo-1-phenylpropan-1-ol [(rac)-22a]

OH
OH
Solution (dd, J = 8.4, 4.7 Hz, 1H), 3.60 - 3.54 (m, 1H), 3.43 - 3.37 (m, 1H), 2.35 - 2.26 (m, 1H), 2.19 - 2.12 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.8, 128.0, 125.9, 72.3, 41.6, 30.4.

(rac)-3-iodo-1-phenylpropan-1-ol [(rac)-23a]

OH NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 4.3 Hz, 4H), 7.32 - 7.28 (m, 1H), 4.83 (dd, J = 8.2, 4.8 Hz, 1H), 3.35 - 3.29 (m, 1H), 3.22 - 3.16 (m, 1H), 2.31 -

2.22 (m, 1H), 2.21 - 2.12 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ 142.5, 130.1, 128.1, 125.4, 74.3, 42.4, 3.6.

Synthesis of racemic oxetanes:

Method A

Method B

Racemic oxetanes **1-16b**, **18-19b**, and **21b** were synthesized from the corresponding γ -haloalcohols (Method A)²¹. General procedure: To a 100-mL round-bottom flask, 10 mmol of γ -haloalcohols (rac)-**a** substrates and 20 mL THF were added, followed by the addition of 3.4 g (30 mmol) of potassium tert-butoxide (t-BuOK). The reaction mixture was then stirred at room temperature for 4 h. Afterward, the reaction mixture was quenched with 10 mL of distilled water, extracted with ethyl acetate (3×15 mL), and washed with saturated brine. The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = $50:1 \sim 10:1$) to afford the racemic oxetanes (rac)-**b**.

Racemic oxetane **17b** was synthesized from acetophenone (Method B)²². To a 200-mL round-bottom flask, 20 mmol of trimethylsulfoxonium iodide (4.4 g) and 20 mL of tertbutanol were added, followed by the addition of 2.2 g (20 mmol) of *t*-BuOK. The reaction mixture was then heated to 50 °C in an oil bath and stirred for 2 h. Afterwards, a solution of 10 mmol acetophenone in 10 mL tertbutanol was added dropwise to the reaction mixture. The reaction was allowed to proceed at 50 °C for 24 h. Water was added and the resulting layers were separated. The aqueous phase was extracted with hexane (thrice). The organic layers were then combined, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 80:1) to afford the racemic oxetane (*rac*)-17b.

(rac)-2-phenyloxetane [(rac)-1b]

¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.46 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 - 7.30 (m, 1H), 5.84 (t, J = 7.5 Hz, 1H), 4.85 (td, J = 8.0, 5.8 Hz, 1H), 4.68 (dt, J = 9.3, 5.8 Hz, 1H), 3.09 - 2.99 (m, 1H), 2.74 - 2.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.5, 127.9, 125.3, 83.0, 68.3, 30.8.

(rac)-2-(2-fluorophenyl)oxetane [(rac)-2b]

¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, J = 7.5 Hz, 1H), 7.29 - 7.24 (m, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 10.2 Hz, 1H), 6.05 (t, J = 7.6 Hz, 1H), 4.83 (td, J = 8.1, 6.2 Hz, 1H), 4.68 (dt, J = 9.2, 5.9 Hz, 1H), 3.12 - 3.04 (m, 1H), 2.70 - 2.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3 (d, J = 245.0 Hz), 130.8 (d, J = 14.0 Hz), 129.2 (d, J = 8.0 Hz), 126.9 (d, J = 4.3 Hz), 124.3 (d, J = 3.5 Hz), 115.2 (d, J = 20.9 Hz), 77.7, 68.8, 29.9.

(rac)-2-(2-chlorophenyl)oxetane [(rac)-3b]

¹H NMR (400 MHz, CDCl₃) δ 7.75 (dt, J = 7.4, 1.4 Hz, 1H), 7.39 - 7.30 (m, 2H), 7.27 - 7.19 (m, 1H), 6.02 (t, J = 7.5 Hz, 1H), 4.84 (ddd, J = 8.4, 7.4, 5.8 Hz, 1H), 4.65 (dt, J = 9.1, 6.0 Hz, 1H), 3.24 - 3.13 (m, 1H), 2.58 - 2.45 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 130.4, 129.2, 128.5, 127.0, 126.0, 80.4, 68.6, 30.0.

(rac)-2-(2-bromophenyl)oxetane [(rac)-4b]

¹H NMR (400 MHz, CDCl₃) δ 7.75 (ddd, J = 7.7, 1.8, 0.8 Hz, 1H), 7.51 (dd, J = 7.9, 1.2 Hz, 1H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.16 (td, J = 7.7, 1.7 Hz, 1H), 5.94 (t, J = 7.5 Hz, 1H), 4.83 (ddd, J = 8.4, 7.3, 5.8 Hz, 1H), 4.64 (dt, J = 9.1, 6.0 Hz, 1H), 3.27 - 3.17 (m, 1H), 2.53 - 2.43 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 132.4, 128.8, 127.6, 126.3, 119.8, 82.2, 68.4, 30.1.

(rac)-2-(o-tolyl)oxetane [(rac)-5b]

¹H NMR (400 MHz, CDCl₃) δ 7 .74 (d, J = 7.7 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.24 (t, J = 7.3 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 6.02 (t, J = 7.6 Hz, 1H), 4.88 (td, J = 8.0, 5.9 Hz, 1H), 4.68 (dt, J = 9.1, 5.8 Hz, 1H), 3.16 - 3.06 (m, 1H), 2.62 - 2.52 (m, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 133.3, 130.0, 127.2, 126.1, 124.0,

80.6, 68.1, 29.7, 18.4.

(rac)-2-(3-fluorophenyl)oxetane [(rac)-6b]

¹H NMR (400 MHz, CDCl₃) δ 7.34 (td, J = 7.8, 5.7 Hz, 1H), 7.20 - 7.15 (m, 2H), 6.98 (td, J = 8.4, 2.5 Hz, 1H), 5.79 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 8.1, 6.2 Hz, 1H), 4.66 (dt, J = 9.3, 5.8 Hz, 1H), 3.09 - 3.00 (m, 1H), 2.66 - 2.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, J = 246.0 Hz), 146.5 (d, J = 6.8 Hz), 130.2 (d, J = 8.2 Hz), 120.7 (d, J = 2.8 Hz), 114.7 (d, J = 21.1 Hz), 112.2 (d, J = 22.1 Hz), 82.2, 68.5, 30.7.

(rac)-2-(3-chlorophenyl)oxetane [(rac)-7b]

H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.34 - 7.24 (m, 3H), 5.77 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 8.0, 5.9 Hz, 1H), 4.66 (dt, J = 9.2, 5.9 Hz, 1H), 3.08 - 2.99 (m, 1H), 2.67 - 2.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 134.6, 129.9, 127.9, 125.4, 123.3, 82.2, 68.5, 30.7.

(rac)-2-(3-bromophenyl)oxetane [(rac)-8b]

¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.32 (d, J = 7.7 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 5.75 (t, J = 7.5 Hz, 1H), 4.81 (td, J = 8.0, 6.0 Hz, 1H), 4.69 - 4.59 (m, 1H), 3.06 - 2.97 (m, 1H), 2.65 - 2.54 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 146.0, 130.7, 130.1, 128.2, 123.7, 122.7, 82.0, 68.4, 30.7.

(rac)-2-(m-tolyl)oxetane [(rac)-9b]

¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.24 (m, 3H), 7.16 (d, J= 7.4 Hz, 1H), 5.83 (t, J= 7.5 Hz, 1H), 4.86 (td, J= 8.1, 5.9 Hz, 1H), 4.69 (dt, J= 9.1, 5.7 Hz, 1H), 3.08 - 2.99 (m, 1H), 2.75 - 2.65 (m, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 138.1, 128.5, 128.4, 125.8, 122.3, 82.9, 68.2, 30.7, 21.4.

(rac)-2-(3-methoxyphenyl)oxetane [(rac)-10b]

¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 7.9 Hz, 1H), 7.05 - 6.96 (m, 2H), 6.85 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H), 5.80 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 8.0, 5.8 Hz, 1H), 4.66 (dt, J = 9.2, 5.8 Hz, 1H), 3.84 (s, 3H), 3.07 - 2.98 (m, 1H),

2.70 - 2.60 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 145.4, 129.7, 117.4, 113.4, 110.5, 82.8, 68.4, 55.3, 30.7.

(rac)-2-(4-fluorophenyl)oxetane [(rac)-11b]

¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 8.4, 5.6 Hz, 2H), 7.07 (t, J = 8.5 Hz, 2H), 5.78 (t, J = 7.5 Hz, 1H), 4.81 (td, J = 8.4, 6.4 Hz, 1H), 4.63 (dt, J = 9.0, 5.7 Hz, 1H), 3.04 - 2.96 (m, 1H), 2.68 - 2.59 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 245.7 Hz), 139.4 (d, J = 3.0 Hz), 127.2 (d, J = 8.2 Hz), 115.4 (d, J = 21.5 Hz), 82.4, 68.2, 30.9.

(rac)-2-(4-chlorophenyl)oxetane [(rac)-12b]

¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.31 (m, 4H), 5.76 (t, J = 7.5 Hz, 1H), 4.81 (td, J = 8.0, 5.9 Hz, 1H), 4.63 (dt, J = 9.2, 5.8 Hz, 1H), 3.05 - 2.96 (m, 1H), 2.64 - 2.54 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 133.4, 128.6, 126.7, 82.1, 68.2, 30.8.

(rac)-2-(4-bromophenyl)oxetane [(rac)-13b]

¹H NMR (400 MHz, CDCl₃) δ 7.55 - 7.44 (m, 2H), 7.33 - 7.27 (m, 2H), 5.74 (t, J= 7.6 Hz, 1H), 4.80 (td, J= 8.1, 5.9 Hz, 1H), 4.62 (dt, J= 9.3, 5.8 Hz, 1H), 3.04 - 2.94 (m, 1H), 2.62 - 2.52 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 131.5, 126.9, 121.5, 82.1, 68.2, 30.6.

(rac)-2-(4-(trifluoromethyl)phenyl)oxetane [(rac)-14b]

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 5.85 (t, J = 7.6 Hz, 1H), 4.84 (td, J = 8.0, 6.0 Hz, 1H), 4.66 (dt, J = 9.2, 5.9 Hz, 1H), 3.11 - 3.02 (m, 1H), 2.64 - 2.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 129.9 (q, J = 32.0 Hz), 125.6 (q, J = 3.0 Hz), 125.4, 124.2 (q, J = 270.0 Hz), 82.5, 68.6, 30.7.

(rac)-2-(3,5-difluorophenyl)oxetane [(rac)-15b]

F

¹H NMR (400 MHz, CDCl₃) δ 6.93 - 6.87 (m, 2H), 6.66 (tt, J = 8.9, 2.4 Hz, 1H), 5.70 (t, J = 7.5 Hz, 1H), 4.76 (td, J = 8.2, 6.1 Hz, 1H), 4.59 (dt, J = 9.2, 6.1 Hz, 1H), 3.04 - 2.96 (m, 1H), 2.56 - 2.47 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (dd, J = 247.0, 12.0 Hz), 148.0 (t, J = 8.0 Hz), 107.8 (dd, J = 19.0, 7.0 Hz),

103.0 (td, J = 26.0, 6.0 Hz), 81.7, 68.3, 30.6.

(rac)-2-(naphthalen-2-yl)oxetane [(rac)-16b]

¹H NMR (400 MHz, CDCl₃) δ 8.06 - 7.98 (m, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.75 - 7.73 (m, 1H), 7.69 - 7.65 (m, 2H) 7.60 - 7.57 (m, 2H), 6.56 (t, J = 7.5 Hz, 1H), 5.02 - 4.95 (m, 1H), 4.80 - 4.74 (m, 1H), 3.27 - 3.16 (m, 1H), 2.75 - 2.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 133.4, 128.8, 128.6, 127.4, 125.7, 125.4, 125.4, 122.5, 121.2, 80.3, 68.3, 29.8.

(rac)-2-methyl-2-phenyloxetane [(rac)-17b]

¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.38 (m, 4H), 7.30 - 7.26 (m, 1H), 4.66 (dt, J = 8.6, 6.3 Hz, 1H), 4.55 (dt, J = 9.1, 6.6 Hz, 1H), 2.86 - 2.73 (m, 1H), 1.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)δ 148.2, 128.2, 126.6, 123.6, 86.5, 64.5, 35.5, 30.7.

(rac)-3-bromo-5-(oxetan-2-yl) pyridine [(rac)-18b]

¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 2.3 Hz, 1H), 8.49 (d, J = 1.9 Hz, 1H), 7.96 (t, J = 2.1 Hz, 1H), 5.79 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 8.0, 5.9 Hz, 1H), 4.66 (dt, J = 9.2, 5.9 Hz, 1H), 3.11 - 3.03 (m, 1H), 2.66 - 2.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 145.2, 140.7, 135.7, 121.1, 79.8, 68.7, 30.5.

(rac)-3-(oxetan-2-yl)quinoline [(rac)-19b]

¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, J = 2.2 Hz, 1H), 8.21 (s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.74 - 7.66 (m, 1H), 7.55 (td, J = 8.1, 1.2 Hz, 1H), 6.01 (t, J = 7.6 Hz, 1H), 4.90 (td, J = 8.0, 5.8 Hz, 1H), 4.75 (dt, J

= 9.2, 5.8 Hz, 1H), 3.18 - 3.09 (m, 1H), 2.78 - 2.69 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.9, 136.1, 132.3, 129.6, 129.3, 128.0, 127.8, 127.0, 81.0, 68.7, 30.7.

(rac)-2-cyclohexyloxetane [(rac)-21b]

¹H NMR (400 MHz, CDCl₃) δ 4.63 (td, J = 8.1, 5.9 Hz, 1H), 4.51 - 4.35 (m, 2H), 2.60 - 2.48 (m, 1H), 2.42 - 2.29 (m, 1H), 1.89 - 1.81 (m, 1H), 1.79 - 1.53 (m, 5H), 1.31 - 1.09 (m, 3H), 0.91 - 0.74 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 86.8, 68.2, 44.8, 27.6, 27.5, 26.6, 26.2, 25.8, 25.6.

Synthesis of racemic γ -azidoalcohols²³:

OH OH
$$R^{1}$$
 R^{2} R^{2}

General procedure: To a 10-mL round-bottom flask, 1.0 mmol of racemic γ -haloalcohol substrates (rac)-**a** and 2 mL of N, N-dimethylformamide (DMF) were added, followed by the addition of 4.0 mmol 260.0 mg (4.0 mmol)NaN₃. The reaction mixture was then stirred at room temperature for 15 min. The temperature was then gradually raised to 80 °C and the reaction was allowed to proceed for 4 h. Afterward, the reaction mixture was quenched with 10 mL of distilled water, extracted with ethyl acetate (3 × 5 mL), and washed with distilled water (twice) and saturated NH₄Cl solution (thrice). The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 10:1 ~ 3:1) to afford the racemic γ -azidoalcohols (rac)-c.

(rac)-3-azido-1-phenylpropan-1-ol [(rac)-1c]

¹H NMR (400 MHz, DMSO-d₆) δ 7.39 - 7.32 (m, 4H), 7.27 - 7.23 (m, 1H), 5.50 - 5.41 (m, 1H), 4.71 - 4.63 (m, 1H), 3.52 - 3.44 (m, 1H), 3.41 - 3.32 (m, 1H), 1.91 - 1.82 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 145.7, 128.2, 127.0, 125.7, 69.6, 47.9, 38.2.

(rac)-3-azido-1-(2-fluorophenyl)propan-1-ol [(rac)-2c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.52 (t, J = 7.7 Hz, 1H), 7.32 - 7.10 (m, 3H), 5.53 (d, J = 5.0 Hz, 1H), 4.94 (dt, J = 8.0, 5.0 Hz, 1H), 3.51 - 3.39 (m, 2H), 1.88 - 1.80 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.9 (d, J = 242.0 Hz), 132.3 (d, J = 13.0 Hz), 128.7 (d, J = 9.0 Hz), 127.5 (d, J = 4.0 Hz),

124.4 (d, J = 4.0 Hz), 115.0 (d, J = 21.0 Hz), 63.2, 47.6, 36.9.

(rac)-3-azido-1-(2-chlorophenyl)propan-1-ol [(rac)-3c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.61 (d, J = 7.7 Hz, 1H), 7.39 - 7.34 (m, 2H), 7.29 - 7.24 (m, 1H), 5.61 (d, J = 4.3 Hz, 1H), 5.01 (dd, J = 8.6, 3.9 Hz, 1H), 3.49 - 3.46 (m, 2H), 1.93 - 1.85 (m, 1H), 1.73 - 1.64 (m, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 142.9, 130.4, 129.0, 128.5, 127.5, 127.3, 66.0, 47.6, 36.5.

(rac)-3-azido-1-(2-bromophenyl)propan-1-ol [(rac)-4c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.60 (dd, J = 7.8, 1.8 Hz, 1H), 7.55 (dd, J = 8.0, 1.3 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.19 (td, J = 7.6, 1.9 Hz, 1H), 5.65 (d, J = 4.6 Hz, 1H), 5.00 - 4.90 (m, 1H), 3.54 - 3.43 (m, 2H), 1.96 - 1.83 (m, 1H), 1.72 - 1.59 (m, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 144.5, 132.2, 128.9, 127.9, 127.7, 120.8, 68.3, 47.7, 36.6.

(rac)-3-azido-1-(o-tolyl)propan-1-ol [(rac)-5c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.45 (d, J = 7.6 Hz, 1H), 7.21 - 7.10 (m, 3H), 5.31 - 5.29 (m, 1H), 4.85 - 4.83 (m, 1H), 3.52 - 3.40 (m, 2H), 2.28 (s, 3H), 1.83 - 1.67 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 143.7, 133.6, 130.0, 126.6, 125.9, 125.3, 65.9, 48.0, 36.9, 18.5.

(rac)-3-azido-1-(3-fluorophenyl)propan-1-ol [(rac)-6c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.39 - 7.33 (m, 1H), 7.18 - 7.14 (m, 2H), 7.05 (t, J = 8.6 Hz, 1H), 5.54 (dd, J = 4.7, 1.6 Hz, 1H), 4.66 (dt, J = 8.0, 5.0 Hz, 1H), 3.48 - 3.41 (m, 1H), 3.39 - 3.32 (m, 1H), 1.88 - 1.78 (m, 2H). 13°C NMR (100 MHz, DMSO- d_6) δ 162.3 (d, J = 242.0 Hz), 148.8 (d, J = 6.0 Hz), 130.1 (d, J = 8.2 Hz), 121.7 (d, J = 2.6 Hz), 113.6 (d, J = 21.0 Hz), 112.3 (d, J = 21.6 Hz), 68.9, 47.7, 37.9.

(rac)-3-azido-1-(3-chlorophenyl)propan-1-ol [(rac)-7c]

¹H NMR (400 MHz, DMSO-d₆) δ 7.40 - 7.27 (m, 4H), 5.55 (d, J = 4.6 Hz, 1H), 4.67 - 4.63 (m, 1H), 3.48 - 3.41 (m, 1H), 3.39 - 3.32 (m, 1H), 1.87 - 1.77 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 148.3, 133.0, 130.1, 126.8, 125.6, 124.4, 68.9, 47.7, 37.9.

(rac)-3-azido-1-(3-bromophenyl)propan-1-ol [(rac)-8c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.54 (s, 1H), 7.43 (d, J = 7.8, 1.8 Hz, 1H), 7.35 - 7.26 (m, 2H), 5.55 (d, J = 4.7 Hz, 1H), 4.64 (dt, J = 9.1, 5.0 Hz, 1H), 3.47 - 3.41 (m, 1H), 3.39 - 3.33 (m, 1H), 1.87 - 1.77 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 148.5, 130.4, 129.7, 128.4, 124.8, 121.6, 68.9, 47.7, 37.9.

(rac)-3-azido-1-(m-tolyl)propan-1-ol [(rac)-9c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.21 (t, J = 7.6 Hz, 1H), 7.15 - 7.10 (m, 2H), 7.04 (d, J = 7.5 Hz, 1H), 5.35 (d, J = 4.5 Hz, 1H), 4.60 - 4.58 (dt, J = 7.6, 5.4 Hz, 1H), 3.46 - 3.39 (m, 1H), 3.35 - 3.31 (m, 1H), 2.30 (s, 3H), 1.80 (q, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 145.6, 137.2, 128.1, 127.5, 126.3, 122.8, 69.5, 47.9, 38.2, 21.2.

(rac)-3-azido-1-(3-methoxyphenyl)propan-1-ol [(rac)-10c]

¹H NMR (400 MHz, DMSO- d_6) δ 7.25 (t, J = 7.9 Hz, 1H), 6.95 - 6.91 (m, 2H), 6.81 (d, J = 8.1 Hz, 1H), 5.44 (dd, J = 4.4, 1.8 Hz, 1H), 4.66 - 4.61 (m, 1H), 3.75 (s, 3H), 3.49 - 3.42 (m, 1H), 3.40 - 3.33 (m, 1H), 1.84 (q, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 159.3, 147.4, 129.3, 117.9, 112.4, 111.2, 69.5, 55.0, 47.9, 38.2.

(rac)-3-azido-1-(4-fluorophenyl)propan-1-ol [(rac)-11c]

The NMR (400 MHz, DMSO- d_6) δ 7.39 - 7.35 (m, 2H), 7.17 - 7.11 (m, 2H), 5.45 (d, J = 4.6 Hz, 1H), 4.64 (dt, J = 7.5, 5.2 Hz, 1H), 3.46 - 3.40 (m, 1H), 3.36 - 3.31 (m, 1H), 1.81 (q, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.2 (d, J = 241.0 Hz), 141.7 (d, J = 2.8 Hz), 127.6 (d, J =

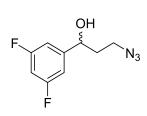
8.0 Hz), 114.8 (d, J = 21.0 Hz), 68.9, 47.8, 38.1.

(rac)-3-azido-1-(4-chlorophenyl)propan-1-ol [(rac)-12c]

OH §

¹H NMR (400 MHz, DMSO- d_6) δ 7.39 - 7.35 (m, 4H), 5.52 (d, J = 4.6 Hz, 1H), 4.65 (td, J = 8.2, 4.9 Hz, 1H), 3.47 - 3.41 (m, 1H), 3.38 - 3.32 (m, 1H), 1.81 (q, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 144.6, 131.4, 128.1, 127.6, 68.9, 47.7, 38.0.

(rac)-3-azido-1-(4-bromophenyl)propan-1-ol [(rac)-13c]


OH § N₃ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.51 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 5.51 (d, J = 4.7 Hz, 1H), 4.62 (dt, J = 6.8, 6.1 Hz, 1H), 3.47 - 3.40 (m, 1H), 3.39 - 3.32 (m, 1H), 1.80 (q, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 145.0, 131.0, 128.0, 119.9, 68.9, 47.7, 38.0.

(rac)-3-azido-1-(4-(trifluoromethyl)phenyl)propan-1-ol [(rac)-14c]

OH N₃ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.67 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 5.69 (d, J = 4.6 Hz, 1H), 4.78 (dt, J = 8.0, 5.1 Hz, 1H), 3.52 - 3.46 (m, 1H), 3.42 - 3.36 (m, 1H), 1.91 - 1.81 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 150.5, 127.9 (q, J = 31.0 Hz), 126.6 - 126.4 (m),

125.2 - 125.0 (m), 124.5 (q, J = 270.0 Hz), 69.2, 47.8, 38.1.

(rac)-3-azido-1-(3,5-difluorophenyl)propan-1-ol [(rac)-15c]

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.09 - 7.04 (m, 3H), 5.66 (d, J = 4.9 Hz, 1H), 4.67 (dt, J = 8.7, 4.6 Hz, 1H), 3.47 - 3.42 (m, 1H), 3.40 - 3.37 (m, 1H), 1.90 - 1.74 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.7 (d, J = 12.9 Hz), 161.2 (d, J = 13.0 Hz), 150.7 (t, J = 8.2 Hz), 108.8 (dd, J = 25.0, 7.0 Hz), 102.2 (t, J = 25.7 Hz), 68.7, 47.7, 37.7.

(rac)-3-azido-1-(naphthalen-2-yl)propan-1-ol [(rac)-16c]

OH 3H NMR (400 MH

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 - 8.13 (m, 1H), 7.95 - 7.68 (m, 3H), 7.58 - 7.48 (m, 3H), 5.67 - 5.60 (m, 1H), 5.49 - 5.41 (m, 1H), 3.70 -

3.59 (m, 1H), 3.46 - 3.41 (m, 1H), 2.09 - 1.85 (m, 2H). ¹³C **NMR (100 MHz, DMSO-***d*₆**)** δ 141.3, 133.4, 129.8, 128.8, 127.3, 126.0, 125.5, 123.2, 122.9, 66.4, 48.2, 37.7.

(rac)-4-azido-2-phenylbutan-2-ol [(rac)-17c]

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.46 - 7.44 (m, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.21 - 7.19 (m, 1H), 5.20 (s, 1H), 3.36 - 3.28 (m, 1H), 3.04 - 2.97 (m, 1H), 2.03 - 1.98 (m, 2H), 1.46 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 148.3, 127.9, 126.2, 124.8, 71.8, 46.9, 42.1, 30.5.

(rac)-3-azido-1-(5-bromopyridin-3-yl)propan-1-ol [(rac)-18c]

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.56 (dd, J = 16.0, 2.3 Hz, 2H), 8.00 (t, J = 2.1 Hz, 1H), 5.72 (d, J = 4.8 Hz, 1H), 4.72 (dt, J = 7.9, 5.0 Hz, 1H), 3.50 - 3.45 (m, 1H), 3.43 - 3.38 (m, 1H), 1.90 - 1.85 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 148.9, 146.2, 143.1, 136.0, 120.2, 67.0, 47.6, 37.5.

(rac)-3-azido-1-(quinolin-3-yl)propan-1-ol [(rac)-19c]

¹H NMR (400 MHz, DMSO- d_6) δ 8.95 (d, J = 2.2 Hz, 1H), 8.28 (d, J = 2.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.97 (dd, J = 8.2, 1.5 Hz, 1H), 7.71 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.58 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 5.80 (d, J = 4.6 Hz, 1H), 4.93 (dd, J = 11.2, 6.8 Hz, 1H), 3.58 - 3.50 (m, 1H),

3.47 - 3.41 (m, 1H), 2.00 (q, J = 6.7 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 149.7, 147.0, 138.1, 132.1, 129.1, 128.7, 128.1, 127.5, 126.7, 67.8, 47.7, 37.6.

(rac) 3-azido-1-cyclohexylpropan-1-ol [(rac)-21c]

¹H NMR (400 MHz, DMSO-*d*₆) δ 4.47 (d, J = 5.9 Hz, 1H), 3.47 - 3.39 (m, 1H), 3.39 - 3.31 (m, 1H), 3.28 - 3.20 (m, 1H), 1.80 - 1.55 (m, 6H), 1.54 - 1.43 (m, 1H), 1.26 - 1.08 (m, 4H), 1.07 - 0.88 (m, 2H). ¹³C NMR (100 MHz, 40.2.43 (22.0.20 0.25 0.26 0.25 0.

DMSO-*d*₆) 8 71.1, 48.2, 43.6, 32.8, 28.8, 27.8, 26.3, 26.0, 25.9.

Synthesis of racemic γ-cyanohydrin²⁴:

To a 10-mL round-bottom flask, 159.2 mg (1.0 mmol) of 4-oxo-4-phenylbutanenitrile and 2 mL of methanol were added. The flask was cooled to 0 °C, followed by the addition of 45.4 mg (1.2 mmol) of NaBH₄. The reaction mixture was then stirred at room temperature for 1 h. Afterward, the methanol solvent was removed under reduced pressure, followed by the addition of 5 mL distilled water to the flask. The mixture was then extracted with ethyl acetate (3×5 mL) and saturated brine (twice). The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 2:1) to afford the racemic γ -cyanohydrin (rac)-1d.

(rac)-4-hydroxy-4-phenylbutanenitrile [(rac)-1d]

The NMR (400 MHz, CDCl₃)
$$\delta$$
 7.38 - 7.28 (m, 5H), 4.75 (dd, J = 8.1, 5.3 Hz, 1H), 2.81 (s, 1H), 2.50 - 2.43 (m, 1H), 2.37 - 2.29 (m, 1H), 2.01 - 1.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 128.3, 127.6, 125.4, 119.7, 71.6, 33.8, 13.3.

Synthesis of racemic γ-nitroalcohol²⁵:

Step 2

$$\begin{array}{c} \text{Br} \\ \text{NO}_2 \end{array} \begin{array}{c} \text{MeCN (2 mL)} \\ \text{Water (2 mL)} \\ \text{80 °C, 4 h} \end{array}$$
 (1-bromo-3-nitropropyl)benzene
$$(rac) - \textbf{1e}$$

To a 10-mL round-bottom flask equipped with a magnetic stirring bar was charged with $[Cu(dap)_2]Cl$ (4.4 mg, 1 mol%, 0.01 equiv). Then dry MeCN (2 mL) was added under positive nitrogen atmosphere. Then 36 μ L (0.5 mmol) of bromo(nitro)methane and 58 μ L (0.5 mmol) styrene were added under nitrogen atmosphere. A Teflon sealed inlet for a glass rod was placed on the reaction tube, through which irradiation with LED_{450 nm} took place from above. The mixture was stirred in an aluminum block at room temperature for 12 h. Afterward, the reaction mixture was concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 5:1) to afford the intermediate (1-bromo-3-nitropropyl)benzene. Then a 25-mL pressure tube equipped with a magnetic stirring bar was charged with 122.0 mg (0.50 mmol) of (1-bromo-3-nitropropyl)benzene and a mixture of MeCN and water (1:1, 4.0 mL) was added. The reaction mixture was then refluxed at 80 °C for 4 h. Afterward, the reaction mixture was concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 2:1) to afford racemic γ -nitroalcohol (rac)-1e.

(rac)-3-nitro-1-phenylpropan-1-ol [(rac)-1e]

¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.38 - 7.26 (m, 6H), 4.74 (dd, J = 8.3, 4.6 Hz, 1H), 4.54 - 4.48 (m, 1H), 4.41 - 4.36 (m, 1H), 3.42 (s, 1H), 2.37 - 2.27 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 128.8, 128.2, 125.6, 72.3, 71.0, 35.8.

5. Biocatalytic enantioselective formation of oxetanes

OH E. coli (HheD8-mutant) cells PB buffer, 30 °C
$$R^{1}$$
 R^{2} $R^{$

General procedure: In a 200 mL round-bottom flask, a resting cell suspension of *E. coli* (HheD8-M4) at a concentration of 10 g dcw/L was prepared in 100 mL of PB buffer (50 mM, pH 8.5). To this suspension, 2 mmol of γ-haloalcohol (rac)-a was added to a final concentration of 20 mM. The reaction mixture was then stirred at 30 °C. Upon completion of the enzymatic reaction, the mixture was subjected to extraction using ethyl acetate (3 × 70 mL). The organic phases were separated by centrifugation (8800 × g, 3 min), combined, dried over anhydrous Na₂SO₄, and evaporated at reduced pressure. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 50:1 ~ 20:1; dichloromethaneethyl: ethyl acetate = 6:1 ~ 3:1) on silica gel to afford the desired chiral oxetane (R)-b and γ-haloalcohol (S)-a.

(S)-3-chloro-1-phenylpropan-1-ol [(S)-1a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **1a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 8 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $40:1 \sim 20:1$) to provide (*S*)-**1a** as a white solid in 50% yield (179.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.34 (m, 4H), 7.32 - 7.28 (m, 1H), 4.91 (dd, J = 8.5, 4.7 Hz, 1H), 3.75 - 3.69 (m, 1H), 3.54 (dt, J = 10.9, 5.9 Hz, 1H), 2.35 - 2.16 (m, 2H), 2.11 - 2.03 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 128.7, 128.0, 125.9, 71.3, 41.8, 41.5. [α] α ²⁵ = -31.7 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: t_(S) (major) = 44.8 min, t_(R) (minor) = 48.7 min. HRMS (ESI) m/z: calculated for C₉H₁₂ClO [M+H]⁺: 171.0577, found: 171.0574. m.p.: 51.4-52.4 °C.

(R)-2-phenyloxetane [(R)-1b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **1a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 8 h. The crude product was purified by flash column chromatography

on silica gel (petroleum ether: ethyl acetate = $50:1 \sim 40:1$) to provide (\it{R})-1b as a light yellow liquid in 41% yield (117.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.45 (m, 2H), 7.41 (t, \it{J} = 7.2 Hz, 2H), 7.34 - 7.30 (m, 1H), 5.83 (t, \it{J} = 7.5 Hz, 1H), 4.85 (td, \it{J} = 8.0, 5.8 Hz, 1H), 4.68 (dt, \it{J} = 9.2, 5.8 Hz, 1H), 3.08 - 2.99 (m, 1H), 2.72 - 2.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.6, 127.9, 125.3, 83.0, 68.4, 30.8. [α] σ ²⁵ = + 174.91 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in \it{n} -hexane, 0.7 ml/min, λ = 210 nm) indicated 98% \it{ee} : t_(\it{S}) (minor) = 10.1 min, t_(\it{R}) (major) = 11.3 min. HRMS (ESI) $\it{m/z}$: calculated for C₉H₁₀NaO [M+Na]⁺: 157.0629, found: 157.0634.

(S)-3-chloro-1-(2-fluorophenyl)propan-1-ol [(S)-2a]

F OH C

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **2a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 6 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $40:1 \sim 20:1$) to

provide (*S*)-2a as a light yellow liquid in 49% yield (184.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, J = 7.5 Hz, 1H), 7.27 (q, J = 5.8 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 11.1 Hz, 1H), 5.22 (dd, J = 8.6, 4.4 Hz, 1H), 3.78 - 3.71 (m, 1H), 3.61 (dt, J = 11.0, 5.9 Hz, 1H), 2.27 - 2.14 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8 (d, J = 245.0 Hz), 130.6 (d, J = 13.0 Hz), 129.4 (d, J = 8.0 Hz), 127.4 (d, J = 5.0 Hz), 124.6 (d, J = 3.0 Hz), 115.6 (d, J = 22.0 Hz), 65.9 (d, J = 3.0 Hz), 41.6, 40.2. [α] α ²⁵ = -35.44 (c = 1.00, CH₂Cl₂). HPLC analysis (OD-H, 10% IPA in *n*-hexane, 1.0 ml/min, $\lambda = 210$ nm) indicated 98% ee: t_(S) (major) = 5.7 min, t_(R) (minor) = 6.4 min. HRMS (ESI) m/z: calculated for C₉H₁₀ClFNaO [M+Na]⁺: 211.0302, found: 211.0307.

(R)-2-(2-fluorophenyl) oxetane [(R)-2b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **2a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 6 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**2b** as a light yellow liquid in 39% yield (118.4 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.66 (t, J = 7.5 Hz, 1H), 7.30 - 7.24 (m, 1H), 7.20 (t, J = 7.5 Hz, 1H), 6.05 (t, J = 7.6 Hz, 1H), 4.84 (td, J = 8.2, 6.3 Hz, 1H), 4.68 (dt, J = 9.2, 6.0 Hz, 1H), 3.13 - 3.05 (m, 1H), 2.70 - 2.61 (m, 1H). ¹³C NMR (**100 MHz**, CDCl₃)

δ 159.3 (d, J = 244.0 Hz), 130.8 (d, J = 13.0 Hz), 129.2 (d, J = 8.0 Hz), 127.0 (d, J = 4.0 Hz), 124.3 (d, J = 4.0 Hz), 115.2 (d, J = 20.0 Hz), 77.8 (d, J = 4.0 Hz), 76.8, 30.0. [α] \mathbf{p}^{25} = + 148.42 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 98% ee: $\mathbf{t}_{(S)}$ (minor) = 12.9 min, $\mathbf{t}_{(R)}$ (major) = 15.3 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₀FO [M+Na]⁺: 153.0716, found: 153.0715.

(S)-3-chloro-1-(2-chlorophenyl)propan-1-ol [(S)-3a]

CI OH

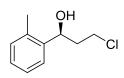
Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **3a** (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $40:1 \sim 20:1$) to

provide (*S*)-3a as a light yellow liquid in 51% yield (212.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.7 Hz, 1H), 7.32 (q, J = 9.7 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 5.35 (d, J = 8.4 Hz, 1H), 3.84 - 3.77 (m, 1H), 3.69 (dt, J = 10.8, 5.2 Hz, 1H), 2.26 - 2.18 (m, 2H), 2.15 - 2.06 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 131.8, 129.7, 128.9, 127.3, 127.1, 68.1, 41.8, 39.8. [α] σ ²⁵ = - 56.66 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 94% ee: t_(R) (minor) = 34.7 min, t_(S) (major) = 36.7 min. HRMS (ESI) m/z: calculated for C₉H₁₁Cl₂O [M+H]⁺: 205.0187, found: 205.0194.

(R)-2-(2-chlorophenyl) oxetane[(R)-3b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **3a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**3b** as a colorless liquid in 43% yield (143.9 mg). ¹H NMR (**400 MHz, CDCl3**) δ 7.76 (d, *J* = 9.4 Hz, 1H), 7.37 - 7.31 (m, 2H), 7.23 (td, *J* = 7.6, 1.7 Hz, 1H), 6.02 (t, *J* = 7.5 Hz, 1H), 4.84 (td, *J* = 7.5, 6.0 Hz, 1H), 4.65 (dt, *J* = 9.1, 6.0 Hz, 1H), 3.23 - 3.15 (m, 1H), 2.55 - 2.45 (m, 1H). ¹³C NMR (100 MHz, CDCl3) δ 141.4, 130.4, 129.2, 128.5, 127.0, 126.0, 80.3, 68.6, 30.0. [a]p²⁵ = + 193.99 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 97% *ee*: t_(S) (minor) = 11.1 min, t_(R) (major) = 12.0 min. HRMS (ESI) *m/z*: calculated for C₉H₉ClNaO [M+Na]⁺: 191.0240, found: 191.0233.

(S)-1-(2-bromophenyl)-3-chloropropan-1-ol [(S)-4a]


Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **4a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $40:1 \sim 20:1$) to

provide (*S*)-4a as a light yellow liquid in 50% yield (248.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 11.6, 9.4 Hz, 2H), 7.34 (, J = 7.9 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 5.28 (d, J = 7.6 Hz, 1H), 3.83 - 3.76 (m, 1H), 3.71 - 3.65 (m, 1H), 2.46 (s, 1H), 2.25 - 2.18 (m, 1H), 2.10 - 2.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) 142.8, 132.9, 129.2, 128.0, 127.3, 121.8, 70.3, 41.8, 39.8. [α] σ ²⁵ = -53.76 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 93% *ee*: t_(R) (minor) = 36.5 min, t_(S) (major) = 39.5 min. HRMS (ESI) *m/z*: calculated for C₉H₁₁ClBrO [M+H]⁺: 248.9682, found: 248.9682.

(R)-2-(2-bromophenyl) oxetane [(R)-4b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **4a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $50:1 \sim 40:1$) to provide (R)-**4b** as a colorless liquid in 46% yield (196.3 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 5.94 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 7.7, 6.0 Hz, 1H), 4.64 (dt, J = 9.1, 6.1 Hz, 1H), 3.26 - 3.18 (m, 1H), 2.52 - 2.44 (m, 1H). ¹³C NMR (**100 MHz**, CDCl₃) δ 142.7, 132.4, 128.8, 127.6, 126.3, 119.7, 82.2, 68.39, 30.1. [α] α ²⁵ = + 192.79 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 96% ee: $t_{(S)}$ (minor) = 11.4 min, $t_{(R)}$ (major) = 12.3 min. HRMS (ESI) m/z: calculated for C₉H₉BrNaO [M+Na]⁺: 234.9734, found: 234.9737.

(S)-3-chloro-1-(o-tolyl)propan-1-ol [(S)-5a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **5a** (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $40:1 \sim 20:1$) to

provide (*S*)-5a as a colorless liquid in 50% yield (185.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.5 Hz, 1H), 7.26 - 7.14 (m, 3H), 5.16 (dd, J = 8.8, 3.9 Hz, 1H), 3.83 - 3.76 (m, 1H), 3.62 (dt, J = 10.8, 5.3 Hz, 1H), 2.35 (s, 3H), 2.13 - 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 134.4, 130.6, 127.5, 126.4, 125.1, 67.4, 42.1, 40.5, 19.0. [α] $_{\mathbf{D}}^{25}$ = -46.64 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 93% ee: t_(S) (major) = 37.8 min, t_(R) (minor) = 40.7 min. HRMS (ESI) m/z: calculated for C₉H₁₃ClNaO [M+Na]⁺: 207.0553, found: 207.0558.

(R)-2-(o-tolyl) oxetane [(R)-5b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **5a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**5b** as a colorless liquid in 33% yield (98.7 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.70 (d, J = 7.7 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.21 (t, J = 5.9 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 6.00 (t, J = 7.6 Hz, 1H), 4.86 (td, J = 7.9, 5.8 Hz, 1H), 4.65 (dt, J = 9.2, 5.8 Hz, 1H), 3.13 - 2.05 (m, 1H), 2.59 - 2.51 (m, 1H), 2.19 (s, 3H). ¹³C NMR (**100 MHz**, CDCl₃) δ 141.8, 133.4, 130.1, 127.3, 126.2, 124.1, 80.8, 68.2, 29.8, 18.5. [α] $_{\Omega}$ $_{$

(S)-3-chloro-1-(3-fluorophenyl)propan-1-ol [(S)-6a

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **6a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $40:1 \sim 20:1$) to provide (*S*)-**6a** as a light yellow liquid in 47% yield (179.4 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.32 (q, *J* = 8.2 Hz, 1H), 7.09 (dd, *J* = 15.7, 7.8 Hz, 2H), 6.98 (t, *J* = 8.4 Hz, 1H), 4.93 (dd, *J* = 8.8 4.6 Hz, 1H), 3.76 - 3.70 (m, 1H), 3.54 (dt, *J* = 11.0, 5.8 Hz, 1H), 2.29 (s, 1H), 2.22 - 2.14 (m, 1H), 2.10 - 2.01 (m, 1H). ¹³C NMR (**100 MHz**, CDCl₃) δ 163.1 (d, *J* = 245.0 Hz), 146.5 (d, *J* = 6.0 Hz), 130.3 (d, *J* = 8.0 Hz), 121.4 (d, *J* = 3.0 Hz), 114.8 (d, *J* = 21.0 Hz), 112.8 (d, *J* = 22.0 Hz), 70.7, 41.6,

41.4. $[\alpha]_D^{25}$ = - 14.79 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 94% *ee*: $t_{(S)}$ (major) = 44.0 min, $t_{(R)}$ (minor) = 45.8 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₁₁ClFO [M+H]⁺: 189.0482, found: 189.0481.

(R)-2-(3-fluorophenyl) oxetane [(R)-6b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **6a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to provide (R)-**6b** as a light yellow liquid in 36% yield (108.7 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.34 (td, J = 7.8, 5.6 Hz, 1H), 7.17 (t, J = 8.2 Hz, 2H), 7.01 - 6.96 (m, 1H), 5.79 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 8.0, 6.0 Hz, 1H), 4.66 (dt, J = 9.6, 5.8 Hz, 1H), 3.09 - 3.00 (m, 1H), 2.66 - 2.58 (m, 1H). ¹³C NMR (**100 MHz**, CDCl₃) δ 163.2 (d, J = 245.0 Hz), 146.5 (d, J = 7.0 Hz), 130.2 (d, J = 8.0 Hz), 120.7 (d, J = 3.0 Hz), 114.6 (d, J = 21.0 Hz), 112.2 (d, J = 22.0 Hz), 82.2 (d, J = 2.0 Hz), 68.5, 30.7. [α] \mathbf{p}^{25} = + 165.88 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: $\mathbf{t}_{(S)}$ (minor) = 14.7 min, $\mathbf{t}_{(R)}$ (major) = 15.8 min. HRMS (ESI) m/z: calculated for C₉H₁₀FO [M+H]⁺: 153.0716, found: 157.0713.

(S)-3-chloro-1-(3-chlorophenyl)propan-1-ol [(S)-7a

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **7a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $40:1 \sim 20:1$) to provide (*S*)-**7a** as a light yellow liquid in 48% yield (196.0 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.35 (s, 1H), 7.30 - 7.24 (m, 2H), 7.21 (dd, J = 6.6, 2.1 Hz, 1H), 4.90 (dd, J = 8.7, 4.6 Hz, 1H), 3.74 - 3.68 (m, 1H), 3.53 (dt, J = 11, 5.7 Hz, 1H), 2.40 (s, 1H), 2.20 - 2.12 (m, 1H), 2.07 - 1.99 (m, 1H). ¹³C NMR (**100 MHz**, CDCl₃) δ 145.9, 134.6, 130.0, 128.1, 126.0, 124.0, 70.7, 41.6, 41.4. [α] ρ ²⁵ = -21.68 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 93% *ee*: t_(S) (major) = 43.8 min, t_(R) (minor) = 49.2 min. HRMS (ESI) *m/z*: calculated for C₉H₁₁Cl₂O [M+H]⁺: 205.0187, found: 205.0188.

(R)-2-(3-chlorophenyl) oxetane [(R)-7b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **7a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**7b** as a light yellow liquid in 45% yield (150.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.33 - 7.25 (m, 3H), 5.77 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 7.9, 5.8 Hz, 1H), 4.66 (dt, J = 9.2, 5.8 Hz, 1H), 3.08 - 3.00 (m, 1H), 2.66 - 2.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 134.6, 129.9, 127.9, 125.4, 123.3, 82.2, 68.5, 30.7. [α] α ²⁵ = + 137.77 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 98% *ee*: t_(S) (minor) = 14.4 min, t_(R) (major) = 16.9 min. HRMS (ESI) m/z: calculated for C₉H₉ClNaO [M+Na]⁺: 191.0240, found: 191.0236.

(S)-1-(3-bromophenyl)-3-chloropropan-1-ol [(S)-8a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM 8a (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-8a as a light yellow liquid in 50% yield (251.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.24 (dt, J = 16.1, 10.3 Hz, 2H), 4.91 (dd, J = 8.8, 4.6 Hz, 1H), 3.76 - 3.70 (m, 1H), 3.54 (dt, J = 11.0, 5.7 Hz, 1H), 2.26 (s, 1H), 2.20 - 2.13 (m, 1H), 2.09 - 2.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 131.0, 130.4, 129.0, 124.5, 122.9, 70.7, 41.6, 41.4. [α] $_{\alpha}$ $_{\alpha}$

(R)-2-(3-bromophenyl)oxetane [(R)-8b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM 8a (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 50:1 ~ 40:1) to provide (*R*)-8b as

a light yellow liquid in 43% yield (182.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 5.77 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 8.1, 6.0 Hz, 1H), 4.66 (dt, J = 9.2, 5.8 Hz, 1H), 3.07 - 3.00 (m, 1H), 2.65 - 2.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 130.8, 130.2, 128.3, 123.8, 122.8, 82.1, 68.4, 30.7. [α] $_{\rm D}^{25}$ = + 130.01 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 95% ee: t_(S) (minor) = 14.8 min, t_(R) (major) = 18.0 min. HRMS (ESI) m/z: calculated for C₉H₉BrNaO [M+Na]⁺: 234.9734, found: 234.9741.

(S)-3-chloro-1-(m-tolyl)propan-1-ol [(S)-9a

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **9a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $40:1 \sim 20:1$) to provide (*S*)-**9a** as a light yellow liquid in 51% yield (190.0 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.26 (t, *J* = 7.4 Hz, 1H), 7.18 - 7.15 (m, 2H), 7.12 (d, *J* = 7.6 Hz, 1H), 4.90 (dd, *J* = 8.6, 4.6 Hz, 1H), 3.77 - 3.71 (m, 1H), 3.59 - 3.54 (m, 1H), 2.37 (s, 3H), 2.28 - 2.19 (m, 1H), 2.12 - 2.04 (m, 1H). ¹³C NMR (**100 MHz**, CDCl₃) δ 143.8, 138.5, 128.8, 128.7, 126.6, 123.0, 71.4, 41.9, 41.5, 21.6. [α] ρ ²⁵ = 25.98 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 91% *ee*: t_(S) (major) = 40.1 min, t_(R) (minor) = 43.2 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₁₃ClNaO [M+Na]⁺: 207.0553, found: 207.0557.

(R)-2-(m-tolyl)oxetane [(R)-9b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **9a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**9b** as a light yellow liquid in 34% yield (102.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.7 Hz, 2H), 7.23 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 7.4 Hz, 1H), 5.80 (t, J = 7.5 Hz, 1H), 4.84 (td, J = 8.4, 6.5 Hz, 1H), 4.67 (dt, J = 9.3, 5.8 Hz, 1H), 3.06 - 2.98 (m, 1H), 2.72 - 2.63 (m, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 138.3, 128.7, 128.5, 126.0, 122.4, 83.1, 68.4, 30.8, 21.6. $|\alpha|_{D}^{25}$ = + 148.32 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ

= 210 nm) indicated 99% ee: $t_{(S)}$ (minor) = 9.3 min, $t_{(R)}$ (major) = 10.8 min. **HRMS** (**ESI**) m/z: calculated for $C_{10}H_{12}NaO$ [M+Na]⁺: 149.0966, found: 149.0961.

(S)-3-chloro-1-(3-methoxyphenyl)propan-1-ol [(S)-10a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **10a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 20:1) to provide (**S**)-**10a** as a light yellow liquid in 51% yield (206.9 mg). ¹H NMR (**400 MHz, CDCl**₃) δ 7.27 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.3 Hz, 1H), 4.90 (dd, J = 8.6, 4.8 Hz, 1H), 3.80 (s, 3H), 3.75 - 3.69 (m, 1H), 3.57 - 3.52 (m, 1H), 2.25 - 2.20 (m, 3H). ¹³C NMR (**100 MHz, CDCl**₃) δ 159.9, 145.5, 129.8, 118.1, 113.4, 111.3, 71.3, 55.4, 41.8, 41.4. [α] ρ ²⁵ = -19.79 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OD-H, 10% IPA in *n*-hexane, 1.0 ml/min, λ = 210 nm) indicated 91% *ee*: t_(S) (major) = 11.9 min, t_(R) (minor) = 13.8 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₁₄ClO₂ [M+H]⁺: 201.0682, found: 201.0681.

(R)-2-(3-methoxyphenyl)oxetane [(R)-10b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **10a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**10b** as a light yellow liquid in 43% yield (140.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.28 (m, 1H), 7.03 - 6.98 (m, 2H), 6.86 - 6.83 (m, 1H), 5.80 (t, J = 7.6 Hz, 1H), 4.86 - 4.80 (m, 1H), 4.69 - 4.64 (m, 1H), 3.84 (s, 1H), 3.07 - 2.98 (m, 1H), 2.70 - 2.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 145.4, 129.7, 117.4, 113.5, 110.5, 82.9, 68.4, 55.4, 30.8. [a] $\mathbf{p}^{25} = + 133.21$ (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, $\lambda = 210$ nm) indicated 97% *ee*: $\mathbf{t}_{(S)}$ (minor) = 14.1 min, $\mathbf{t}_{(R)}$ (major) = 20.5 min. HRMS (ESI) m/z: calculated for C₁₀H₁₂NaO₂ [M+Na]⁺: 187.0735, found: 187.0734.

(S)-3-chloro-1-(4-fluorophenyl)propan-1-ol [(S)-11a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **11a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-**11a** as a light yellow liquid in 52% yield (196.7 mg). ¹**H NMR (400 MHz, CDCl₃)** δ 7.32 (dd, *J* = 8.6, 5.7 Hz, 2H), 7.04 (t, *J* = 8.6 Hz, 2H), 4.91 (dd, *J* = 8.6, 4.9 Hz, 1H), 3.74 - 3.68 (m, 1H), 3.52 (dt, *J* = 11.4, 5.8 Hz, 1H), 2.27 (s, 1H), 2.23 - 2.15 (m, 1H), 2.08 - 1.99 (m, 1H). ¹³**C NMR** (**100 MHz, CDCl₃)** δ 162.4 (d, *J* = 244.0 Hz), 139.5 (d, *J* = 3.0 Hz) 127.6 (d, *J* = 8.0 Hz), 115.6 (d, *J* = 22.0 Hz), 70.7, 41.7, 41.5. [α] \mathbf{p}^{25} = - 32.31 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 93% *ee*: $\mathbf{t}_{(S)}$ (major) = 42.8 min, $\mathbf{t}_{(R)}$ (minor) = 47.9 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₁ClFO [M+H]⁺: 189.0482, found: 189.0488.

(R)-2-(4-fluorophenyl) oxetane [(R)-11b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **11a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**11b** as a light yellow liquid in 34% yield (103.7 mg). ¹H NMR (**400** MHz, CDCl₃) δ 7.42 (dd, J = 8.4, 5.6 Hz, 2H), 7.07 (t, J = 8.7 Hz, 2H), 5.78 (t, J = 7.5 Hz, 1H), 4.82 (td, J = 8.1, 6.0 Hz, 1H), 4.64 (dt, J = 9.3, 5.8 Hz, 1H), 3.05 - 2.97 (m, 1H), 2.69 - 2.60 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, J = 244.0 Hz), 139.4 (d, J = 4.0 Hz), 127.2 (d, J = 8.0 Hz), 115.5 (d, J = 21.0 Hz), 82.5, 68.2, 31.0. [α] α] α ²⁵ = + 148.82 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: t_(S) (minor) = 15.3 min, t_(R) (major) = 17.2 min. HRMS (ESI) m/z: calculated for C₉H₁₀FO [M+H]⁺: 169.0420, found: 169.0419.

(S)-3-chloro-1-(4-chlorophenyl)propan-1-ol [(S)-12a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **12a** (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $40:1 \sim 20:1$) to provide

(*S*)-12a as a light yellow liquid in 50% yield (206.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (q, J = 8.6 Hz, 4H), 4.94 (dd, J = 8.6, 4.6 Hz, 1H), 3.78 - 3.72 (m, 1H), 3.55 (dt, J = 11.0, 5.8 Hz, 1H), 2.37 (s, 1H), 2.25 - 2.16 (m, 1H), 2.10 - 2.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 132.4, 128.9, 127.3, 70.1, 42.4, 41.0. [α] \mathbf{p}^{25} = - 13.09 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 93% ee: $\mathbf{t}_{(S)}$ (major) = 51.1 min, $\mathbf{t}_{(R)}$ (minor) = 54.3 min. HRMS (ESI) m/z: calculated for C₉H₁₁Cl₂O [M+H]⁺: 189.0482, found: 189.0488.

(R)-2-(4-chlorophenyl) oxetane [(R)-12b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **12a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**12b** as a light yellow liquid in 37% yield (126.2 mg). ¹H NMR (**400 MHz**, CDCl₃) 7.36 (t, *J* = 8.0 Hz, 4H), 5.78 (t, *J* = 7.5 Hz, 1H), 4.82 (td, *J* = 8.0, 5.9 Hz, 1H), 4.64 (dt, *J* = 9.2, 5.8 Hz, 1H), 3.07 - 2.98 (m, 1H), 2.66 - 2.58 (m, 1H). ¹³C NMR (**100 MHz**, CDCl₃) δ 142.2, 133.6, 128.8, 126.8, 82.3, 68.4, 30.9. [α] α ²⁵ = + 160.69 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated >99% *ee*: t_(S) (minor) = 8.3 min, t_(R) (major) = 8.9 min. HRMS (ESI) m/z: calculated for C₉H₉ClNaO [M+Na]⁺: 234.0410, found: 234.0409.

(S)-1-(4-bromophenyl)-3-chloropropan-1-ol [(S)-13a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **13a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C,, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate

= 40:1 ~ 20:1) to provide (*S*)-13a as a light yellow liquid in 50% yield (249.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 4.92 (dd, J = 8.7, 4.6 Hz, 1H), 3.76 - 3.70 (m, 1H), 3.54 (dt, J = 11.0, 5.8 Hz, 1H), 2.22 - 1.99 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 131.9, 127.6, 121.8, 70.5, 41.7, 41.4. [α] α ²⁵ = - 16.69 (c = 1.00, CH₂Cl₂). HPLC analysis (OD-H, 10% IPA in *n*-hexane, 1.0 ml/min, λ = 210 nm) indicated 92% *ee*: t_(S) (major) = 7.1 min, t_(R) (minor) = 8.0 min. HRMS (ESI) *m/z*: calculated for C₉H₁₀ClBrNaO [M+Na]⁺: 270.9501, found: 270.9495.

(R)-2-(4-bromophenyl) oxetane [(R)-13b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **13a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**13b** as a light yellow liquid in 42% yield (178.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.76 (t, J = 7.5 Hz, 1H), 4.82 (td, J = 8.1, 6.1 Hz, 1H), 4.64 (dt, J = 9.3, 5.8 Hz, 1H), 3.06 - 2.98 (m, 1H), 2.65 - 2.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 131.7, 127.0, 121.7, 82.3, 68.4, 30.8. [α] α ²⁵ = + 129.74 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 98% *ee*: t_(S) (minor) = 15.9 min, t_(R) (major) = 17.7 min. HRMS (ESI) m/z: calculated for C₉H₉BrNaO [M+Na]⁺: 234.9734, found: 234.9733.

(S)-3-chloro-1-(4-(trifluoromethyl)phenyl)propan-1-ol [(S)-14a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 10 mM **14a** (1 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 82 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-**14a** as a light yellow liquid in 53% yield (125.6 mg). ¹H **NMR (400 MHz, CDCl₃)** δ 7.62 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 7.9 Hz, 2H), 5.04 (dd, J = 9.0, 4.2 Hz, 1H), 3.80 - 3.74 (m, 1H), 3.57 (dt, J = 11.1, 5.6 Hz, 1H), 2.25 - 2.03 (m, 3H). ¹³C **NMR** (**100 MHz, CDCl₃)** δ 147.8, 130.2 (d, J = 32.0 Hz), 126.2, 125.7 (q, J = 4.0, Hz), 124.2 (d, J = 271.0 Hz), 70.8, 41.5 (d, J = 4.0 Hz). [α] α ²⁵ = - 10.39 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ = 210 nm) indicated 86% ee: t(S) (major) = 9.2 min, t(R) (minor) = 10.4 min. **HRMS (ESI)** m/z: calculated for C₁₀H₁₀ClF₃KO [M+K]⁺: 277.0009, found: 277.0006.

(R)-2-(4-(trifluoromethyl)phenyl)oxetane [(R)-14b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 10 mM **14a** (1 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 82 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 50:1 ~ 40:1)

to provide (*R*)-14b as a light yellow liquid in 37% yield (74.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 5.86 (t, J = 7.6 Hz, 1H), 4.86 (td, J = 8.0, 6.0 Hz, 1H), 4.68 (dt, J = 9.2, 5.8 Hz, 1H), 3.13 - 3.04 (m, 1H), 2.65 - 2.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 129.9 (q, J = 32.0 Hz), 125.6 (q, J = 3.0 Hz), 125.4, 124.2 (q, J = 256.0 Hz), 82.5, 68.6, 30.7. [α] σ ²⁵ = + 99.32 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, $\lambda = 210$ nm) indicated 93% ee: t_(S) (minor) = 6.5 min, t_(R) (major) = 7.0 min. HRMS (ESI) m/z: calculated for C₁₀H₁₀F₃NaO [M+Na]⁺: 203.0684, found: 203.0688.

(S)-3-chloro-1-(3,5-difluorophenyl)propan-1-ol [(S)-15a]

F OH CI

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **15a** (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1

~ 20:1) to provide (*S*)-15a as a colorless liquid in 51% yield (211.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.89 (dd, J = 6.6, 2.2 Hz, 2H), 6.74 - 6.69 (m, 1H), 4.94 (dd, J = 8.8, 4.4 Hz, 1H), 3.77 - 3.71 (m, 1H), 3.56 (dt, J = 11.1, 5.6 Hz, 1H), 2.46 (s, 1H), 2.19 - 2.10 (m, 1H), 2.08 - 2.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) 163.3 (dd, J = 248.0, 12.0 Hz), 148.0 (t, J = 9.0 Hz), 108.7(dd, J = 18.0, 7.0 Hz), 103.2 (t, J = 25.0 Hz), 70.4 (t, J = 2.0 Hz), 41.4 (d, J = 7.0 Hz). [α] α ²⁵ = - 10.79 (c = 1.00, CH₂Cl₂). HPLC analysis (AD-H, 5% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 92% ee: t_(R) (minor) = 9.3 min, t_(S) (major) = 10.7 min. HRMS (ESI) m/z: calculated for C₉H₉ClF₂KO [M+K]⁺: 244.9947, found: 244.9952.

(R)-2-(3,5-difluorophenyl)oxetane [(R)-15b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **15a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to

provide (*R*)-15b as a light yellow liquid in 32% yield (110.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.94 (dt, J = 6.3, 2.0 Hz, 2H), 6.72 (tt, J = 8.9, 2.4 Hz, 1H), 5.75 (t, J = 7.5 Hz, 1H), 4.82 (td, J = 8.0, 5.9 Hz, 1H), 4.65 (dt, J = 9.2, 5.9 Hz, 1H), 3.10 - 3.02 (m, 1H), 2.62 - 2.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4 (dd, J = 247.0, 12.0 Hz), 148.0 (t, J = 9.0 Hz), 107.8 (dd, J = 19.0, 8.0

Hz), 103.0 (t, J = 25.0 Hz), 81.7, 68.6, 30.6. [α] $\mathbf{p}^{25} = +153.59$ (c = 1.00, CH₂Cl₂). **HPLC analysis** (IA-3, 1% IPA in n-hexane, 0.5 ml/min, $\lambda = 210$ nm) indicated 98% ee: $t_{(R)}$ (major) = 12.5 min, $t_{(S)}$ (minor) = 13.9 min. **HRMS** (**ESI**) m/z: calculated for C₉H₉F₂O [M+H]⁺: 171.0625, found: 171.0621.

(S)-3-chloro-1-(naphthalen-2-yl)propan-1-ol [(S)-16a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **16a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M3) cells, 30 °C, reaction for 82 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-**16a** as a light yellow liquid in 50% yield (219.5 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 8.13 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 7.3 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 7.1 Hz, 1H), 7.52 (dt, J = 24.7, 5.2 Hz, 3H), 5.77 (dd, J = 8.8, 3.5 Hz, 1H), 3.94 (td, J = 9.6, 5.1 Hz, 1H), 3.70 (dt, J = 15.7, 1.3 Hz, 1H), 2.38 - 2.23 (m, 2H). ¹³C NMR (**100 MHz**, CDCl₃) δ 139.6, 133.9, 130.1, 129.1, 128., 126.4, 125.9, 125.6, 123.0, 122.8, 68.0, 42.4, 40.8. [α] α] α ²⁵ = -51.66 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated 96% *ee*: t_(S) (major) = 16.1 min, t_(R) (minor) = 17.7 min. HRMS (ESI) m/z: calculated for C₁₃H₁₄ClO [M+H]⁺: 221.0733, found: 221.0735.

(R)-2-(naphthalen-2-yl)oxetane [(R)-16b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **16a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M3) cells, 30 °C, reaction for 82 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-**16b** as a light yellow solid in 37% yield (137.4 mg). ¹H NMR (**400** MHz, CDCl₃) δ 7.94 - 7.91 (m, 1H), 7.88 (d, J = 7.1 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.70 - 7.67 (m, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.54 - 7.51 (m, 2H), 6.51 (t, J = 7.6 Hz, 1H), 4.98 (td, J = 7.9, 5.8 Hz, 1H), 4.75 (dt, J = 9.1, 5.9 Hz, 1H), 3.34 - 3.26 (m, 1H), 2.74 - 2.66 (m, 1H). ¹³C NMR (**100** MHz, CDCl₃) δ 139.2, 133.6, 129.0, 128.9, 127.7, 126.1, 125.7, 125.7, 122.8, 121.4, 80.8, 68.7, 30.1. [α] $_{\alpha}$ $_{$

ee: $t_{(S)}$ (minor) = 9.7 min, $t_{(R)}$ (major) = 10.5 min. **HRMS** (**ESI**) m/z: calculated for $C_{13}H_{13}O$ [M+H]⁺: 185.0966, found: 185.0970. **m.p.**: 65.5 - 66.7 °C.

(S)-4-chloro-2-phenylbutan-2-ol [(S)-17a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **18a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 1.5 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-**17a** as a light yellow liquid in 49% yield (179.5 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.42 (d, J = 7.0 Hz, 2H), 7.36 (t, J = 7.1 Hz, 2H), 7.27 (t, J = 7.3 Hz, 1H), 3.58 - 3.51 (m, 1H), 3.37 - 3.30 (m, 1H), 2.33 - 2.28 (m, 2H), 1.60 (s, 3H). ¹³C NMR (**100 MHz**, CDCl₃) δ 146.4, 128.6, 127.2, 124.7, 74.5, 46.7, 40.6, 31.0. [α] $_{\bf D}^{25}$ = - 13.99 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: t_(S) (major) = 30.4 min, t_(R) (minor) = 33.8 min. HRMS (ESI) m/z: calculated for C₁₀H₁₃CIKO [M+K]⁺: 223.0292, found: 223.0290.

(R)-2-methyl-2-phenyloxetane [(R)-17b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM 17a (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 1.5 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 50:1 ~ 40:1) to provide (R)-17b as a light yellow liquid in 36% yield (107.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.37 (m, 4H), 7.30 - 7.26 (m, 1H), 4.65 (dt, J = 8.6, 6.3 Hz, 1H), 4.55 (dt, J = 8.8, 6.5 Hz, 1H), 2.86 - 2.73 (m, 2H), 1.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 128.3, 126.7, 123.6, 86.6, 64.6, 35.6, 30.8. [α] $_{D}^{25}$ = + 107.92 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: $t_{(S)}$ (minor) = 11.0 min, $t_{(R)}$ (major) = 13.8 min. HRMS (ESI) m/z: calculated for C₁₀H₁₃O [M+H]⁺: 149.0966, found: 149.0963.

(S)-1-(5-bromopyridin-3-yl)-3-chloropropan-1-ol [(S)-18a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **18a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 77 h. The crude product was purified by

flash column chromatography on silica gel (dichloromethane : ethyl acetate = 6:1) to provide (*S*)-18a as a light yellow liquid in 50% yield (250.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 2.1 Hz, 1H), 8.32 (d, J = 1.9 Hz, 1H), 7.87 (t, J = 2.0 Hz, 1H), 4.94 (dd, J = 9.1, 4.0 Hz, 1H), 4.77 (s, 1H), 3.79 - 3.73 (m, 1H), 3.56 (dt, J = 11.1, 5.4 Hz, 1H), 2.18 - 2.09 (m, 1H), 2.05 - 1.96 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 145.3, 142.0, 136.8, 121.2, 67.5, 41.4, 41.3. [α] α ²⁵ = -12.09 (c = 1.00, CH₂Cl₂). HPLC analysis (OJ-H, 5% IPA in n-hexane, 1.0 ml/min, λ = 210 nm) indicated 89% ee: t(S) (major) = 14.1 min, t(R) (minor) = 16.2 min. HRMS (ESI) m/z: calculated for C₈H₁₀BrClNO [M+H]⁺: 249.9634, found: 249.9639.

(R)-3-bromo-5-(oxetan-2-yl) pyridine [(R)-18b]

Br Q

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM 18a (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 77 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $8:1 \sim 6:1$) to

provide (*R*)-18b as a light yellow liquid in 42% yield (178.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.59 (t, J = 1.8 Hz, 1H), 8.49 (s, 1H), 7.97 (q, J = 1.8 Hz, 1H), 5.80 (t, J = 7.0 Hz, 1H), 4.87 - 4.81 (m, 1H), 4.69 - 4.64 (m, 1H), 3.12 - 3.03 (m, 1H), 2.67 - 2.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) 150.3, 145.2, 140.8, 135.8, 121.1, 79.8, 68.8, 30.5. [α] $_{D}^{25} = + 104.03$ (c = 1.00, CH₂Cl₂). HPLC analysis (OB-H, 1% IPA in *n*-hexane, 0.5 ml/min, $\lambda = 210$ nm) indicated 97% *ee*: t_(S) (minor) = 33.1 min, t_(R) (major) = 35.8 min. HRMS (ESI) *m/z*: calculated for C₈H₉BrNO [M+H]⁺: 213.9868, found: 213.9864.

(S)-3-chloro-1-(quinolin-3-yl)propan-1-ol [(S)-19a]

OH C Prepared according to the general procedure: $100 \, \text{mL}$ PB buffer ($200 \, \text{mM}$, pH 8.5) containing $10 \, \text{mM}$ **19a** (1 mmol) and $10 \, \text{g}$ dcw/L E. coli (HheD8-M4) cells, $30 \, ^{\circ}\text{C}$, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (dichloromethane: ethyl

acetate = 4:1 ~ 3:1) to provide (*S*)-19a as a white solid in 48% yield (105.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 2.2 Hz, 1H), 8.05 (s, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.64 - 7.60 (m, 1H), 7.51 - 7.47 (m, 1H), 5.10 (dd, J = 8.9, 4.2 Hz, 1H), 3.83 - 3.77 (m, 1H), 3.56 (dt, J = 10.9, 5.6 Hz, 1H), 2.28 - 2.20 (m, 1H), 2.10 - 2.02 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 147.2, 137.0, 133.2, 129.7, 128.6, 127.9, 127.8, 127.1, 68.6, 41.7, 41.4. [α] $_{\bf D}^{25}$ =

- 22.38 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OD-H, 10% IPA in *n*-hexane, 1.0 ml/min, λ = 210 nm) indicated 97% *ee*: t_(S) (major) = 16.3 min, t_(R) (minor) = 17.8 min. **HRMS** (**ESI**) *m/z*: calculated for C₁₂H₁₃ClNO [M+H]⁺: 222.0686, found: 222.0691. **m.p.**: 70.2 - 72.3 °C.

(R)-3-(oxetan-2-yl)quinoline [(R)-19b]

ON PROPERTY OF THE PROPERTY OF

Prepared according to the general procedure: 100 mL PB buffer (200 mM, pH 8.5) containing 10 mM **19a** (1 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 48 h. The crude product was purified by flash column chromatography on silica gel (dichloromethane: ethyl acetate = 6:1 ~ 4:1) to

provide (*R*)-19b as a light yellow in 44% yield (82.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 2.2 Hz, 1H), 8.22 (d, J = 2.1 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.72 - 7.68 (m, 1H), 7.56 - 7.52 (m, 1H), 6.01 (t, J = 7.5 Hz, 1H), 4.90 (td, J = 8.0, 5.9 Hz, 1H), 4.74 (dt, J = 9.3, 5.8 Hz, 1H), 3.18 - 3.09 (m, 1H), 2.78 - 2.69 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.8, 136.2, 132.4, 129.6, 129.3, 128.0, 127.8, 127.0, 81.0, 68.7, 30.7. [α] $_{\rm D}^{25} = +$ 139.30 (c = 1.00, CH₂Cl₂). HPLC analysis (AD-H, 5% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 96% *ee*: t_(S) (minor) = 39.3 min, t_(R) (major) = 41.3 min. HRMS (ESI) *m/z*: calculated for C₁₂H₁₂NO [M+H]⁺: 186.0919, found: 186.0921.

(S)-3-chloro-1-(thiophen-2-yl)propan-1-ol [(S)-20a

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **20a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-**20a** as a light yellow liquid in 50% yield (179.0 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.27 (dd, J = 4.9, 1.4 Hz, 1H), 7.02 - 6.97 (m, 2H), 5.20 (dd, J = 8.5, 5.1 Hz, 1H), 3.77 - 3.71 (m, 1H), 3.58 (dt, J = 16.9, 2.1 Hz, 1H), 2.35 - 2.28 (m, 1H), 2.23 - 2.15 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 126.9, 125.1, 124.2, 67.2, 41.6. [α] α ²⁵ = - 36.78 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 2% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated > 99% ee: $t_{(S)}$ (major) = 28.1 min, $t_{(R)}$ (minor) = 30.2 min. HRMS (ESI) m/z: calculated for $C_7H_{10}ClOS$ [M+H]⁺: 177.0141, found: 177.0138.

(S)-3-chloro-1-cyclohexylpropan-1-ol [(S)-21a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 10 mM **21a** (1 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 60 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-**21a** as a light yellow liquid in 48% yield (85.4 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 3.72 - 3.68 (m, 2H), 3.61 - 3.56 (m, 1H), 1.96 - 1.74 (m, 5H), 1.69 - 1.63 (m, 2H), 1.61 (s, 1H), 1.37 - 0.95 (m, 6H). ¹³C NMR (**100 MHz**, CDCl₃) δ 73.1, 43.5, 42.6, 36.9, 29.7, 28.4, 27.0, 26.3, 25.4. [α] α ²⁵ = -28.10 (c = 1.00, CH₂Cl₂). **GC analysis** (CYCLODEX-B, 110 °C for 85 min) indicated >99% *ee*: t_(S) (major) = 72.2 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₁₇ClNaO [M+Na]⁺: 199.0866, found: 199.0875.

(R)-2-cyclohexyloxetane [(R)-21b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 10 mM **21a** (1 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 60 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate =50:1 ~ 40:1) to provide the (*R*)-**21b** as a light yellow liquid in 35% yield (48.9 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 4.65 (td, *J* = 8.0, 5.8 Hz, 1H), 4.50 - 4.41 (m, 2H), 2.60 - 2.51 (m, 1H), 2.42 - 2.33 (m, 1H), 1.89 - 1.85 (m, 1H), 1.77 - 1.57 (m, 5H), 1.30 - 1.12 (m, 3H), 0.91 - 0.77 (m, 2H). ¹³C NMR (**100 MHz**, CDCl₃) δ 86.8, 68.3, 44.8, 27.6, 26.6, 26.2, 25.8, 25.6. GC analysis (Rt-bDEXcst, 80 °C for 45 min) indicated >99% *ee*: t_(R) (major) = 35.9 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₁₇O [M+H]⁺: 141.1279, found: 141.1281.

(S)-3-bromo-1-phenylpropan-1-ol [(S)-22a]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **17a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 6 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $40:1 \sim 20:1$) to provide (*S*)-**22a** as a white solid in 50% yield (212.4 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.37 (d, J = 4.3 Hz, 4H), 7.33 - 7.28 (m, 1H), 4.93 (dd, J = 8.3, 4.6 Hz, 1H), 3.62 - 3.56 (m, 1H), 3.42 (dt, J = 10.0, 6.1 Hz,

1H), 2.37 - 2.28 (m, 1H), 2.22 - 2.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 128.8, 128.1, 125.9, 72.4, 41.7, 30.4. [α] \mathbf{p}^{25} = - 9.59 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OD-H, 10% IPA in *n*-hexane, 1.0 ml/min, λ = 210 nm) indicated >99% *ee*: t_(S) (major) = 7.3 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₁₁BrKO [M+Na]⁺: 252.9630, found: 252.9640. **mp.**: 55.5 - 56.2 °C.

(R)-2-phenyloxetane [(R)-1b] from 22a

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 8.5) containing 20 mM **22a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 6 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 50:1 ~ 40:1) to provide (*R*)-1b as a light yellow liquid in 30% yield (80.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 6.9 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 5.83 (t, J = 7.5 Hz, 1H), 4.85 (td, J = 8.0, 5.8 Hz, 1H), 4.67 (dt, J = 9.3, 5.8 Hz, 1H), 3.08 - 2.99 (m, 1H), 2.72 - 2.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.5, 127.8, 125.3, 83.0, 68.3, 30.8. [α] α] α ²⁵ = + 161.58 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ = 210 nm) indicated 92% ee: t_(S) (minor) = 10.0 min, t_(R) (major) = 11.2 min. HRMS (ESI) m/z: calculated for C₉H₁₀NaO [M+Na]⁺: 157.0629, found: 157.0629.

(S)-3-iodo-1-phenylpropan-1-ol [(S)-23a]

Prepared according to the general procedure: 100 mL Gly-NaOH buffer (300 mM, pH 9.5) containing 20 mM **23a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 1.5 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 40:1 ~ 20:1) to provide (*S*)-**23a** as a white solid in 47.9% yield (251.3 mg). ¹H NMR (**400 MHz**, CDCl₃) δ 7.39 - 7.34 (m, 4H), 7.32 - 7.29 (m, 1H), 4.79 (dd, *J* = 8.1, 4.9 Hz, 1H), 3.32 - 3.26 (m, 1H), 3.19 - 3.14 (m, 1H), 2.29 - 2.10 (m, 2H). ¹³C NMR (**100 MHz**, CDCl₃) δ 143.5, 128.8, 128.0, 125.9, 74.2, 42.3, 2.9. [α]_D²⁵ = - 0.20 (c = 1.00, CH₂Cl₂). HPLC analysis (OD-H, 10% IPA in *n*-hexane, 1.0 ml/min, λ = 210 nm) indicated >99% *ee*: t_(S) (major) = 7.6 min, t_(R) (minor) = 9.3 min. HRMS (ESI) *m/z*: calculated for C₉H₁₁NaIO [M+Na]⁺: 284.9752, found: 284.9743. **m.p.**: 44.6 - 45.3 °C.

(R)-2-phenyloxetane [(R)-1b] from 23a

Prepared according to the general procedure: 100 mL Gly-NaOH buffer (300 mM, pH 9.5) containing 20 mM **23a** (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 1.5 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = $50:1 \sim 40:1$) to provide (*R*)-1b as a light yellow liquid in 39% yield (107.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.45 (m, 2H), 7.43 - 7.39 (m, 2H), 7.34 - 7.30 (m, 1H), 5.83 (t, J = 7.5 Hz, 1H), 4.85 (td, J = 8.0, 5.8 Hz, 1H), 4.68 (dt, J = 9.2, 5.8 Hz, 1H), 3.08 - 3.00 (m, 1H), 2.73 - 2.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.6, 127.9, 125.3, 83.0, 68.3, 30.8. [α] α ²⁵ = + 173.18 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, $\lambda = 210$ nm) indicated 93% *ee*: t_(S) (minor) = 11.0 min, t_(R) (major) = 12.2 min. HRMS (ESI) m/z: calculated for C₉H₁₁O [M+H]⁺: 135.0810, found: 135.0812.

6. Biocatalytic enantioselective ring-opening of oxetanes

General procedure: In a 200 mL round-bottom flask, a resting cell suspension of *E. coli* (HheD8-M4) at a concentration of 10 g dcw/L was prepared in 100 mL of PB buffer (50 mM, pH 7.5). To this suspension, 2 mmol of oxetane (rac)-**b** and 2 mmol of NaN₃ were added to a final concentration of 20 mM. The reaction mixture was then stirred at 30 °C. Upon completion of the enzymatic reaction, the mixture was subjected to extraction using ethyl acetate (3×70 mL). The organic phases were separated by centrifugation ($8800 \times g$, 3 min), combined, dried over anhydrous Na₂SO₄, and evaporated at reduced pressure. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = $50:1 \sim 1:1$) on silica gel to afford the desired chiral oxetane (S)-**b** and γ -azidoalcohol (R)-**c**.

(S)-2-phenyloxetane [(S)-1b] (Ring opening by $\underline{\text{azide}}$)

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **1b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 10 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**1b** as a light yellow liquid in 33% yield (88.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.45 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 - 7.30 (m, 1H), 5.84 (t, J = 7.5 Hz, 1H), 4.85 (td, J = 8.0, 5.9 Hz, 1H), 4.68 (dt, J = 9.3, 5.7 Hz, 1H), 3.08 - 2.99 (m, 1H), 2.74 - 2.64 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.5, 127.9, 125.3, 82.9, 68.3, 30.8. [α] ρ ²⁵ = -173.88 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ =210 nm) indicated >99% ee: t_(S) (major) = 10.0 min, t_(R) (minor) = 11.3 min. HRMS (ESI) m/z: calculated for C₉H₁₁O [M+H]⁺: 135.0810, found: 135.0806.

(R)-3-azido-1-phenylpropan-1-ol [(R)-1c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **1b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 10 h. The crude product was

purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1 ~ 10:1) to provide (R)-1c as a light yellow liquid in 47% yield (165.1 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.40 - 7.31 (m, 4H), 7.30 - 7.20 (m, 1H), 5.45 (d, J = 4.4 Hz, 1H), 4.66 (q, J = 5.9 Hz, 1H), 3.51 - 3.41 (m, 1H), 3.41 - 3.32 (m, 1H), 1.85 (q, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 145.7, 128.2, 127.0, 125.8, 69.6, 47.9, 38.2. [α] ρ ²⁵ = + 26.68 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ =210 nm) indicated 97% ee: $t_{(S)}$ (minor) = 15.3 min, $t_{(R)}$ (major) = 16.6 min. HRMS (ESI) m/z: calculated for C₉H₁₁N₃NaO [M+Na]⁺: 200.0800, found: 200.0803.

(S)-2-(2-fluorophenyl)oxetane [(S)-2b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **2b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 10 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1) to provide (*S*)-**2b** as a light yellow liquid in 35% yield (106.8 mg). ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.67 (td, J = 7.5, 2.0 Hz, 1H), 7.32 - 7.18 (m, 2H), 7.07 - 6.99 (m, 1H), 6.06 (t, J = 7.6 Hz, 1H), 4.85 (td, J = 7.8, 5.8 Hz, 1H), 4.69 (dt, J = 9.2, 5.9 Hz, 1H), 3.15 - 3.04 (m, 1H), 2.72 - 2.62 (m, 1H). ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 159.3 (d, J = 246.3 Hz), 130.8 (d, J = 13.6 Hz), 129.2 (d, J = 8.0 Hz), 126.9 (d, J = 4.5 Hz), 124.3 (d, J = 3.5 Hz), 115.2 (d, J = 20.7 Hz), 77.7, 68.9, 29.9. [α] \mathbf{p}^{25} = -135.20 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: $\mathbf{t}_{(S)}$ (major) = 12.9 min, $\mathbf{t}_{(R)}$ (minor) = 16.5 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₀FO [M+H]⁺: 153.0716, found: 153.0712.

(R)-3-azido-1-(2-fluorophenyl)propan-1-ol [(R)-2c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **2b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 10 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 10:1) to provide (R)-**2c** as a light yellow liquid in 48% yield (186.4 mg). ¹H **NMR** (**400 MHz**, **DMSO-***d*₆) δ 7.52 (td, J = 7.6, 1.8 Hz, 1H), 7.32 - 7.27 (m, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 10.5 Hz, 1H), 5.54 (d, J = 4.8 Hz, 1H), 4.95 (dt, J = 8.1, 4.9 Hz, 1H), 3.53 - 3.37 (m, 2H), 1.92

- 1.74 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.9 (d, J = 243.3 Hz), 132.3 (d, J = 13.7 Hz), 128.8 (d, J = 8.2 Hz), 127.5 (d, J = 4.7 Hz), 124.5 (d, J = 3.3 Hz), 115.0 (d, J = 21.7 Hz), 63.2, 47.6, 36.9. [α] $_{\mathbf{D}}^{25}$ = + 68.15 (c = 1.00, CH₂Cl₂). **HPLC analysis** (IH, 3% IPA in n-hexane, 0.5 ml/min, λ =210 nm) indicated 98% ee: $t_{(R)}$ (major) = 26.9 min, $t_{(S)}$ (minor) = 28.1 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₀FN₃NaO [M+Na]⁺: 218.0706, found: 218.0701.

(S)-2-(2-chlorophenyl)oxetane [(S)-3b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **3b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 37 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1) to provide (*S*)-**3b** as a yellow liquid in 42% yield (141.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 1H), 7.38 - 7.30 (m, 2H), 7.23 (td, J = 6.4, 1.0 Hz, 1H), 6.02 (t, J = 7.5 Hz, 1H), 4.84 (td, J = 6.4, 5.2 Hz, 1H), 4.65 (dt, J = 9.2, 6.1 Hz, 1H), 3.24 - 3.14 (m, 1H), 2.56 - 2.46 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 130.3, 129.1, 128.4, 126.9, 125.9, 80.2, 68.5, 29.9. [α] α ²⁵ = -207.95 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 92% *ee*: t_(S) (major) = 11.1 min, t_(R) (minor) = 11.9 min. HRMS (ESI) *m/z*: calculated for C₉H₉ClNaO [M+Na]⁺: 191.0240, found: 191.0245.

(R)-3-azido-1-(2-chlorophenyl)propan-1-ol [(R)-3c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **3b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 37 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 10:1) to provide (*R*)-**3c** as a light yellow liquid in 48% yield (204.9 mg). ¹**H NMR** (**400 MHz**, **DMSO-***d*₆) δ 7.62 (d, *J* = 7.5 Hz, 1H), 7.39 - 7.34 (m, 2H), 7.29 - 7.24 (m, 1H), 5.61 (d, *J* = 4.3 Hz, 1H), 5.02 (dt, *J* = 9.6, 3.8 Hz, 1H), 3.53 - 3.42 (m, 2H), 1.95 - 1.84 (m, 1H), 1.74 - 1.64 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 143.0, 130.4, 129.0, 128.6, 127.5, 127.4, 66.0, 47.7, 36.6. [α] \mathbf{p}^{25} = + 78.34 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 94% *ee*: t_(R) (major) = 43.1 min, t_(S) (minor) = 45.6 min. **HRMS** (ESI) *m/z*: calculated for C₉H₁₀ClN₃NaO [M+Na]⁺: 234.0410, found: 234.0409.

(S)-2-(2-bromophenyl)oxetane [(S)-4b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **4b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 60 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1) to provide (*S*)-**4b** as a light yellow liquid in 48% yield (204.8 mg). ¹**H NMR** (**400 MHz, CDCl**₃) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.16 (t, *J* = 7.8 Hz, 1H), 5.94 (t, *J* = 7.5 Hz, 1H), 4.83 (td, *J* = 8.5, 6.6 Hz, 1H), 4.64 (dt, *J* = 9.1, 6.1 Hz, 1H), 3.27 - 3.17 (m, 1H), 2.53 - 2.43 (m, 1H). ¹³**C NMR** (**100 MHz, CDCl**₃) δ 142.9, 132.4, 128.8, 127.6, 126.3, 119.7, 82.1, 68.4, 30.1. [α] \mathbf{p}^{25} = -169.48 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 93% *ee*: t_(S) (major) = 11.5 min, t_(R) (minor) = 12.3 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₉BrNaO [M+Na]⁺: 234.9734, found: 234.9739.

(R)-3-azido-1-(2-bromophenyl)propan-1-ol [(R)-4c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **4b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 60 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 10:1) to provide (R)-**4c** as a light yellow liquid in 44% yield (222.8 mg). ¹**H NMR (400 MHz, DMSO-** d_6) δ 7.58 (dd, J = 28.3, 9.6 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 5.67 (d, J = 4.8 Hz, 1H), 4.97 (dt, J = 9.8, d3.6 Hz, 1H), 3.55 - 3.43 (m, 2H), 1.97 - 1.85 (m, 1H), 1.73 - 1.62 (m, 1H). ¹³**C NMR (100 MHz, DMSO-** d_6) δ 144.5, 132.3, 128.9, 127.9, 127.8, 120.9, 68.3, 47.7, 36.7. [α] \mathbf{p}^{25} = + 84.24 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ =210 nm) indicated 91% ee: $t_{(R)}$ (major) = 12.7 min, $t_{(S)}$ (minor) = 13.7 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₀BrN₃NaO [M+Na]⁺: 277.9905, found: 277.9909.

(S)-2-(o-tolyl)oxetane [(S)-5b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **5b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 33 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1) to

provide (*S*)-**5b** as a yellow liquid in 30% yield (91.5 mg). ¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.22 (t, J = 7.4 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 6.01 (t, J = 7.6 Hz, 1H), 4.87 (td, J = 8.1, 6.4 Hz, 1H), 4.66 (dt, J = 9.3, 5.8 Hz, 1H), 3.15 - 3.06 (m, 1H), 2.61 - 2.51 (m, 1H), 2.20 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 141.7, 133.3, 130.0, 127.2, 126.1, 124.0, 80.6, 68.1, 29.7, 18.4. [α] $\mathbf{p}^{25} = -173.68$ (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, $\lambda = 210$ nm) indicated 97% *ee*: t_(R) (minor)= 14.4 min, t_(S) (major) = 15.1 min. **HRMS (ESI)** m/z: calculated for C₁₀H₁₃O [M+H]⁺: 149.0966, found: 149.0968.

(R)-3-azido-1-(o-tolyl)propan-1-ol [(R)-5c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **5b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 33 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 10:1) to provide (*R*)-**5c** as a light yellow liquid in 44% yield (173.3 mg). ¹H **NMR** (**400 MHz**, **DMSO-***d*₆) δ 7.47 (d, *J* = 7.6 Hz, 1H), 7.22 - 7.18 (m, 1H), 7.16 - 7.10 (m, 2H), 5.32 (d, *J* = 4.5 Hz, 1H), 4.87 (dt, *J* = 8.7, 4.2 Hz, 1H), 3.57 - 3.40 (m, 2H), 2.30 (s, 3H), 1.86 - 1.69 (m, 2H). ¹³C **NMR** (**100 MHz**, **DMSO-***d*₆) δ 143.8, 133.7, 130.0, 126.6, 126.0, 125.4, 66.0, 48.1, 37.0, 18.6. [α] \mathbf{p}^{25} = + 40.97 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated 97% *ee*: t_(S) (minor)= 13.0 min, t_(R) (major) = 14.1 min. **HRMS** (**ESI**) *m/z*: calculated for C₁₀H₁₃N₃NaO [M+Na]⁺: 214.0956, found: 214.0949.

(S)-2-(3-fluorophenyl)oxetane [(S)-6b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **6b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**6b** as a light yellow liquid in 38% yield (115.7 mg). ¹H **NMR** (**400 MHz**, **CDCl**₃) δ 7.34 (td, *J* = 7.9, 5.9 Hz, 1H), 7.20 - 7.15 (m, 2H), 6.98 (td, *J* = 8.2, 2.6 Hz, 1H), 5.79 (t, *J* = 7.5 Hz, 1H), 4.83 (td, *J* = 8.2, 6.2z, 1H), 4.66 (dt, *J* = 9.3, 5.8 Hz, 1H), 3.08 – 3.00 (m, 1H), 2.66 - 2.57 (m, 1H). ¹³C **NMR** (**100 MHz**, **CDCl**₃) δ 163.2 (d, *J* = 246.0 Hz), 146.5 (d, *J* = 6.9 Hz), 130.2 (d, *J* = 8.1 Hz), 120.7 (d, *J* = 2.9 Hz), 114.6 (d, *J* = 21.3 Hz), 112.2 (d, *J* = 21.8 Hz), 82.2, 68.4, 30.7. [α] $_{\mathbf{D}^{25}}$ = -

169.88 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 99% *ee*: t_(S) (major) = 14.4 min, t_(R) (minor) = 15.2 min. **HRMS** (**ESI**) *m/z*: calculated for C₉H₁₀FO [M+H]⁺: 153.0716, found: 153.0718.

(R)-3-azido-1-(3-fluorophenyl)propan-1-ol [(R)-6c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **6b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 12 h. The crude product was purified by flash column chromatography on silica gel

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH

(petroleum ether : ethyl acetate = $30:1 \sim 10:1$) to provide (*R*)-**6c** as a light yellow liquid in 47% yield (183.6 mg). ¹**H NMR (400 MHz, DMSO-***d***6**) δ 7.37 (dd, J = 14.2, 8.2 Hz, 1H), 7.20 - 7.12 (m, 2H), 7.05 (td, J = 8.8, 2.6 Hz, 1H), 5.54 (d, J = 4.8 Hz, 1H), 4.66 (dt, J = 8.9, 5.0 Hz, 1H), 3.49 - 3.40 (m, 1H), 3.39 - 3.33 (m, 1H), 1.90 - 1.75 (m, 2H). ¹³**C NMR (100 MHz, DMSO-***d***6**) δ 162.3 (d, J = 243.2 Hz), 148.8 (d, J = 6.6 Hz), 130.1 (d, J = 8.1 Hz), 121.7 (d, J = 2.6 Hz), 113.6 (d, J = 21.0 Hz), 112.3 (d, J = 21.6 Hz), 68.9, 47.7, 37.9. [α] α ²⁵ = + 28.98 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexane, 0.5 ml/min, λ =210 nm) indicated >99% *ee*: t_(S) (minor)= 52.4 min, t_(R) (major) = 58.7 min. **HRMS (ESI)** m/z: calculated for C₉H₁₁FN₃O [M+H]⁺: 196.0886, found: 196.0892.

(S)-2-(3-chlorophenyl)oxetane [(S)-7b]

7.5) containing 20 mM **7b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**7b** as a light yellow liquid in 46% yield (167.2 mg). ¹H **NMR** (**400 MHz**, **CDCl**₃) δ 7.46 (s, 1H), 7.33 - 7.23 (m, 3H), 5.76 (t, J = 7.5 Hz, 1H), 4.81 (td, J = 8.2, 6.1 Hz, 1H), 4.64 (dt, J = 9.2, 6.0 Hz, 1H), 3.07 - 2.97 (m, 1H), 2.65 - 2.54 (m, 1H). ¹³C **NMR** (**100 MHz**, **CDCl**₃) δ 145.8, 134.4, 129.8, 127.8, 125.3, 123.2, 82.0, 68.3, 30.6. [α] $\mathbf{p}^{25} = -151.90$ (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in *n*-hexanes, 0.5 ml/min, $\lambda = 210$ nm) indicated 94% *ee*: t_(S)

(major) = 14.2 min, $t_{(R)}$ (minor) = 16.6 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₀ClO [M+H]⁺: 169.0420, found: 169.0419.

(R)-3-azido-1-(3-chlorophenyl)propan-1-ol [(R)-7c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **7b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1 ~ 10:1) to provide (*R*)-**7c** as a light yellow liquid in 47% yield (212.0 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.39 - 7.34 (m, 2H), 7.31 - 7.28 (m, 2H), 5.54 (d, J = 4.7 Hz, 1H), 4.64 (dt, J = 8.8, 4.8 Hz, 1H), 3.50 - 3.38 (m, 1H), 3.40 - 3.30 (m, 2H), 1.89 - 1.74 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 148.3, 133.1, 130.0, 126.8, 125.6, 124.4, 69.0, 47.8, 38.0. [α] α ²⁵ = + 26.08 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated 97% *ee*: t_(S) (minor)= 13.7 min, t_(R) (major) = 14.8 min. HRMS (ESI) *m/z*: calculated for C₉H₁₁ClN₃O [M+H]⁺: 212.0591, found: 212.0589.

(S)-2-(3-bromophenyl)oxetane [(S)-8b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **8b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 23 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**8b** as a light yellow liquid in 48% yield (204.1 mg). ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.60 (s, 1H), 7.40 (dd, J = 8.0, 1.8 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 5.74 (t, J = 7.5 Hz, 1H), 4.80 (td, J = 7.0, 5.4 Hz, 1H), 4.62 (dt, J = 9.3, 5.8 Hz, 1H), 3.07 - 2.94 (m, 1H), 2.65 - 2.51 (m, 1H). ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 146.0, 130.7, 130.1, 128.2, 123.7, 122.7, 81.9, 68.3, 30.6. [α] α ²⁵ = -121.31 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 95% ee: t_(S) (major) = 14.7 min, t_(R) (minor) = 17.9 min. **HRMS** (**ESI**) m/z: calculated for C₉H₉BrNaO [M+Na]⁺: 234.9734, found: 234.9728.

(R)-3-azido-1-(3-bromophenyl)propan-1-ol [(R)-8c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **8b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 23 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate

= 30:1 ~ 10:1) to provide (*R*)-8c as a light yellow liquid in 48% yield (245.1 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.53 (s, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.35 - 7.26 (m, 2H), 5.54 (d, J = 4.7 Hz, 1H), 4.63 (dt, J = 8.8, 4.9 Hz, 1H), 3.49 - 3.39 (m, 1H), 3.39 - 3.31 (m, 1H), 1.88 - 1.74 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 148.5, 130.4, 129.7, 128.4, 124.8, 121.6, 68.9, 47.7, 37.9. [α] ρ ²⁵ = + 22.78 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated 95% *ee*: $t_{(S)}$ (minor)= 13.9 min, $t_{(R)}$ (major) = 15.2 min. HRMS (ESI) m/z: calculated for C₉H₁₀BrN₃NaO [M+Na]⁺: 277.9905, found: 277.9906.

(S)-2-(m-tolyl)oxetane [(S)-9b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **9b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**9b** as a light yellow liquid in 37% yield (114.2 mg). ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.39 - 7.35 (m, 2H), 7.31 (d, J = 7.7 Hz, 1H), 7.20 (d, J = 7.4 Hz, 1H), 5.87 (t, J = 7.6 Hz, 1H), 4.91 (td, J = 8.2, 6.0 Hz, 1H), 4.74 (dt, J = 9.3, 5.7 Hz, 1H), 3.12 - 3.04 (m, 1H), 2.78 - 2.70 (m, 1H), 2.47 (s, 3H). ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 143.5, 138.2, 128.6, 128.4, 125.9, 122.3, 83.0, 68.2, 30.7, 21.5. [α] \mathbf{p}^{25} = -118.21 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated 94% ee: $\mathbf{t}_{(S)}$ (major) = 9.1 min, $\mathbf{t}_{(R)}$ (minor) = 10.6 min. **HRMS** (**ESI**) m/z: calculated for $\mathbf{C}_{10}\mathbf{H}_{12}\mathbf{NaO}$ [M+Na]⁺: 171.0786, found: 171.0785.

(R)-3-azido-1-(m-tolyl)propan-1-ol [(R)-9c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **9b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1 ~ 10:1) to provide (*R*)-**9c** as a yellow liquid in 48% yield (190.4 mg). ¹**H NMR (400 MHz, DMSO-d**₆) δ 7.21 (t, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 10.5 Hz, 2H), 7.05 (d, *J* = 7.4 Hz, 1H), 5.36 (d, *J* = 4.5 Hz, 1H), 4.59 (dt, *J* = 7.1, 5.6 Hz, 1H), 3.48 - 3.39 (m, 1H), 3.37 - 3.31 (m, 1H), 2.30 (s, 3H), 1.81 (q, *J* = 6.9 Hz, 2H). ¹³**C NMR (100 MHz, DMSO-d**₆) δ 145.6, 137.2, 128.1, 127.6, 126.3, 122.8, 69.5, 47.9, 38.2, 21.2. $\lceil \alpha \rceil p^{25} = +22.78$ (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3,

3% IPA in *n*-hexane, 0.7 ml/min, $\lambda = 210$ nm) indicated 98% *ee*: $t_{(S)}$ (minor)= 14.0 min, $t_{(R)}$ (major) = 15.2 min. **HRMS** (**ESI**) *m/z*: calculated for $C_{10}H_{13}N_3NaO$ [M+Na]⁺: 214.0956, found: 214.0963.

(S)-2-(3-methoxyphenyl)oxetane [(S)-10b]

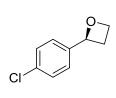
Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **10b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**10b** as a colorless liquid in 42% yield (136.8 mg). ¹H **NMR** (**400 MHz**, **CDCl**₃) δ 7.31 (t, *J* = 7.9 Hz, 1H), 7.06 - 6.97 (m, 2H), 6.85 (ddd, *J* = 8.2, 2.7, 1.1 Hz, 1H), 5.80 (t, *J* = 7.5 Hz, 1H), 4.83 (td, *J* = 8.1, 6.0 Hz, 1H), 4.66 (dt, *J* = 9.2, 5.8 Hz, 1H), 3.84 (s, 3H), 3.07 - 2.97 (m, 1H), 2.70 - 2.60 (m, 1H). ¹³C **NMR** (**100 MHz**, **CDCl**₃) δ 159.9, 145.4, 129.6, 117.3, 113.4, 110.5, 82.8, 68.3, 55.3, 30.7. [α] α ²⁵ = -120.02 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated 95% *ee*: t_(S) (major) = 14.2 min, t_(R) (minor) = 20.6 min. **HRMS** (**ESI**) *m/z*: calculated for C₁₀H₁₂NaO₂ [M+Na]⁺: 187.0735, found: 187.0739.

(R)-3-azido-1-(3-methoxyphenyl)propan-1-ol [(R)-10c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **10b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $30:1 \sim 10:1$) to provide (*R*)-**10c** as a light yellow liquid in 43% yield (178.5 mg). ¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.25 (t, *J* = 7.8 Hz, 1H), 6.98 - 6.87 (m, 2H), 6.81 (dd, *J* = 8.2, 2.7 Hz, 1H), 5.44 (d, *J* = 4.5 Hz, 1H), 4.63 (q, *J* = 5.7 Hz, 1H), 3.75 (s, 3H), 3.49 - 3.41 (m, 1H), 3.40 - 3.31 (m, 1H), 1.84 (q, *J* = 6.8 Hz, 2H). ¹³**C NMR (100 MHz, DMSO-***d*₆) δ 159.3, 147.4, 129.3, 117.9, 112.4, 111.2, 69.5, 55.0, 47.9, 38.2. [α] \mathbf{p}^{25} = + 30.79 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated 95% *ee*: t_(S) (minor)= 26.4 min, t_(R) (major) = 28.3 min. **HRMS (ESI)** *m/z*: calculated for C₁₀H₁₃N₃NaO₂ [M+Na]⁺: 230.0905, found: 230.0907.

(S)-2-(4-fluorophenyl)oxetane [(S)-11b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **11b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, $30 \,^{\circ}$ C, reaction for 16 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1)


to provide (*S*)-**11b** as a yellow liquid in 36% yield (109.9 mg). ¹**H NMR (400 MHz, CDCl₃)** δ 7.48 - 7.36 (m, 2H), 7.07 (t, J = 8.7 Hz, 2H), 5.78 (t, J = 7.5 Hz, 1H), 4.82 (td, J = 8.0, 6.2 Hz, 1H), 4.64 (dt, J = 9.3, 5.7 Hz, 1H), 3.07 - 2.94 (m, 1H), 2.70 - 2.57 (m, 1H). ¹³**C NMR (100 MHz, CDCl₃)** δ 162.5 (d, J = 245.9 Hz), 139.4 (d, J = 3.1 Hz), 127.2 (d, J = 8.1 Hz), 115.4 (d, J = 21.4 Hz), 82.4, 68.2, 30.9. [α] $\mathbf{p}^{25} = -148.89$ (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 1% IPA in n-hexane, 0.5 ml/min, $\lambda = 210$ nm) indicated 99% ee: $\mathbf{t}_{(S)}$ (major) = 15.2 min, $\mathbf{t}_{(R)}$ (minor) = 17.2 min. **HRMS (ESI)** m/z: calculated for C₉H₁₀FO [M+H]⁺: 157.0716, found: 157.0712.

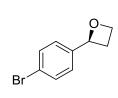
(R)-3-azido-1-(4-fluorophenyl)propan-1-ol [(R)-11c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **11b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 16 h. The crude product was purified by flash column chromatography on silica gel

(petroleum ether : ethyl acetate = $30:1 \sim 10:1$) to provide (*R*)-**11c** as a light yellow liquid in 50% yield (194.1 mg). ¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.37 (dd, J = 8.4, 5.7 Hz, 2H), 7.14 (t, J = 8.8 Hz, 2H), 5.46 (d, J = 4.5 Hz, 1H), 4.64 (q, J = 6.5 Hz, 1H), 3.48 - 3.39 (m, 1H), 3.39 - 3.30 (m, 1H), 1.81 (q, J = 6.7 Hz, 2H). ¹³**C NMR (100 MHz, DMSO-***d*₆) δ 161.2 (d, J = 242.2 Hz), 141.8 (d, J = 3.0 Hz), 127.6 (d, J = 8.0 Hz), 114.8 (d, J = 21.0 Hz), 68.9, 47.8, 38.1. [α] α ²⁵ = + 31.28 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated 98% *ee*: t_(S) (minor)= 13.9 min, t_(R) (major) = 15.3 min. **HRMS (ESI)** *m/z*: calculated for C₉H₁₁FN₃O [M+H]⁺: 196.0886, found: 196.0885.

(S)-2-(4-chlorophenyl)oxetane [(S)-12b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **12b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 11 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl


acetate = 30:1) to provide (*S*)-12b as a light yellow liquid in 45% yield (164.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.29 (m, 4H), 5.76 (t, J = 7.5 Hz, 1H), 4.80 (td, J = 8.0, 5.8 Hz, 1H), 4.62 (dt, J = 9.2, 5.8 Hz, 1H), 3.04 - 2.95 (m, 1H), 2.63 - 2.54 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 133.4, 128.6, 126.6, 82.1, 68.2, 30.7. [α] $_{\mathbf{D}}^{25}$ = -144.40 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ = 210 nm) indicated 97% ee: t_(S) (major) = 8.3 min, t_(R) (minor) = 8.9 min. HRMS (ESI) m/z: calculated for C₉H₉ClNaO [M+Na]⁺: 191.0240, found: 191.0241.

(R)-3-azido-1-(4-chlorophenyl)propan-1-ol [(R)-12c]

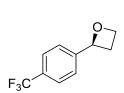
Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **12b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 11 h. The crude product was purified by flash column chromatography on silica gel

(petroleum ether : ethyl acetate = 30:1 ~ 10:1) to provide (*R*)-12c as a light yellow liquid in 48% yield (216.7 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.37 (d, J = 2.2 Hz, 4H), 5.54 (d, J = 4.7 Hz, 1H), 4.67 (q, J = 6.2 Hz, 1H), 3.51 - 3.41 (m, 1H), 3.41 - 3.30 (m, 1H), 1.83 (q, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 144.6, 131.5, 128.1, 127.6, 68.9, 47.8, 38.1. [α] α ²⁵ = + 21.69 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated 99% *ee*: t_(S) (minor)= 15.2 min, t_(R) (major) = 16.5 min. HRMS (ESI) *m/z*: calculated for C₉H₁₁ClN₃O [M+H]⁺: 212.0591, found: 212.0594.

(S)-2-(4-bromophenyl)oxetane [(S)-13b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **13b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 26 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl

acetate = 30:1) to provide (*S*)-13b as a light yellow liquid in 42% yield (177.9mg). ¹H NMR (400 MHz, CDCl₃) δ 7.55 - 7.47 (m, 2H), 7.35 - 7.27 (m, 2H), 5.75 (t, J = 7.5 Hz, 1H), 4.82 (td, J = 8.0, 5.8 Hz, 1H), 4.64 (dt, J = 9.3, 5.8 Hz, 1H), 3.08 - 2.95 (m, 1H), 2.66 - 2.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 131.6, 127.0, 121.6, 82.2, 68.3, 30.8. [α] \mathbf{p}^{25} = -129.83 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated 98% ee:


 $t_{(S)}$ (major) = 16.0 min, $t_{(R)}$ (minor) = 17.8 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₀BrO [M+H]⁺: 212.9915, found: 212.9915.

(R)-3-azido-1-(4-bromophenyl)propan-1-ol [(R)-13c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **13b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 26 h. The crude product was purified by flash column chromatography on silica gel

(petroleum ether : ethyl acetate = 30:1 ~ 10:1) to provide (*R*)-13c as a light yellow liquid in 47% yield (240.0 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.51 (dd, J = 8.4, 1.5 Hz, 2H), 7.31 (d, J = 7.6 Hz, 2H), 5.52 (d, J = 4.6 Hz, 1H), 4.64 (q, J = 5.9 Hz, 1H), 3.49 - 3.40 (m, 1H), 3.40 - 3.31 (m, 1H), 1.81 (q, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 145.0, 131.0, 128.0, 119.9, 68.9, 47.7, 38.0. [α] α] α ²⁵ = + 28.68 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ =210 nm) indicated 98% ee: t_(S) (minor)= 17.2 min, t_(R) (major) = 18.3 min. HRMS (ESI) m/z: calculated for C₉H₁₁BrN₃O [M+H]⁺: 256.0085, found: 256.0080.

(S)-2-(4-(trifluoromethyl)phenyl)oxetane [(S)-14b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 5 mM **14b** (0.5 mmol), 5 mM **NaN**₃ (0.5 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 45 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl

acetate = 30:1) to provide (*S*)-14b as a light yellow liquid in 49% yield (52.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 5.86 (t, J = 7.6 Hz, 1H), 4.85 (td, J = 8.0, 6.0 Hz, 1H), 4.67 (dt, J = 9.2, 5.5 Hz, 1H), 3.13 - 3.02 (m, 1H), 2.66 - 2.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 129.9 (q, J = 32.0 Hz), 125.6 (q, J = 4.0 Hz), 125.3 , 124.3 (q, J = 270.0 Hz), 82.1, 68.5, 30.7. [α] α ²⁵ = -94.33 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ = 210 nm) indicated 86% ee: t_(S) (major) = 6.6 min, t_(R) (minor) = 7.0 min. HRMS (ESI) m/z: calculated for C₁₀H₁₀F₃O [M+H]⁺: 203.0684, found: 203.0683.

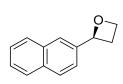
(R)-3-azido-1-(4-(trifluoromethyl)phenyl)propan-1-ol [(R)-14c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 5 mM **14b** (0.5 mmol), 5 mM **NaN**₃ (0.5 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 45 h. The crude product was purified by flash column chromatography on silica

gel (petroleum ether : ethyl acetate = $30:1 \sim 10:1$) to provide (R)-14c as a light yellow liquid in 41% yield (53.5 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.69 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 5.63 (d, J = 3.8 Hz, 1H), 4.73 (t, J = 6.7 Hz, 1H), 3.51 - 3.42 (m, 1H), 3.40 - 3.35 (m, 1H), 1.89 - 1.78 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 150.4, 127.6 (q, J = 32.0 Hz), 126.5, 125.0 (q, J = 4.0 Hz), 124.4 (d, J = 270.0 Hz), 69.0, 47.7, 37.9. [α] α] α ²⁵ = + 17.49 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ =210 nm) indicated 94% ee: t_(S) (minor)= 10.5 min, t_(R) (major) = 11.3 min. HRMS (ESI) m/z: calculated for C₁₀H₁₁F₃N₃O [M+H]⁺: 246.0854, found: 246.0860.

(S)-2-(3,5-difluorophenyl)oxetane [(S)-15b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **15b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, $30 \,^{\circ}$ C, reaction for 16 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1)


to provide (*S*)-**15b** as a light yellow liquid in 42% yield (158.7mg). ¹**H NMR (400 MHz, CDCl**₃) δ 6.94 (dd, J = 8.6, 2.2 Hz, 2H), 6.71 (td, J = 8.9, 2.2 Hz, 1H), 5.75 (t, J = 7.5 Hz, 1H), 4.82 (td, J = 8.2, 6.0 Hz, 1H), 4.65 (dt, J = 9.3, 6.0 Hz, 1H), 3.10 - 3.02 (m, 1H), 2.61 - 2.53 (m, 1H). ¹³**C NMR (100 MHz, CDCl**₃) δ 163.3 (dd, J = 247.0, 12.0 Hz), 148.0 (t, J = 8.0 Hz), 107.8 (dd, J = 27.0, 4.0 Hz), 103.0 (td, J = 25.0, 6.0 Hz), 81.7, 68.6, 30.6. [α] \mathbf{p}^{25} = -142.89 (c = 1.00, CH₂Cl₂). **HPLC analysis** (IA-3, 1% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: $\mathbf{t}_{(R)}$ (minor) = 13.0 min, $\mathbf{t}_{(S)}$ (major) = 13.8 min, **HRMS (ESI)** m/z: calculated for C₉H₈F₂NaO [M+Na]⁺: 193.0441, found: 193.0444.

(R)-3-azido-1-(3,5-difluorophenyl)propan-1-ol [(R)-15c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **15b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L E. coli (HheD8-M4) cells, 30 °C, reaction for 16 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = $30:1 \sim 15:1$) to provide (R)-**15c** as a light

yellow liquid in 43% yield (203.5 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.14 - 6.95 (m, 3H), 5.68 (d, J = 4.8 Hz, 1H), 4.67 (dt, J = 8.9, 4.6 Hz, 1H), 3.49- 3.41 (m, 1H), 3.40 - 3.32 (m, 1H), 1.91 - 1.73 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.4 (dd, J = 246.0, 13.0 Hz), 150.7 (t, J = 8.2 Hz), 108.7 (dd, J = 18.0, 6.0 Hz), 102.2 (t, J = 25.9 Hz), 68.6 (t, J = 2.2 Hz), 47.6, 37.6. [α] $_0^{25} = +27.28$ (c = 1.00, CH₂Cl₂). HPLC analysis (IC-3, 1% IPA in n-hexane, 0.5 ml/min, $\lambda = 210$ nm) indicated >99% ee: t_(S) (minor)= 31.6 min, t_(R) (major) = 35.1 min. HRMS (ESI) m/z: calculated for C₉H₉F₂N₃NaO [M+Na]⁺: 236.0611, found: 236.0612.

(S)-2-(naphthalen-2-yl)oxetane [(S)-16b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 5 mM **16b** (0.5 mmol), 5 mM **NaN**₃ (0.5 mmol) and 10 g dcw/L *E*. coli (HheD8-M3) cells, 30 °C, reaction for 45 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl

acetate = 40:1) to provide (*S*)-**16b** as a light yellow liquid in 35% yield (31.9mg). ¹**H NMR (400 MHz, CDCl₃)** δ 7.95 - 7.89 (m, 1H), 7.86 (dt, J = 7.0, 1.3 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.70 - 7.64 (m, 1H), 7.60 - 7.55 (m, 1H), 7.54 - 7.49 (m, 2H), 6.50 (t, J = 7.6 Hz, 1H), 4.97 (td, J = 8.1, 6.0 Hz, 1H), 4.74 (dt, J = 9.0, 6.0 Hz, 1H), 3.35 - 3.25 (m, 1H), 2.75 - 2.64 (m, 1H). ¹³**C NMR (100 MHz, CDCl₃)** δ 139.2, 133.7, 129.1, 129.0, 127.7, 126.1, 125.8, 125.7, 122.8, 121.5, 80.9, 68.8, 30.2. [α] \mathbf{p}^{25} = -288.19 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated 98% *ee*: t_(S) (major) = 9.7 min, t_(R) (minor) = 10.5 min. **HRMS (ESI)** m/z: calculated for C₁₃H₁₃O [M+H]⁺: 185.0966, found: 185.0966.

(R)-3-azido-1-(naphthalen-2-yl)propan-1-ol [(R)-16c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 5 mM **16b** (0.5 mmol), 5 mM **NaN**₃ (0.5 mmol) and 10 g dcw/L *E*. coli (HheD8-M3) cells, 30 °C, reaction for 45 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 40:1 ~ 15:1) to provide (*R*)-**16c** as a light yellow liquid in 43% yield (49.3 mg). ¹H **NMR** (**400 MHz**, **DMSO-***d*₆) δ 8.13 (d, *J* = 8.2 Hz, 1H), 7.94 (d, *J* = 7.5 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.67 (d, *J* = 7.0 Hz, 1H), 7.59 - 7.47 (m, 3H), 5.60 (t, *J* = 3.1 Hz, 1H), 5.42 (dd, *J* = 8.6, 4.0 Hz, 1H), 3.68 - 3.58 (m, 1H), 3.55 - 3.45 (m, 1H), 2.06 - 1.96 (m, 1H), 1.94 - 1.82 (m, 1H). ¹³C **NMR** (**100 MHz**, **DMSO-***d*₆) δ 141.3, 133.3, 129.8, 128.7, 127.3, 126.0, 125.5, 123.1, 122.8, 66.4, 48.2, 37.6. [α] \mathbf{p}^{25} = + 54.46 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated 95% *ee*: t_(S) (minor)= 18.6 min, t_(R) (major) = 21.2 min. **HRMS** (**ESI**) *m/z*: calculated for C₁₃H₁₄N₃O [M+H]⁺: 228.1137, found: 228.1135.

(S)-2-methyl-2-phenyloxetane [(S)-17b]

Prepared according to the general procedure: 100 mL Gly-NaOH buffer (300 mM, pH 9.5) containing 5 mM **17b** (0.5 mmol), 15 mM **NaN**₃ (1.5 mmol) and 30 g dcw/L *E*. coli (HheD8-M7) cells, 30 °C, reaction for 14 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 80:1) to provide (*S*)-**17b** as a light yellow liquid in 27% yield (21.8mg). ¹H **NMR** (**400 MHz, CDCl**₃) δ 7.44 - 7.37 (m, 4H), 7.30 - 7.26 (m, 1H), 4.65 (ddd, J = 12.5, 6.6, 5.9 Hz, 1H), 4.55 (ddd, J = 12.8, 6.8, 5.8 Hz, 1H), 2.86 - 2.73 (m, 2H), 1.76 (s, 3H). ¹³C **NMR** (**100 MHz, CDCl**₃) δ 148.3, 128.3, 126.7, 123.7, 86.7, 64.6, 35.6, 30.8. [α] ρ ²⁵ = -99.54 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ = 210 nm) indicated 85% *ee*: t_(S) (major) = 6.7 min, t_(R) (minor) = 7.7 min. **HRMS** (**ESI**) m/z: calculated for C₁₀H₁₃O [M+H]⁺: 149.0966, found: 149.0964.

(R)-4-azido-2-phenylbutan-2-ol [(R)-17c]

Prepared according to the general procedure: 100 mL Gly-NaOH buffer (300 mM, pH 9.5) containing 5 mM **17b** (0.5 mmol), 15 mM **NaN**₃ (1.5 mmol) and 30 g dcw/L *E.* coli (HheD8-M7) cells, 30 °C, reaction for 14 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate

= 80:1 ~ 15:1) to provide (*R*)-17c as a light yellow liquid in 39% yield (39.8 mg). ¹H NMR (400 MHz, DMSO- d_6) δ 7.46 - 7.44 (m, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.21 - 7.19 (m, 1H), 5.20 (s, 1H), 3.36 - 3.28 (m, 1H), 3.04 - 2.97 (m, 1H), 2.03 - 1.98 (m, 2H), 1.46 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 148.3, 127.9, 126.2, 124.8, 71.8, 46.9, 42.1, 30.5. [α] $_0^{25}$ = + 8.79 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated >99% ee: t_(S) (minor)= 11.3 min, t_(R) (major) = 11.8 min. HRMS (ESI) m/z: calculated for C₁₃H₁₄N₃NaO [M+Na]⁺: 214.0956, found: 214.0961.

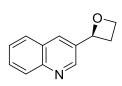
(S)-3-bromo-5-(oxetan-2-yl)pyridine [(S)-18b]

Br O

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 6.5) containing 20 mM **18b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 26 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl

acetate = 10:1) to provide (*S*)-18b as a light yellow liquid in 45% yield (190.6mg). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 2.2 Hz, 1H), 8.48 (d, J = 1.8 Hz, 1H), 7.95 (t, J = 2.0 Hz, 1H), 5.79 (t, J = 7.5 Hz, 1H), 4.83 (td, J = 8.0, 6.0 Hz, 1H), 4.65 (dt, J = 9.2, 5.9 Hz, 1H), 3.10 - 3.02 (m, 1H), 2.66 - 2.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 145.2, 140.7, 135.7, 121.1, 79.8, 68.7, 30.5. [α] σ ²⁵ = -99.15 (c = 1.00, CH₂Cl₂). HPLC analysis (OB-H, 1% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 99% *ee*: t_(S) (major) = 33.0 min, t_(R) (minor) = 36.2 min. HRMS (ESI) m/z: calculated for C₈H₉BrNO [M+H]⁺: 213.9868, found: 213.9871.

(R)-3-azido-1-(5-bromopyridin-3-yl)propan-1-ol [(R)-18c]


Br OH N3

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 6.5) containing 20 mM **18b** (2 mmol), 20 mM **NaN**₃ (2 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 26 h. The crude product was purified by flash column chromatography on silica gel

(petroleum ether : ethyl acetate = $10:1 \sim 3:1$) to provide (*R*)-**18c** as a light yellow liquid in 48% yield (246.0 mg). ¹**H NMR (400 MHz, DMSO-***d*₆) δ 8.56 (dd, J = 16.0, 2.3 Hz, 2H), 8.00 (t, J = 2.1 Hz, 1H), 5.72 (d, J = 4.8 Hz, 1H), 4.72 (dt, J = 7.9, 5.0 Hz, 1H), 3.50 - 3.45 (m, 1H), 3.43 - 3.38 (m, 1H), 1.90 - 1.85 (m, 2H). ¹³**C NMR (100 MHz, DMSO-***d*₆) δ 148.9, 146.2, 143.1, 136.0, 120.2, 67.0, 47.6, 37.5. [α] \mathbf{p}^{25} = + 20.79 (c = 1.00, CH₂Cl₂). **HPLC analysis** (AD-H, 3% IPA in

n-hexane, 0.5 ml/min, $\lambda = 210$ nm) indicated 98% *ee*: $t_{(R)}$ (major) = 69.0 min, $t_{(S)}$ (minor)= 97.9 min. **HRMS** (**ESI**) m/z: calculated for $C_8H_{10}N_4BrO$ [M+H]⁺: 257.0038, found: 257.0042

(S)-3-(oxetan-2-yl)quinoline [(S)-19b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 6.5) containing 10 mM **19b** (1 mmol), 10 mM **NaN**₃ (1 mmol) and 10 g dcw/L *E.* coli (HheD8-M4) cells, 30 °C, reaction for 30 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl

acetate = 10:1) to provide (*S*)-**19b** as a light yellow liquid in 46% yield (81.5mg). ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.94 (d, J = 2.2 Hz, 1H), 8.21 (d, J = 2.1 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.83 (dd, J = 8.2, 1.5 Hz, 1H), 7.70 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.54 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 6.01 (t, J = 7.5 Hz, 1H), 4.90 (td, J = 7.9, 5.8 Hz, 1H), 4.74 (dt, J = 9.2, 5.9 Hz, 1H), 3.17 - 3.09 (m, 1H), 2.78 - 2.69 (m, 1H). ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 148.7, 148.0, 136.2, 132.3, 129.5, 129.4, 128.0, 127.8, 127.0, 81.0, 68.7, 30.7. [α] α ²⁵ = -158.32 (c = 1.00, CH₂Cl₂). **HPLC analysis** (AD-H, 5% IPA in *n*-hexane, 0.5 ml/min, λ = 210 nm) indicated 95% *ee*: t_(S) (major) = 39.0 min, t_(R) (minor) = 41.6 min. **HRMS** (**ESI**) m/z: calculated for C₁₂H₁₂NO [M+H]⁺: 186.0919, found: 186.0920.

(R)-3-azido-1-(quinolin-3-yl)propan-1-ol [(R)-19c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 6.5) containing 10 mM **19b** (1 mmol), 10 mM **NaN**₃ (1 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 30 h. The crude product was purified by flash column chromatography on silica gel

(dichloromethane : ethyl acetate = $10:1 \sim 3:1$) to provide (*R*)-**19c** as a light yellow liquid in 49% yield (107.0 mg). ¹H NMR (**400 MHz**, DMSO-*d*₆) δ 8.95 (d, J = 2.2 Hz, 1H), 8.28 (d, J = 2.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.97 (dd, J = 8.2, 1.5 Hz, 1H), 7.71 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.58 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 5.80 (d, J = 4.6 Hz, 1H), 4.93 (dd, J = 11.2, 6.8 Hz, 1H), 3.58 - 3.50 (m, 1H), 3.47 - 3.41 (m, 1H), 2.00 (q, J = 6.7 Hz, 2H). ¹³C NMR (**100 MHz**, DMSO-*d*₆) δ 149.8, 147.1, 138.2, 132.1, 129.1, 128.7, 128.1, 127.6, 126.7, 67.8, 47.8, 37.7. [α] σ ²⁵ = + 23.70 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OJ-H, 10% IPA in *n*-hexane, 1.0 ml/min, λ =210 nm)

indicated >99% ee: $t_{(R)}$ (major) = 15.7 min, $t_{(S)}$ (minor)= 18.6 min. **HRMS** (**ESI**) m/z: calculated for $C_{12}H_{12}N_4NaO$ [M+Na]⁺: 251.0909, found: 251.0911.

(S)-2-cyclohexyloxetane [(S)-21b]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 6.0) containing 5 mM 21b (0.5 mmol), 15 mM NaN₃ (1.5 mmol) and 30 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 96 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 50 : 1) to provide (*S*)-21b as a light yellow liquid in 32% yield (23.1mg). ¹H NMR (400 MHz, CDCl₃) δ 4.65 (td, J = 7.9, 5.7 Hz, 1H), 4.54 - 4.37 (m, 2H), 2.62 - 2.50 (m, 1H), 2.45 - 2.32 (m, 1H), 1.94 - 1.82 (m, 1H), 1.78 - 1.56 (m, 5H), 1.31 - 1.11 (m, 3H), 0.92 - 0.77 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 86.8, 68.3, 44.8, 27.6, 26.6, 26.2, 25.8, 25.6. [α] $_{\rm D}$ $_{\rm D}$ $_{\rm D}$ = +6.00 (c = 1.00, CH₂Cl₂). GC analysis (Rt-bDEXcst, 80 °C for 45 min) indicated 89% *ee*: t_(S) (major)= 33.0 min, t_(R) (minor)= 36.0 min. HRMS (ESI) *m*/z: calculated for C₉H₁₆NaO [M+Na]⁺: 163.1099, found: 163.1096.

(R)-3-azido-1-cyclohexylpropan-1-ol [(R)-21c]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 6.0) containing 5 mM 21b (0.5 mmol), 15 mM NaN₃ (1.5 mmol) and 30 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 96 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 50:1 ~ 15:1) to provide (*R*)-21c as a colorless liquid in 43% yield (39.7 mg). ¹H NMR (400 MHz, DMSO-d₆) δ 4.47 (d, J = 5.9 Hz, 1H), 3.46 - 3.39 (m, 1H), 3.37 - 3.34 (m, 1H), 3.27 - 3.21 (m, 1H), 1.78 - 1.57 (m, 6H), 1.52 - 1.48 (m, 1H), 1.26 - 1.07 (m, 4H), 1.05 - 0.87 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 71.1, 48.2, 43.6, 32.7, 28.7, 27.7, 26.3, 26.0, 25.9. [α] α ²⁵ = - 20.00 (c = 0.5, CH₂Cl₂). GC analysis (Rt-bDEXcst, 140 °C for 60 min) indicated 97% *ee*: t_(S) (minor)= 49.3 min, t_(R) (major)= 50.5 min. HRMS (ESI) m/z: calculated for C₉H₁₇N₃NaO [M+Na]⁺: 206.1269, found: 206.1264.

(S)-2-phenyloxetane [(S)-1b] (Ring opening by cyanide)

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **1b** (2 mmol), 40 mM **mandelonitrile** (4 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 22 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**1b** as a light yellow liquid in 37% yield (98.1 mg). ¹**H NMR (400 MHz, CDCl3)** δ 7.50 - 7.45 (m, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.36 - 7.30 (m, 1H), 5.84 (t, *J* = 7.5 Hz, 1H), 4.85 (td, *J* = 8.1, 5.9 Hz, 1H), 4.68 (dt, *J* = 9.3, 5.8 Hz, 1H), 3.09 - 2.99 (m, 1H), 2.74 - 2.64 (m, 1H). ¹³**C NMR (100 MHz, CDCl3)** δ 143.6, 128.6, 127.9, 125.3, 83.0, 68.3, 30.8. [α]ο²⁵ = -167.16 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated 97% *ee*: t_(S) (major) = 9.8 min, t_(R) (minor) = 11.0 min. **HRMS (ESI)** *m/z*: calculated for C₉H₁₁O [M+H]⁺: 135.0810, found: 135.0811.

(R)-4-hydroxy-4-phenylbutanenitrile [(R)-1d]

Prepared according to the general procedure: 100 mL PB buffer (50 mM, pH 7.5) containing 20 mM **1b** (2 mmol), 40 mM **mandelonitrile** (4 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 22 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1 ~ 2:1) to provide (*R*)-**1d** as a light yellow liquid in 46% yield (147.6 mg). ¹**H NMR (400 MHz, CDCl3)** δ 7.38 - 7.28 (m, 5H), 4.75 (dd, J = 8.1, 5.3 Hz, 1H), 2.81 (s, 1H), 2.50 - 2.43 (m, 1H), 2.37 - 2.29 (m, 1H), 2.01 - 1.94 (m, 2H). ¹³**C NMR (100 MHz, CDCl3)** δ 143.0, 128.7, 128.1, 125.7, 119.8, 72.1, 34.2, 13.7. [α] \mathbf{p}^{25} = + 12.79 (c = 1.00, CH₂Cl₂). **HPLC analysis** (IH, 5% IPA in *n*-hexane, 0.5 ml/min, λ =210 nm) indicated >99% *ee*: t_(S) (minor)= 58.5 min, t_(R) (major) = 61.6 min. **HRMS (ESI)** m/z: calculated for C₁₀H₁₁NNaO [M+Na]⁺: 184.0738, found: 184.0740.

(S)-2-phenyloxetane [(S)-1b] (Ring opening by <u>nitrite</u>)

Prepared according to the general procedure: 200 mL PB buffer (50 mM, pH 7.5) containing 40 mM **1b** (8 mmol), 40 mM **NaNO**₂ (8 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1) to provide (*S*)-**1b** as a light yellow liquid in 43% yield (459.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.45 (m, 2H),

7.42 (t, J = 7.6 Hz, 2H), 7.36 - 7.30 (m, 1H), 5.84 (t, J = 7.5 Hz, 1H), 4.85 (td, J = 8.0, 5.8 Hz, 1H), 4.68 (dt, J = 9.2, 5.8 Hz, 1H), 3.09 - 2.99 (m, 1H), 2.74 - 2.63 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.5, 127.9, 125.3, 83.0, 68.3, 30.8. [α] $_{\mathbf{D}^{25}} = -161.94$ (c = 1.00, CH₂Cl₂). **HPLC** analysis (OX-3, 3% IPA in *n*-hexane, 0.7 ml/min, λ =210 nm) indicated >99% ee: t_(S) (major) = 10.1 min, t_(R) (minor) = 11.4 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₁O [M+H]⁺: 135.0810, found: 135.0810.

(R)-3-nitro-1-phenylpropan-1-ol [(R)-1e]

OH NO₂ Prepared according to the general procedure: 200 mL PB buffer (50 mM, pH 7.5) containing 40 mM **1b** (8 mmol), 40 mM **NaNO**₂ (8 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether :

ethyl acetate = 30:1 ~ 2:1) to provide (*R*)-**1e** as a yellow liquid in 23% yield (327.2 mg). ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.38 - 7.26 (m, 5H), 4.74 (dd, J = 8.3, 4.6 Hz, 1H), 4.54 - 4.48 (m, 1H), 4.41 - 4.36 (m, 1H), 3.42 (s, 1H), 2.37 - 2.27 (m, 2H). ¹³**C NMR** (**100 MHz**, **CDCl**₃) δ 142.9, 128.9, 128.3, 125.6, 72.4, 71.1, 35.9. [α] σ ²⁵ = + 50.78 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OD-H, 10% IPA in *n*-hexane, 0.5 ml/min, λ =210 nm) indicated >99% *ee*: t_(S) (minor)= 29.0 min, t_(R) (major) = 39.8 min. **HRMS** (**ESI**) m/z: calculated for C₉H₁₁NNaO₃ [M+Na]⁺: 204.0637, found: 204.0642.

(R)-1-phenylpropane-1,3-diol [(R)-1f]

Prepared according to the general procedure: 200 mL PB buffer (50 mM, pH 7.5) containing 40 mM **1b** (8 mmol), 40 mM **NaNO**₂ (8 mmol) and 10 g dcw/L *E*. coli (HheD8-M4) cells, 30 °C, reaction for 24 h. The crude product was purified by flash column chromatography on silica gel (petroleum ether : ethyl acetate = 30:1 ~ 0:1) to provide (*R*)-**1f** as a light yellow liquid in 19% yield (232.1 mg). ¹**H NMR (400 MHz, CDCl₃)** δ 7.37 - 7.23 (m, 5H), 4.85 (dd, J = 8.7, 3.9 Hz, 1H), 3.70 - 3.77 (m, 2H), 3.64 (s, 2H), 1.93 - 1.83 (m, 2H). ¹³**C NMR (100 MHz, CDCl₃)** δ 144.4, 128.5, 127.5, 125.7, 73.6, 60.9, 40.4. [α] σ ²⁵ = + 43.09 (c = 1.00, CH₂Cl₂). **HPLC analysis** (IH, 12% IPA in *n*-hexane, 0.8 ml/min, λ = 210 nm) indicated 88% *ee*: t_(S) (minor)= 11.9 min, t_(R) (major) = 13.4 min. **HRMS (ESI)** m/z: calculated for C₉H₁₂NaO₂ [M+Na]⁺: 175.0735, found: 175.0732.

7. Large-scale reactions

<u>Large-scale reaction for the enantioselective dehalogenation of (rac)-1a:</u>

In a 250 mL round-bottom flask, a resting cell suspension of *E. coli* (HheD8-M4) at a concentration of 10 g dcw/L was prepared in 100 mL of PB buffer (200 mM, pH 8.5). To the suspension, 20 mL of *n*-hexane was added, followed by 3.412 g (20 mmol) of γ -haloalcohol (*rac*)
1a dissolved in 2 mL of DMSO to achieve a final concentration of 200 mM. The reaction mixture was then stirred at 30 °C, and the pH was adjusted at 8.5±0.1 using a pH stat and 5 M NaOH as the alkaline solution. Upon completion of the enzymatic reaction after 33 h, the reaction mixture was subjected to extraction with ethyl acetate (3 × 90 mL). The organic phases were separated by centrifugation (8800 × *g*, 3 min), combined, dried over anhydrous Na₂SO₄, and evaporated at reduced pressure. The resulting mixture was purified by flash chromatography (petroleum ether : ethyl acetate = 50:1 ~ 20:1) on silica gel to afford the desired chiral oxetane (*R*)-1b with 1.183 g (44% yield, >99% e.e.) and chiral γ -haloalcohol (*S*)-1a with 1.700 g (49% yield, 97% e.e.).

<u>Large-scale reaction for the enantioselective ring-opening of (rac)-1b</u>:

In a 250 mL round-bottom flask, a resting cell suspension of *E. coli* (HheD8-M4) at a concentration of 10 g dcw/L was prepared in 100 mL of PB buffer (300 mM, pH 7.0). To the suspension, 20 mL of *n*-hexane was added, followed by 2.683 g (20 mmol) of oxetane (rac)-**1b** dissolved in 2 mL of DMSO and 1.302 g (20 mmol) of NaN₃. The reaction mixture was then stirred at 30 °C for 39 h. Upon completion of the enzymatic reaction, the reaction mixture was subjected to extraction with ethyl acetate (3 × 90 mL). The organic phases were separated by centrifugation (8800 × g, 3 min), combined, dried over anhydrous Na₂SO₄, and evaporated at reduced pressure. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 50:1 ~ 15:1) on silica gel to afford the desired chiral γ -azidoalcohol (R)-**1c** with 1.597 g (45% yield, >99% e.e.) and chiral oxetane (S)-**1b** with 1.046 g (39% yield, 97% e.e.).

8. Biocatalytic cascades

General procedure: In a 200 mL round-bottom flask, a resting cell suspension of *E. coli* (HheD8-M4) at a concentration of 10 g dcw/L was prepared in 100 mL of PB buffer (50 mM, pH 7.5). To this suspension, 2 mmol of oxetane (*rac*)-**a** and 2 mmol of NaN₃ were added to a final concentration of 20 mM. The reaction mixture was then stirred at 30 °C. Upon completion of the

enzymatic reaction, the mixture was subjected to extraction using ethyl acetate (3 × 70 mL). The organic phases were separated by centrifugation (8800 × g, 3 min), combined, dried over anhydrous Na₂SO₄, and evaporated at reduced pressure. The resulting mixture was purified by flash chromatography (n-hexane: dichloromethane: ethyl acetate = 6:2:1) on silica gel to afford the desired chiral γ -azidoalcohol (R)- \mathbf{c} and γ -haloalcohol (S)- \mathbf{a} .

Substrate	T (h)	Isolated products	
(rac)- 1a	8	(<i>R</i>)- 1c (167.4 mg) (47% yield, >99 e.e.)	(S)- 1a (171.0 mg) (50% yield, >99 e.e.)
(rac)- 6a	12	(<i>R</i>)- 6c (184.3 mg) (47% yield, >99 e.e.)	(S)- 6a (187.2 mg) (49% yield, >99 e.e.)
(rac)- 7a	48	(<i>R</i>)- 7c (200.3 mg) (47% yield, >99 e.e.)	(S)- 7a (204.1 mg) (50% yield, >99 e.e.)

9. Transformations of chiral products

Synthesis of (R)-1aa from (S)-1a:

To a 50-mL round-bottom flask cooled with an ice bath, 264.2 mg (2.0 mmol) of tert-butyl Nhydroxycarbarnate was added, followed by the addition of 5 mL of anhydrous N, Ndimethylformamide (DMF). Then, 88.0 mg (2.2 mmol) of NaH was added, and the mixture was stirred for 30 min. Subsequently, 0.5 mL of anhydrous DMF containing 170.6 mg (1.0 mmol) of (S)-1a was added dropwise to the reaction mixture. The temperature was then gradually raised to 25 °C and the reaction was allowed to proceed for 72 h. Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted thrice with ethyl acetate 3 × 5 mL. The organic layers were then separated, combined, and washed thrice with saturated brine. The organic phase was then dried over anhydrous Na₂SO₄, concentrated under vacuum, and purified by flash chromatography (petroleum ether: ethyl acetate = 15:1) to give the intermediate. Next, the intermediate was dissolved in 20 mL of dichloromethane (DCM) while cooling in an ice bath. Then, 208.5 µL (1.5 mmol) of triethylamine (Et₃N) was added, and the mixture was stirred for 10 min. Subsequently, 68 µL (0.87 mmol) of methanesulfonyl chloride was added dropwise, and the reaction was continued for 2 h. Following the reaction, the mixture was diluted with 10 mL of DCM and washed three times with saturated brine. The organic phases were then separated and concentrated under reduced pressure to yield a crude intermediate product. Finally, the crude

intermediate was dissolved in 20 mL of DCM at room temperature (25 °C). To this, 2.2 mL of trifluoroacetic acid (TFA) was added, and the mixture was stirred for 1 h. The reaction mixture was concentrated under reduced pressure, and the residue was redissolved in 10 mL of DCM. The solution was then washed three times with saturated NaHCO₃ aqueous solution, dried over anhydrous Na₂SO₄, and then concentrated again under reduced pressure. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 15:1) on silica gel to afford the desired chiral produt (R)-1aa as a light yellow solid. The (rac)-1aa was synthesized from (rac)-1a according to the same procedures and used as a standard for chiral HPLC analysis.

(R)-3-phenylisoxazolidine [(R)-1aa]

Light yellow solid in 64% yield (96.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.32 (m, 4H), 7.30 - 7.25 (m, 1H), 5.32 (s, 1H), 4.50 - 4.45 (m, 1H), 4.10 - 3.99 (m, 2H), 2.72 - 2.62 (m, 1H), 2.34 - 2.24 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 128.8, 127.7, 127.0, 70.8, 63.5, 37.8. [α] \mathbf{p}^{25} = - 12.59 (c = 1.00, CH₂Cl₂). HPLC analysis (OJ-H, 10% IPA in *n*-hexane, 1.0 ml/min, 210 nm) indicated 92% *ee*: $\mathbf{t}_{(S)}$ (minor) = 15.0 min, $\mathbf{t}_{(R)}$ (major) = 17.5 min. HRMS (ESI) m/z: calculated for C₉H₁₂NO [M+H]⁺: 159.0919, found: 159.0917. m.p.: 31.3 - 32.7 °C.

(rac)-3-phenylisoxazolidine [(rac)-1aa]

¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.40 - 7.33 (m, 4H), 7.30 - 7.26 (m, 1H), 5.10 (s, 1H), 4.47 (t, $J = 6.3$ Hz, 1H), 4.08 - 4.00 (m, 2H), 2.71 - 2.62 (m, 1H), 2.33 - 2.24 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 128.7, 127.8, 126.9, 70.8, 63.5, 37.7.

Synthesis of (S)-1ab from (S)-1a:

To a 10-mL round-bottom flask, 82.9 mg (0.60 mmol) of anhydrous K_2CO_3 was added, followed by the addition of 1 mL of anhydrous DMF and 72.3 mg (0.5 mmol) of 1-naphthol. Afterward, the reaction temperature was increased to 70 °C, followed by the dropwise addition of 85.3 mg (0.5 mmol) of (S)-1a. The reaction was stirred for 12 hours, and subsequently quenched by adding 1 mL of distilled water. Equal volume of ethyl acetate was used to extract the mixture three times. The organic layers were then separated, combined, and washed thrice with saturated brine. The organic phase was then dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure to

yield the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 15:1) on silica gel to afford the desired chiral produt (S)-1ab as a light pink solid. The (rac)-1ab was synthesized from (rac)-1a according to the same procedures and used as a standard for chiral HPLC analysis.

(S)-3-(naphthalen-1-yloxy)-1-phenylpropan-1-ol [(S)-1ab]

Light pink solid in 78% yield (108.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.28 - 8.25 (m, 1H), 7.84 - 7.81 (m, 1H), 7.54 - 7.48 (m, 2H), 7.46 - 7.43 (m, 3H), 7.40 - 7.35 (m, 3H), 7.34 - 7.29 (m, 1H), 6.81 (d, J = 7.6 Hz, 1H), 5.15 (q, J = 4.9 Hz, 1H), 4.38 - 4.32 (m, 1H), 4.23 - 4.18 (m, 1H), 2.47 - 2.40 (m, 1H), 2.37 - 2.30 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 144.3, 134.6, 128.7, 127.8, 127.7, 126.5, 126.0, 126.0, 125.6, 125.4, 121.9, 120.5, 104.8, 72.3, 65.4, 38.6. [α] ρ ²⁵ = + 25.58 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, 210 nm) indicated 97% ee: $t_{(S)}$ (major) = 21.4 min, $t_{(R)}$ (minor) = 23.7 min. HRMS (ESI) m/z: calculated for C₁₉H₁₈NaO₂ [M+Na]⁺: 301.1204, found: 301.1211. m.p.: 69.4 - 71.3 °C.

(rac)-3-(naphthalen-1-yloxy)-1-phenylpropan-1-ol [(rac)-1ab]

¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 8.34 - 8.32 (m, 1H), 7.88 - 7.86 (m, 1H), 7.59 - 7.53 (m, 2H), 7.50 (d, J = 8.2 Hz, 1H), 7.47 - 7.39 (m, 5H), 7.37 - 7.33 (m, 1H), 6.82 (d, J = 7.6 Hz, 1H), 5.13 (dd, J = 8.2, 5.0 Hz, 1H), 4.36 - 4.31 (m, 1H), 4.20 - 4.15 (m, 1H), 2.66 (s, 1H), 2.46 - 2.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 144.2, 134.5, 128.6, 127.7, 127.6, 126.5, 126.0, 125.9, 125.6, 125.3, 121.9, 120.4, 104.8, 72.0, 65.3, 38.5.

Synthesis of (R)-1ba from (R)-1b:

To a wellstirred suspension of 200.0 mg (5.0 mmol) of NaH in dry diglyme (1 mL) was added 660.0 mg (3.0 mmol) of trimethylsulfoxonium iodide at room temperature. The mixture was gently heated to $125 \,^{\circ}\text{C}$, and $67.2 \,^{\circ}\text{mg}$ (0.5 mmol) of chiral oxetane (R)-**1b** in diglyme (0.5 mL) was added dropwise to the reaction mixture. The reaction mixture was stirred at $125 \,^{\circ}\text{C}$ for 0.5 h, cooled, carefully quenched with distilled water, and extracted four times with equal volume of n-hexane. The combined extracts were washed with saturated brine, dried over anhydrous Na₂SO₄ and

concentrated under reduced pressure to yield the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 50:1) on silica gel to afford the desired chiral produt (R)-**1ba** as a light yellow liquid. The (rac)-**1ba** was synthesized from (rac)-**1b** according to the same procedures and used as a standard for chiral HPLC analysis.

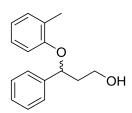
(R)-2-phenyltetrahydrofuran [(R)-1ba]

Light yellow liquid in 73% yield (54.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.34 (m, 4H), 7.31 - 7.27 (m, 1H), 4.93 (t, J = 7.2 Hz, 1H), 4.13 (dt, J = 8.3, 6.9 Hz, 1H), 3.97 (td, J = 7.8, 6.4 Hz, 1H), 2.40 - 2.32 (m, 1H), 2.08 - 2.00 (m, 2H), 1.88 - 1.79 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 128.4, 127.2, 125.7, 80.8, 68.8, 34.7, 26.1. [α] \mathbf{p}^{25} = + 34.27 (c = 1.00, CH₂Cl₂). HPLC analysis (OD-H, 8% IPA in n-hexane, 0.8 ml/min, 210 nm) indicated 92% ee: $\mathbf{t}_{(R)}$ (major) = 6.2 min, $\mathbf{t}_{(S)}$ (minor) = 8.0 min. HRMS (ESI) m/z: calculated for $\mathbf{C}_{10}\mathbf{H}_{13}\mathbf{O}$ [M+H]⁺: 149.0966, found: 149.0960.

(rac)-2-phenyltetrahydrofuran [(rac)-1ba]

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 4.3 Hz, 4H), 7.30 - 7.24 (m, 1H), 4.91 (t, J = 7.2 Hz, 1H), 4.12 (q, J = 7.4 Hz, 1H), 3.96 (q, J = 7.3 Hz, 1H), 2.38 - 2.30 (m, 1H), 2.08 - 1.97 (m, 2H), 1.86 - 1.77 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 128.4, 127.2, 125.7, 80.8, 68.8, 34.7, 26.1.

Synthesis of (R)-**1bb** from (R)-**1b**:


To a 10 mL round-bottom flask under argon, a solution of 149.5 mg (0.45 mmol) tris(2-methylphenyl)borate (CAS: 2665-12-5) in 1.0 mL of tetrahydrofuran (THF) was added, followed by the addition of 40.3 mg (0.3 mmol) oxetane (*R*)-**1b** in 0.5 mL of THF. The reaction mixture was stirred at 50 °C for 1 h. After evaporation of the solvent, the resulting mixture was then purified by flash chromatography (petroleum ether: ethyl acetate: DCM= 15:1:1) on silica gel, to give the desired chiral produt (*R*)-**1bb** as a white solid. The (*rac*)-**1bb** was synthesized from (*rac*)-**1b** according to the same procedures and used as a standard for chiral HPLC analysis.

(R)-3-phenyl-3-(o-tolyloxy)propan-1-ol [(R)-1bb]

White solid in 54% yield (38.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.31 (m, 4H), 7.27 - 7.23 (m, 1H), 7.13 (d, J = 7.3 Hz, 1H), 6.97 (t, J = 7.8 Hz, 0H), 6.79 (t, J = 7.4 Hz, 1H), 6.63 (d, J = 8.2 Hz, 0H), 5.40 (dd, J = 8.6, 4.2 Hz, 1H), 3.93 - 3.87 (m, 1H), 3.84 - 3.78 (m, 1H), 2.33 (s, 3H), 2.30 - 2.22 (m, 1H), 2.16 - 2.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 141.7,

130.8, 128.8, 127.7, 126.9, 126.8, 125.8, 120.6, 112.9, 77.8, 60.0, 41.4, 16.8. $[\alpha]_{D}^{25} = -19.19$ (c = 1.00, CH₂Cl₂). **HPLC analysis** (AD-H, 5% IPA in *n*-hexane, 1.0 ml/min, 210 nm) indicated 83% ee: $t_{(R)}$ (major) = 9.0 min, $t_{(S)}$ (minor) = 13.5 min. **HRMS** (**ESI**) m/z: calculated for C₁₆H₁₈NaO₂ [M+Na]⁺: 265.1204, found: 265.1210. **m.p.**: 49.7 - 51.4 °C.

(rac)-3-phenyl-3-(o-tolyloxy)propan-1-ol [(rac)-1bb]

¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.32 (m, 4H), 7.29 - 7.24 (m, 1H), 7.14 (d, J = 7.3 Hz, 1H), 6.98 (t, J = 8.7 Hz, 1H), 6.81 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 5.42 (dd, J = 8.6, 4.2 Hz, 1H), 3.93 - 3.88 (m, 1H), 3.84 - 3.79 (m, 1H), 2.35 (s, 3H), 2.31 - 2.23 (m, 1H), 2.18 - 2.09 (m, 1H). ¹³C NMR

(**100 MHz, CDCl₃**) δ 155.8, 141.7, 130.8, 128.8, 127.7, 126.9, 126.7, 125.8, 120.6, 112.9, 77.7, 60.0, 41.4, 16.8.

Synthesis of (R)-1ca from (R)-1c:

To 50-mL round-bottom flask was added 181.1 mg (1.02 mmol) of γ -azidoalcohol (R)-1c and 225 μ L (2.04 mmol) of ethynylbenzene. CuSO₄·5H₂O (3.7 mg, 0.01 mmol) was weighed into a 10-mL round-bottom flask along with sodium ascorbate (11.4 mg, 0.06 mmol) and dissolved in 5.0 mL distilled H₂O. To this solution was added MonoPhos (3.8 mg, 0.01 mmol) and the solution was stirred at room temperature for 15 min. The solution in the 10-mL round-bottom flask was added to the roundbottom flask (with stirring) and a further 10.0 mL of water was added to the mixture. The reaction mixture was stirred at room temperature overnight (approximately 14 h). Afterwards, 10.0 mL of ice-cold distilled water was added to the mixture, followed by extraction with equal volume of DCM for three times. The combined extracts were washed with saturated brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to yield the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl

acetate= 2:1) on silica gel to afford the desired chiral produt (*R*)-**1ca** as a white solid. The (*rac*)-**1ca** was synthesized from (*rac*)-**1c** according to the same procedures and used as a standard for chiral HPLC analysis.

(R)-1-phenyl-3-(4-phenyl-1H-1,2,3-triazol-1-yl)propan-1-ol [(R)-1ca]

White solid in 89% yield (255.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.76 - 7.74 (m, 3H), 7.39 - 7.23 (m, 8H), 4.66 (dd, J = 7.7, 5.7 Hz, 1H), 4.60 - 4.53 (m, 1H), 4.49 - 4.43 (m, 1H), 3.37 (s, 1H), 2.30 (dt, J = 7.7, 6.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 143.6, 130.5, 128.9, 128.7, 128.3, 127.9, 125.8, 125.7, 120.4, 70.8, 47.3, 39.2. [α] α ²⁵ = + 7.10 (c = 1.00, CH₂Cl₂). HPLC analysis (OD-H, 20% IPA in n-hexane, 0.5 ml/min, λ = 210 nm) indicated >99% ee: t_(S) (minor) = 26.4 min, t_(R) (major) = 37.9 min. HRMS (ESI) m/z: calculated for C₁₇H₁₈N₃O [M+H]⁺: 280.1450, found: 280.1456. **m.p.**: 117.2 ~ 120.0 °C.

(rac)-1-phenyl-3-(4-phenyl-1H-1,2,3-triazol-1-yl)propan-1-ol [(rac)-1ca]

OH

OH

N=N

1H NMR (400 MHz, CDCl₃) δ 7.76 - 7.74 (m, 3H), 7.39 - 7.24

(m, 8H), 4.67 (dd,
$$J$$
 = 7.6, 5.6 Hz, 1H), 4.59 - 4.52 (m, 1H), 4.47

- 4.41 (m, 1H), 3.90 (s, 1H), 2.29 (q, J = 6.8 Hz, 2H). ¹³C NMR

(100 MHz, CDCl₃) δ 147.6, 143.7, 130.4, 128.9, 128.6, 128.2, 127.8, 125.7, 125.7, 120.4, 70.6, 47.2, 39.2.

Synthesis of (R)-1cb from (R)-1c:

To a 50-mL round-bottom flask, 104.2 mg (0.83 mmol) of 4,4-dimethylcyclohexan-1-one and 8 mL of anhydrous DCM were added. The flask was cooled to -78 °C, followed by the addition of 2 mL (16.21 mmol) of BF₃·OEt₂, and then stirred for 30 minutes. Subsequently, a solution of 186.6 mg (1.05 mmol) γ-azidoalcohol (*R*)-1c in 2.0 mL of anhydrous DCM was cooled to 0 °C and then added dropwise to the above round-bottom flask. The reaction temperature was then slowly increased to room temperature and allowed to proceed for 24 h. The reaction mixture was concentrated under vacuum to yield a viscous brown liquid. Next, 10 mL of 15% (w/v) aqueous KOH solution was added to the crude product, and the mixture was stirred for 1 h. Equal volume of DCM was used to extract the mixture three times. The organic layers were separated, combined,

and washed with distilled water followed by saturated brine. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resultant mixture was further purified by flash chromatography (DCM: ethyl acetate = 2:1) on silica gel to afford the desired chiral product (R)-1cb as an orange liquid. The (rac)-1cb was synthesized from (rac)-1c according to the same procedures and used as a standard for chiral HPLC analysis.

(R)-1-(3-hydroxy-3-phenylpropyl)-5,5-dimethylazepan-2-one [(R)-1cb]

ŌΗ

Yellow oil in 88% yield (256.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.35 - 7.29 (m, 4H), 7.23 (q, J = 6.3 Hz, 1H), 4.81 (d, J = 3.9 Hz, 1H), 4.54 (dt, J = 10.5, 3.4 Hz, 1H), 4.09 (ddd, J = 15.0, 11.3, 4.3 Hz, 1H), 3.28 (s, 1)2H), 3.05 (dt, J = 14.2, 4.5 Hz, 1H), 2.54 - 2.40 (m, 2H), 1.93 - 1.84 (m,

1H), 1.80 - 1.71 (m, 1H), 1.52 - 1.36 (m, 4H), 0.96 (d, J = 7.6 Hz, 6H). ¹³C NMR (100 MHz, **CDCl₃**) δ 177.3, 144.2, 128.3, 127.1, 125.7, 69.8, 45.4, 45.3, 41.0, 37.6, 36.2, 32.5, 32.3. α - 2.00 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OJ-H, 10% IPA in *n*-hexane, 1.0 ml/min, λ = 214 nm) indicated >99% ee: $t_{(S)}$ (minor) = 8.1 min, $t_{(R)}$ (major) = 8.9 min. **HRMS** (ESI) m/z: calculated for C₁₇H₂₅NNaO₂ [M+Na]⁺: 298.1783, found: 298.1789. **m.p.**: 65.3 - 71.2 °C.

(rac)-1-(3-hydroxy-3-phenylpropyl)-5,5-dimethylazepan-2-one [(rac)-1cb]

OH

¹H NMR (400 MHz, CDCl₃) δ 7.35 -7.28 (m, 4H), 7.23 - 7.19 (m, 1H), 4.87 (dt, J = 3.9 Hz, 1H), 4.53 (dt, J = 10.2, 3.4 Hz, 1H), 4.05 (ddd, J = 10.2, 3.4 Hz, 1H)14.5, 10.8, 4.6 Hz, 1H), 3.27 (s, 2H), 3.05 (dt, J = 14.7, 4.0 Hz, 1H), 2.51- 2.38 (m, 2H), 1.92 - 1.84 (m, 1H), 1.79 - 1.71 (m, 1H), 1.48 - 1.39 (m,

4H), 0.95 (d, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 144.1, 128.2, 127.0, 125.6, 69.7, 45.3, 45.2, 40.9, 37.6, 36.1, 32.4, 32.2.

Synthesis of (R)-1da from (R)-1d:

To a 10-mL round-bottom flask, 52.6 mg (0.33 mmol) γ-cyanoalcohol (R)-1d and 1.1 mL of 3 M aqueous NaOH solution were added. After the addition of 1.0 mL of 30% (w/v) H₂O₂, the solution was heated to 70 °C and allowed to proceed for 2 h. After cooling the flask to room temperature, 10.0 mL of distilled water was added to quench the reaction. The reaction mixture was extracted 20 mL of DCM. The aqueous phase was separated, followed by the addition of 6 M HCl solution

until the pH reached between 2-3. Then the reaction mixture was extracted with DCM (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to yield the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 2:1) on silica gel to afford the desired chiral produt (R)-1da as a colorless liquid. The (rac)-1da was obtained from commercial suppliers and used as a standard for chiral HPLC analysis.

(R)-5-phenyldihydrofuran-2(3H)-one [(R)-1da]

Colorless oil in 73% yield (38.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.32 (m, 5H), 5.50 (dd, J = 8.1, 5.8 Hz, 1H), 2.69 - 2.62 (m, 3H), 2.22 - 2.15 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 139.4, 128.8, 128.5, 125.4, 81.3, 31.1, 29.1. [α] σ ²⁵ = + 17.19 (c = 1.00, CH₂Cl₂). HPLC analysis (IH, 10% IPA in *n*-hexane, 1.0 ml/min, λ = 210 nm) indicated >99% ee: $t_{(S)}$ (minor) = 24.5 min, $t_{(R)}$ (major) = 28.3 min. HRMS (ESI) m/z: calculated for C₁₀H₁₀NaO₂ [M+Na]⁺: 185.0578, found: 185.0581.

Synthesis of (R)-1db from (R)-1d:

To a 10-mL round-bottom flask, 71.8 mg (0.45 mmol) of γ -cyanoalcohol (R)-1d, 150 μ L of 30% (w/v) H₂O₂ and 2.0 mL of 25% (w/v) NH₃·H₂O were added. The reaction mixture was allowed to stitr at room temperature for 12 h. Afterwards, 15 mL methanol was added to the reaction and dried over anhydrous Na₂SO₄. Then the mixture were filtered and concentrated under reduced pressure to yield the crude product. The resulting mixture was purified by flash chromatography (methanol: ethyl acetate = 1:10) on silica gel to afford the desired chiral produt (R)-1db as a colorless liquid. The (rac)-1db was synthesized from (rac)-1d according to the same procedures and used as a standard for chiral HPLC analysis.

(R)-4-hydroxy-4-phenylbutanamide [(R)-1db]

Colorless liquid in 54% yield (42.9 mg). ¹H NMR (400 MHz, CD₃OD) δ 7.37 - 7.30 (m, 4H), 7.26 - 7.22 (m, 1H), 4.91 (s, 3H), 4.65 (t, J = 6.6 Hz, 1H), 2.30 - 2.22 (m, 2H), 2.03 - 1.96 (m, 2H). ¹³C NMR (100 MHz, CD₃OD) δ 178.8, 145.9, 129.3, 128.3, 127.0, 74.3, 35.9, 32.8. [α] $\mathbf{p}^{25} = +$ 34.69 (c = 1.00, CH₂Cl₂). **HPLC analysis** (OJ-H, 10% IPA in n-hexane, 1.0 ml/min, λ = 210 nm)

indicated >99% ee: $t_{(R)}$ (major) = 15.8 min, $t_{(S)}$ (minor) = 18.1 min. **HRMS** (**ESI**) m/z: calculated for $C_{10}H_{13}NNaO_2$ [M+Na]⁺: 202.0844, found: 202.0850.

(rac)-4-hydroxy-4-phenylbutanamide [(rac)-1db]

¹H NMR (400 MHz, CD₃OD)
$$\delta$$
 7.41 - 7.35 (m, 4H), 7.30 - 7.26 (m, 1H), 5.00 (s, 3H), 4.69 (t, $J = 6.5$ Hz, 1H), 2.34 - 2.29 (m, 2H), 2.01 (q, $J = 7.4$ Hz, 2H). ¹³C NMR (100 MHz, CD₃OD) δ 178.6, 145.6, 129.2, 128.2, 126.8, 74.1, 35.7, 32.7.

Synthesis of (R)-1ea from (R)-1e:

To a stirred solution of γ -nitroalcohol (R)-**1e** (58.7 mg, 0.32 mmol) in MeOH (10 mL), 51.3 mg of Pd/C (10 mol%) was added. The mixture was stirred at room temperature for 6 h under a hydrogen balloon. Afterward, the reaction mixture was filtered through a pad of Celite, which was then washed with 30 mL of MeOH. The filtrate was dried over anhydrous Na₂SO₄ and concentrated, giving the desired chiral product (R)-**1ea** as a colorless liquid. The (rac)-**1ea** was obtained from commercial suppliers and used as a standard for chiral HPLC analysis.

(R)-3-amino-1-phenylpropan-1-ol [(R)-1ea]

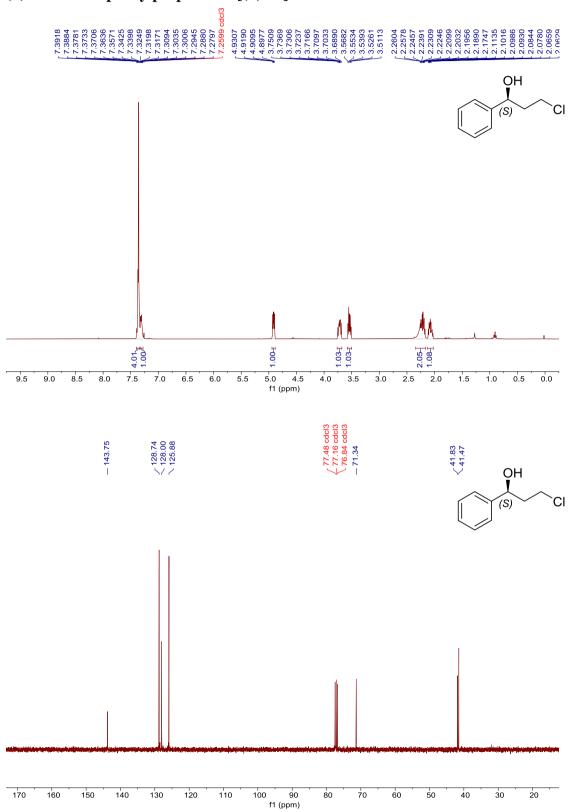
Colorless liquid in 92% yield (45.3 mg). ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.43- 7.37 (m, 4H), 7.34 - 7.28 (m, 1H), 4.88 (dd, $J = 7.9$, 4.4 Hz, 1H), 3.63 (s, 3H), 2.99 - 2.94 (m, 1H), 2.92 - 2.88 (m, 1H), 1.88 - 1.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 128.4, 127.1, 125.7, 75.2, 40.4, 39.7. [α] σ ²⁵ = + 78.25 (c = 1.00, CH₂Cl₂). HPLC analysis (OB-H, 8% IPA in n -hexane, 1.0 ml/min, λ = 210 nm) indicated >99% ee : $t_{(S)}$ (minor) = 23.6 min, $t_{(R)}$ (major) = 41.9 min. HRMS (ESI) m/z : calculated for C₉H₁₃NNaO [M+Na]⁺: 174.0895, found: 174.0896.

Synthesis of (R)-1fa from (R)-1f:

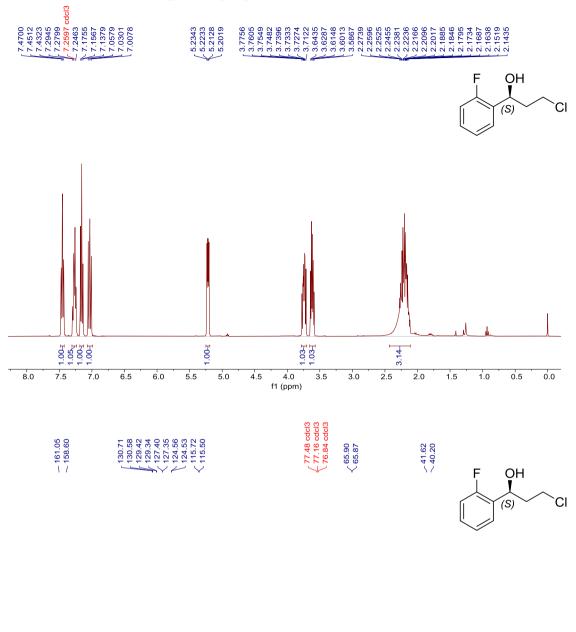
To a 10-mL round-bottom flask, 47.5 mg (0.31 mmol) of γ -diol (*R*)-**1f**, 1 mL of DCM, and 150 μ L (1.08 mmol) of Et₃N were added. The flask was cooled to 0 °C, followed by dropwise addition of 50 μ L (0.41 mmol) of pivaloyl chloride. The reaction mixture was then stirred at room temperature for 6 h. Afterward, the reaction mixture was quenched with 2 mL of distilled water, extracted with

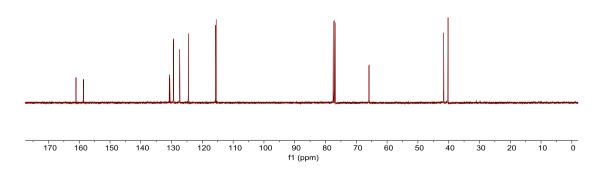
DCM (3 × 2 mL), and washed with saturated brine. The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain the crude product. The resulting mixture was purified by flash chromatography (petroleum ether: ethyl acetate = 10:1) to afford the desired chiral product (R)-**1fa** as a colorless liquid. The (rac)-**1fa** was synthesized from (rac)-**1f** according to the same procedures and used as a standard for chiral HPLC analysis.

(R)-3-hydroxy-3-phenylpropyl pivalate [(R)-1fa]

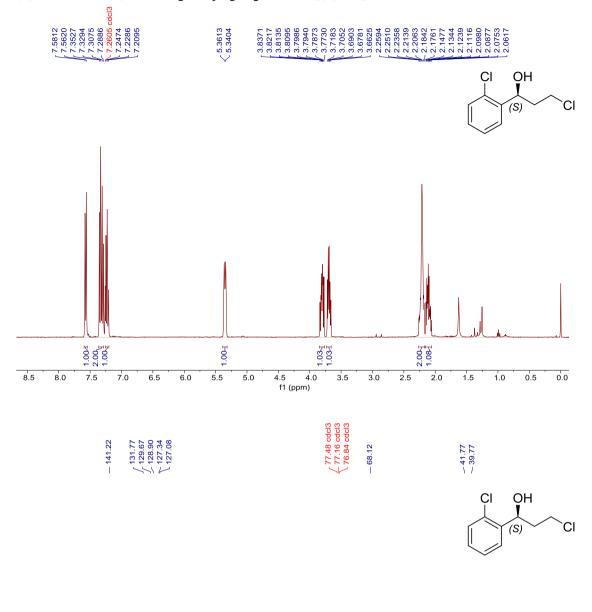

Colorless liquid in 83% yield (61.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.33 (m, 4H), 7.30 - 7.27 (m, 1H), 4.76 (dd, J = 8.3, 5.0 Hz, 1H), 4.30 (ddd, J = 13.1, 7.6, 5.5 Hz, 1H), 4.08 (dt, J = 11.2, 5.8 Hz, 1H), 2.59 (s, 1H), 2.12 - 1.98 (m, 2H), 1.21 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 144.0, 128.7, 127.8, 125.8, 71.4, δ 1.6, 38.9, 38.2, 27.3. [α] α ²⁵ = + 9.80 (c = 1.00, CH₂Cl₂). HPLC analysis (OX-3, 3% IPA in n-hexane, 0.7 ml/min, λ = 210 nm) indicated 87.8% ee: t_(S) (minor) = 24.1 min, t_(R) (major) = 25.4 min. HRMS (ESI) m/z: calculated for C₁₄H₂₀NaO₃ [M+Na]⁺: 259.1310, found: 259.1317.

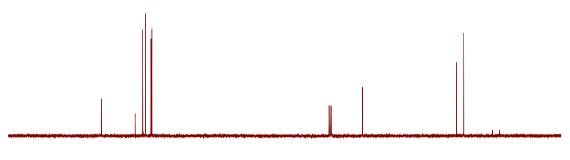
(rac)-3-hydroxy-3-phenylpropyl pivalate [(rac)-1fa]

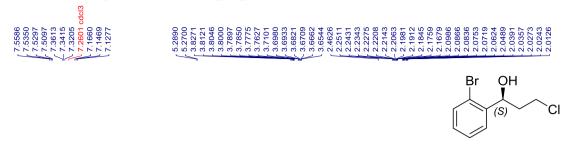

OH OH NMR (400 MHz, CDCl₃)
$$\delta$$
 7.37 - 7.27 (m, 5H), 4.76 (dd, J = 8.2, 5.0 Hz, 1H), 4.29 (ddd, J = 13.1, 7.6, 5.5 Hz, 1H), 4.07 (dt, J = 11.2, 5.9 Hz, 1H), 2.84 (s, 1H), 2.12 - 1.96 (m, 2H), 1.21 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 144.0, 128.6, 127.7, 125.8, 71.3, 61.6, 38.8, 38.1, 27.2.

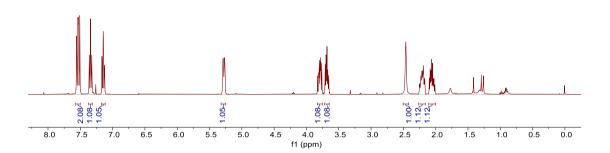

10. Copies of NMR spectra

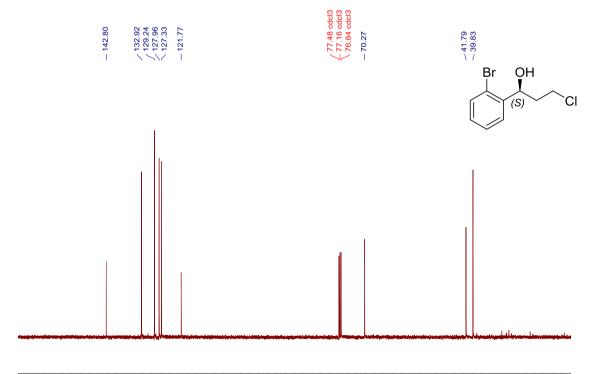
(S)-3-chloro-1-phenylpropan-1-ol [(S)-1a]



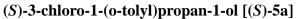

(S)-3-chloro-1-(2-fluorophenyl)propan-1-ol [(S)-2a]

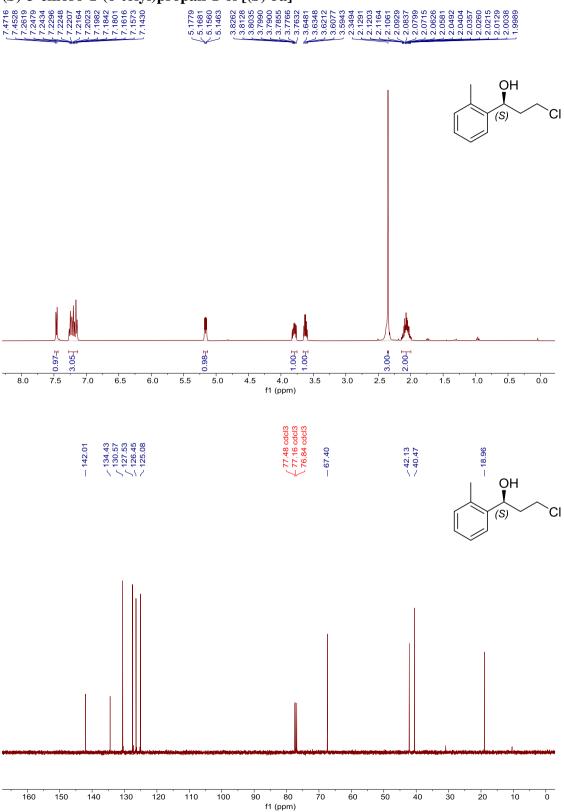


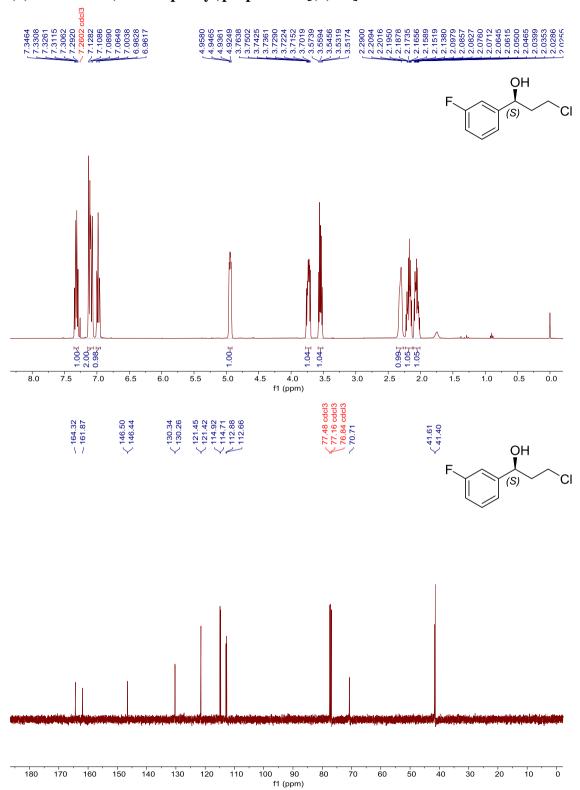




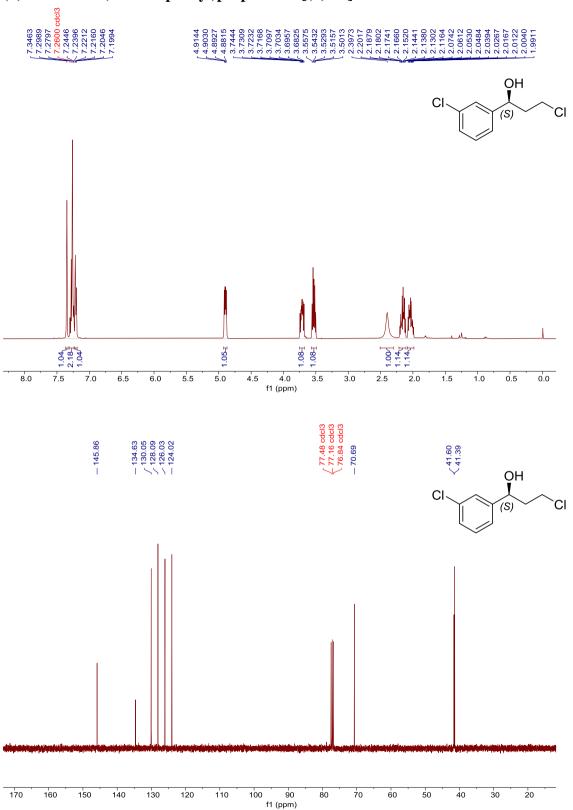
165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

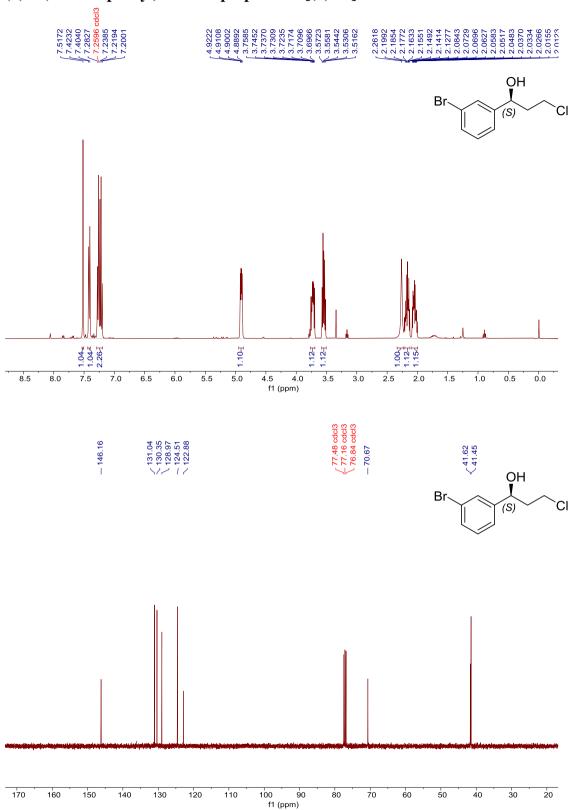

(S)-1-(2-bromophenyl)-3-chloropropan-1-ol [(S)-4a]

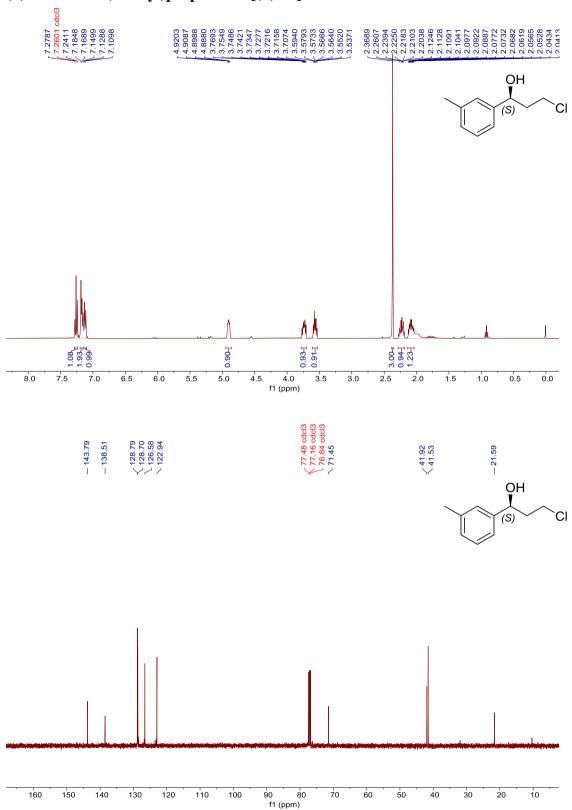


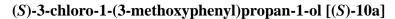


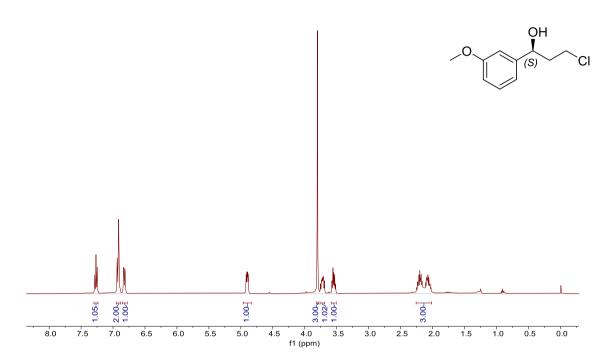
165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

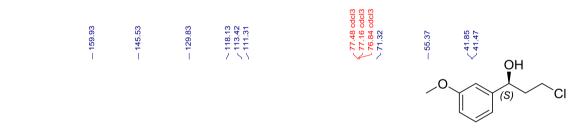


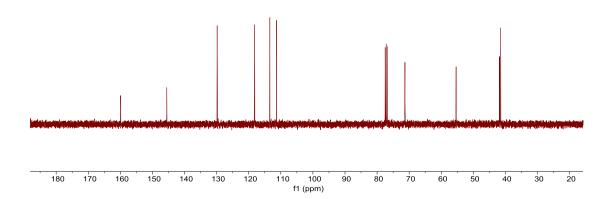

(S)-3-chloro-1-(3-fluorophenyl)propan-1-ol [(S)-6a]

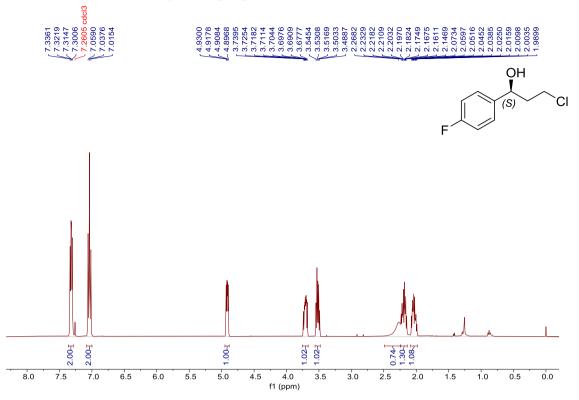

(S)-3-chloro-1-(3-chlorophenyl)propan-1-ol [(S)-7a]

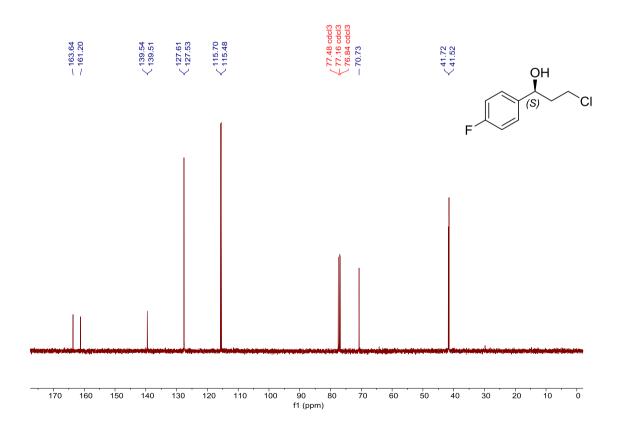


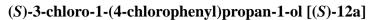


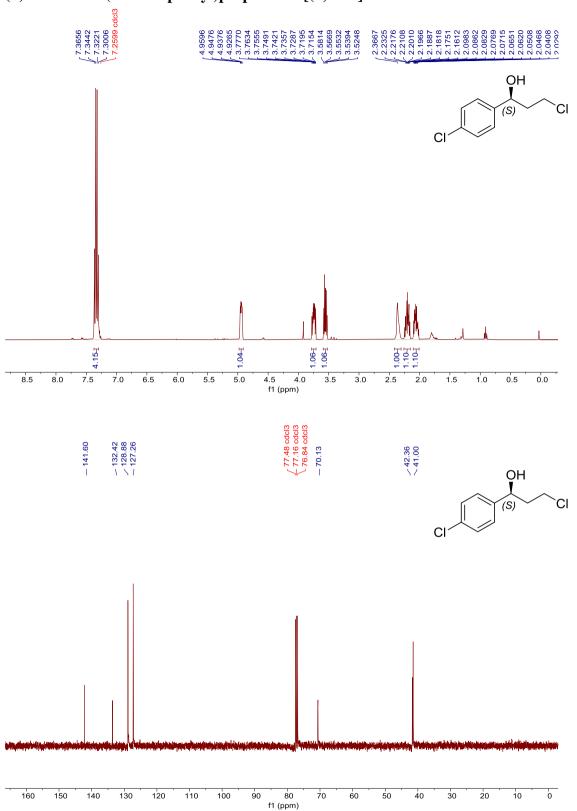

(S)-3-chloro-1-(m-tolyl)propan-1-ol [(S)-9a]



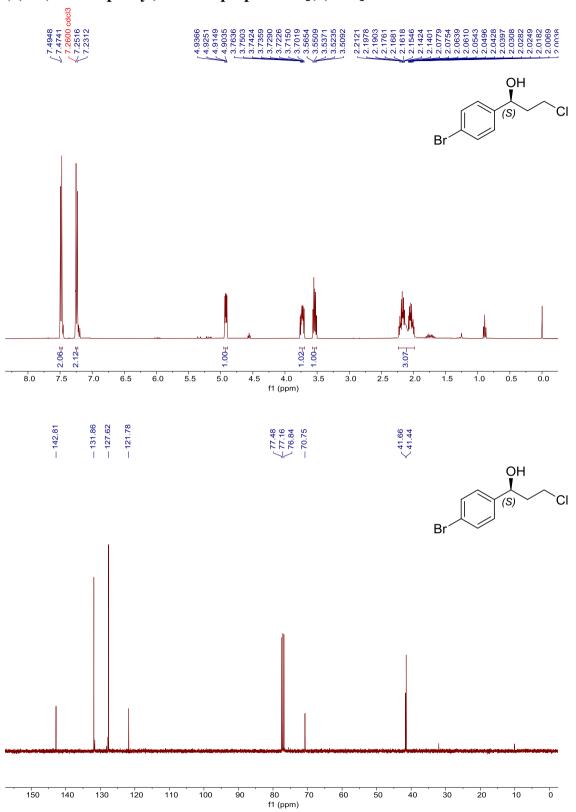


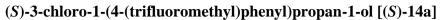


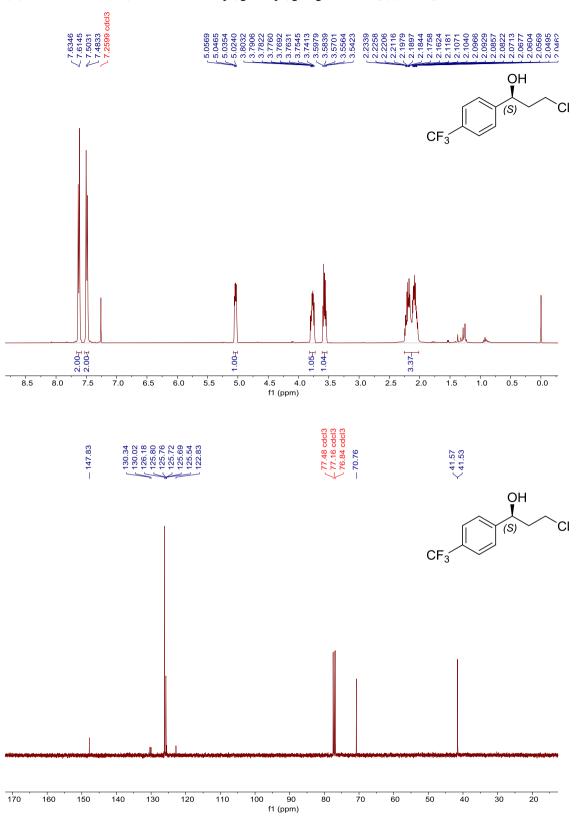


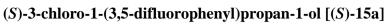


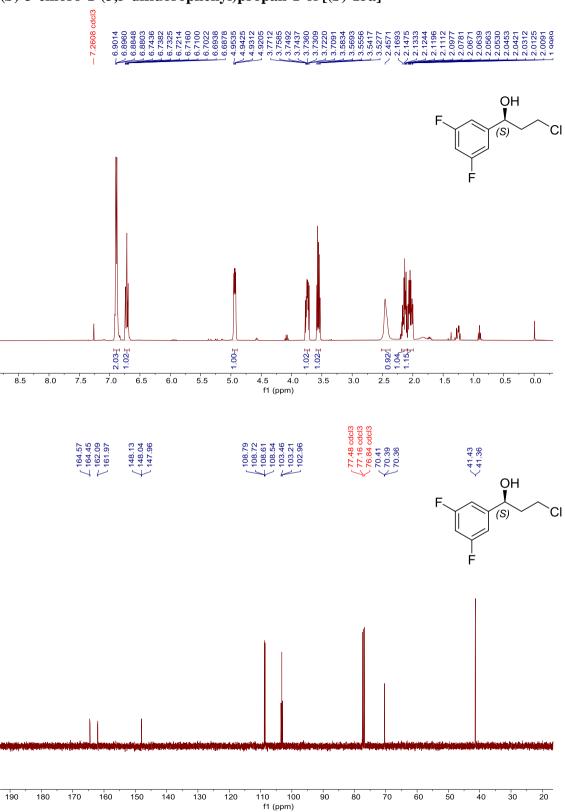
(S)-3-chloro-1-(4-fluorophenyl)propan-1-ol [(S)-11a]

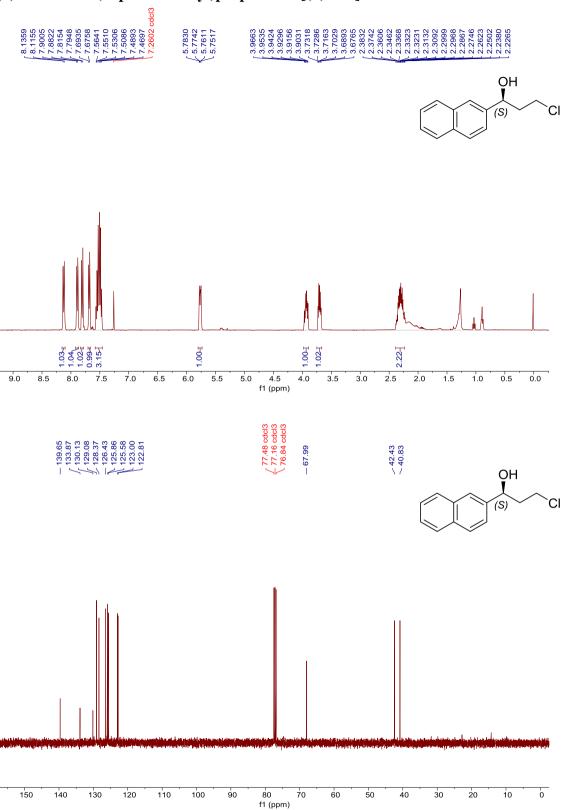


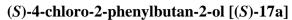


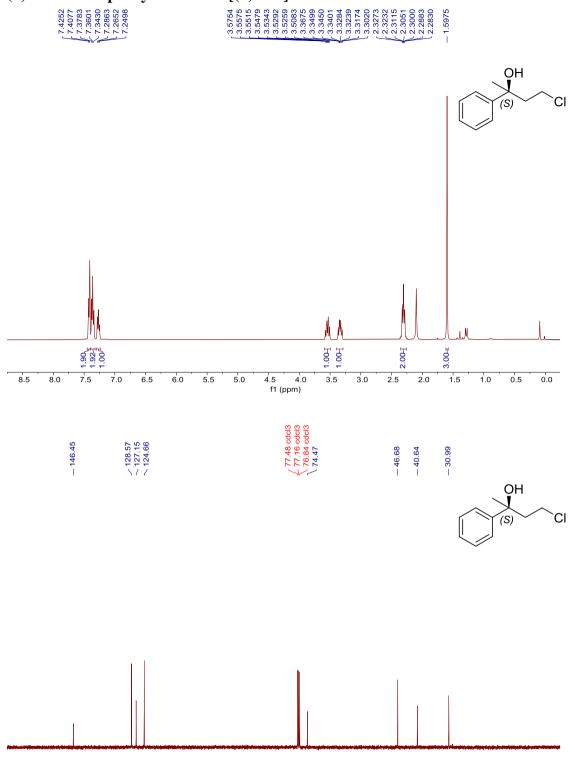


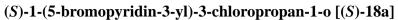


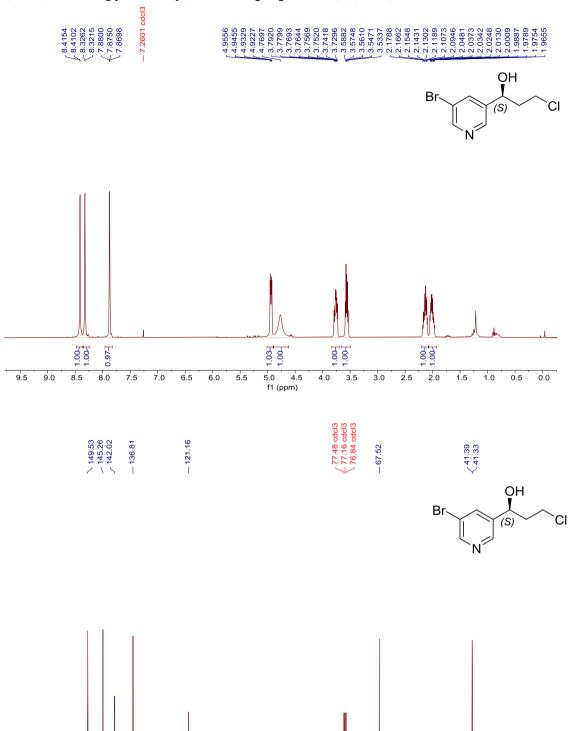

(S)-1-(4-bromophenyl)-3-chloropropan-1-ol [(S)-13a]

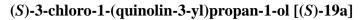


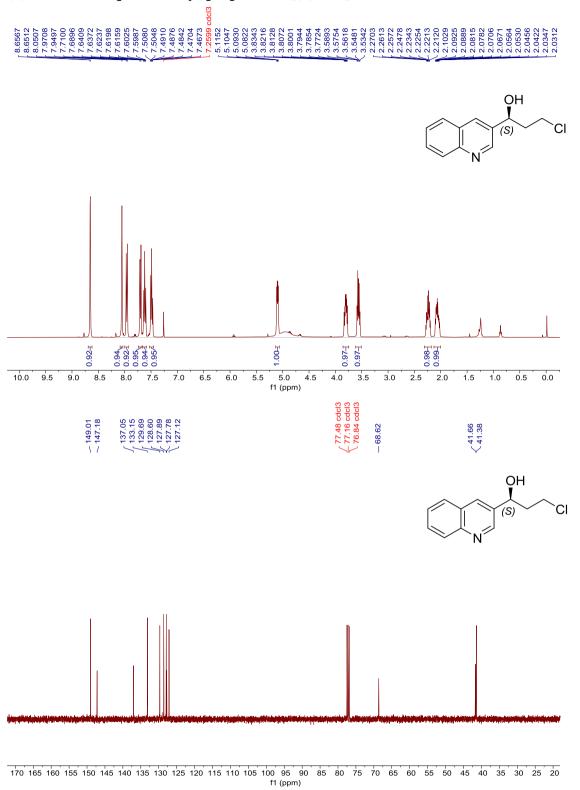


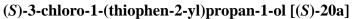


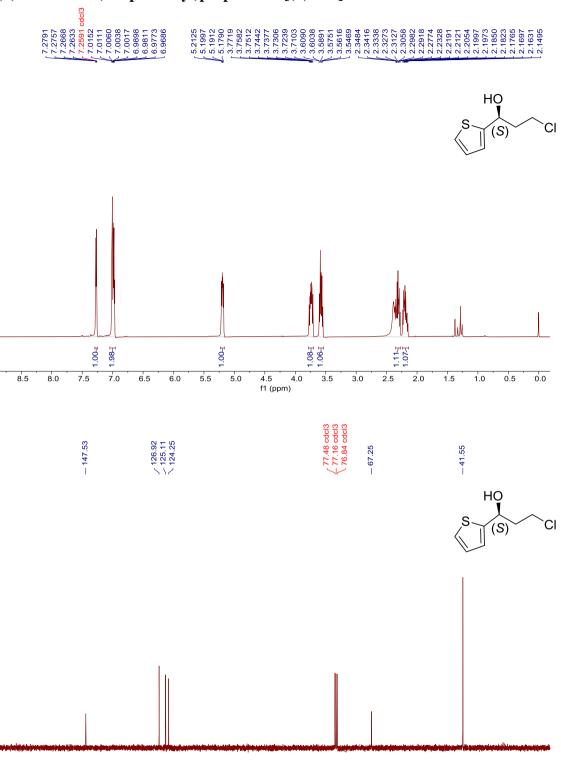



(S)-3-chloro-1-(naphthalen-2-yl)propan-1-ol [(S)-16a]

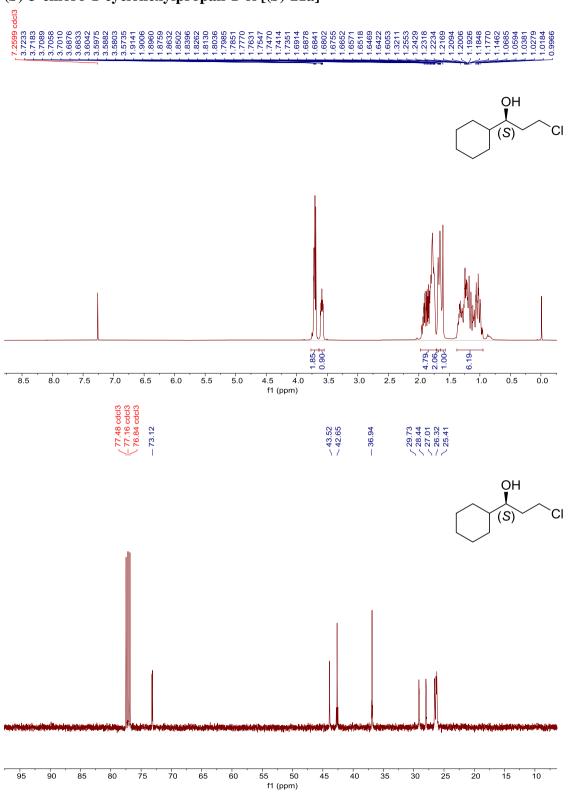


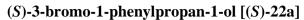


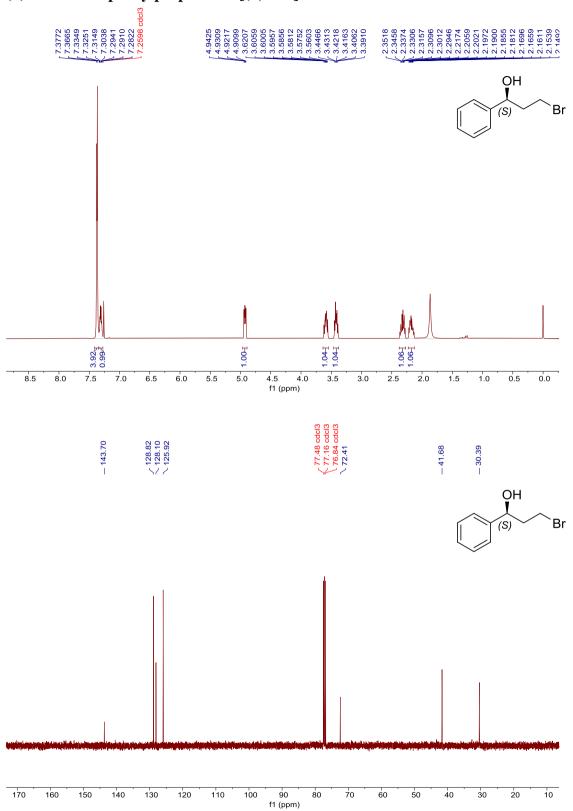

f1 (ppm)

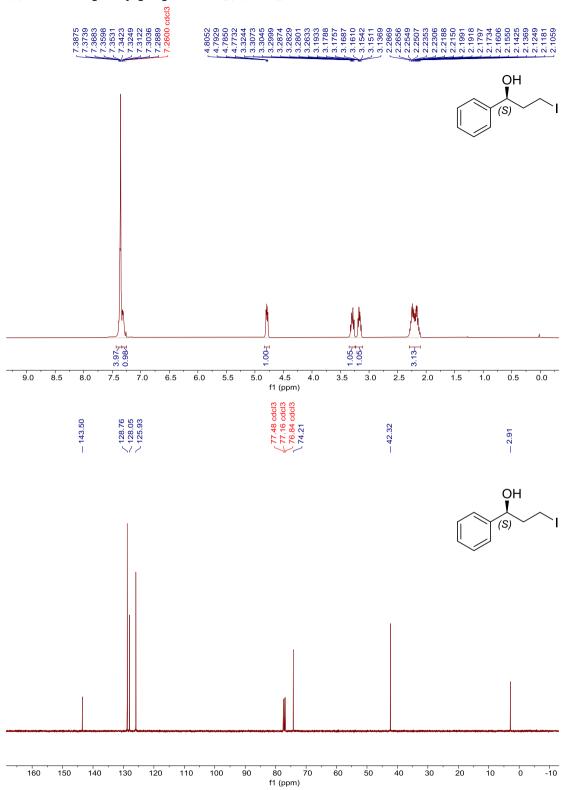


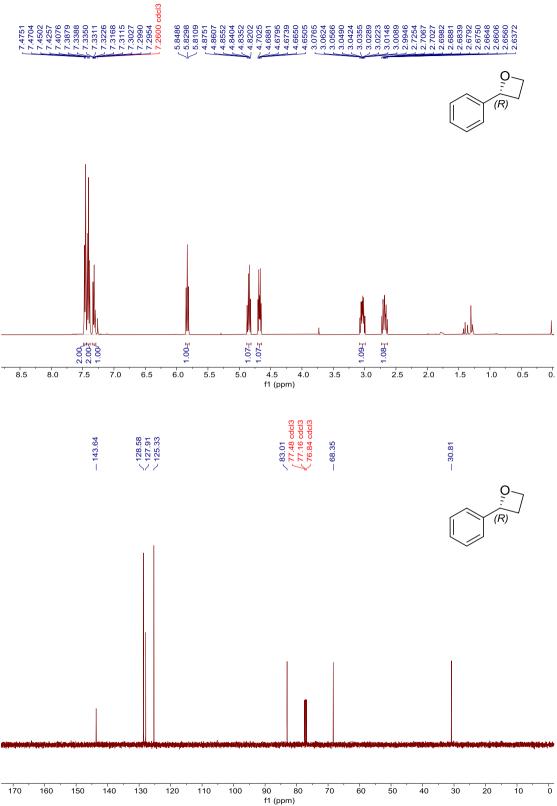
170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 f1 (ppm)

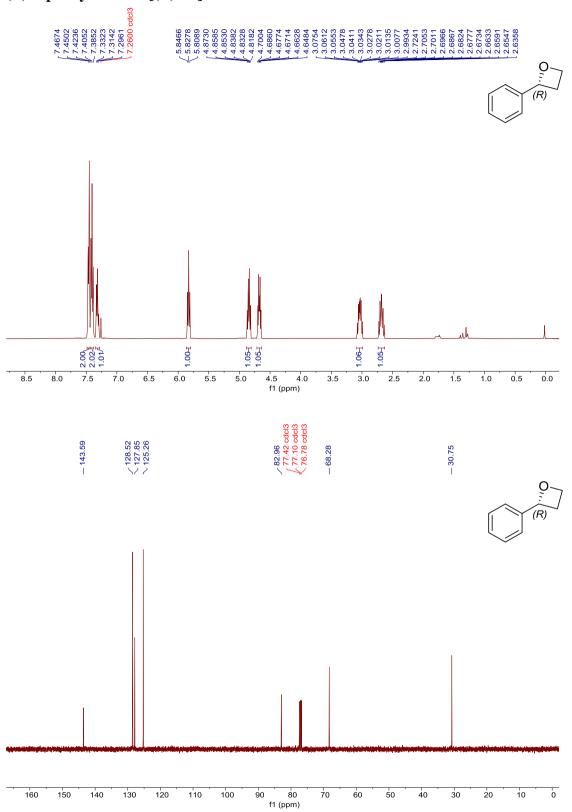


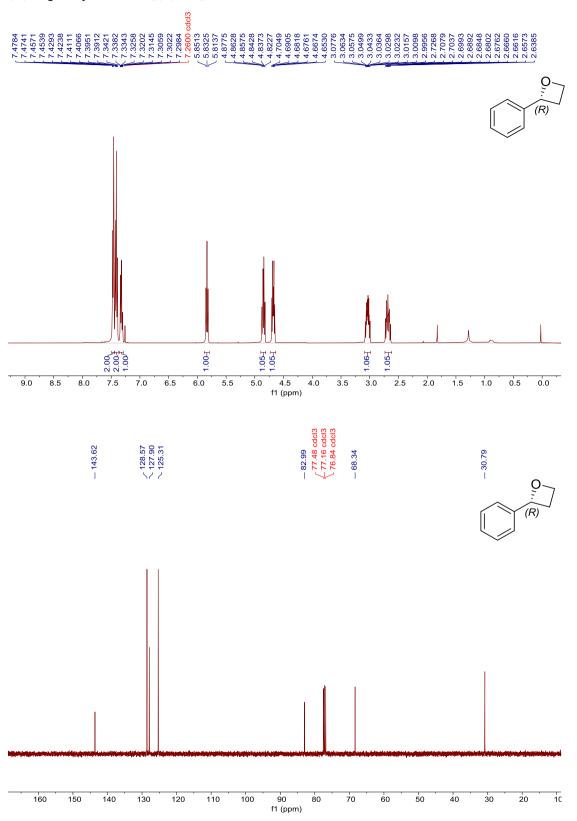


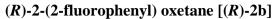


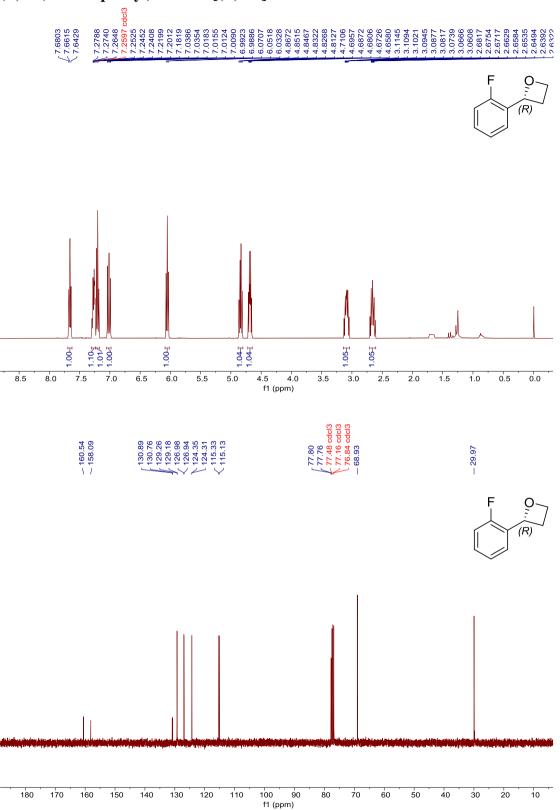

(S)-3-chloro-1-cyclohexylpropan-1-ol [(S)-21a]

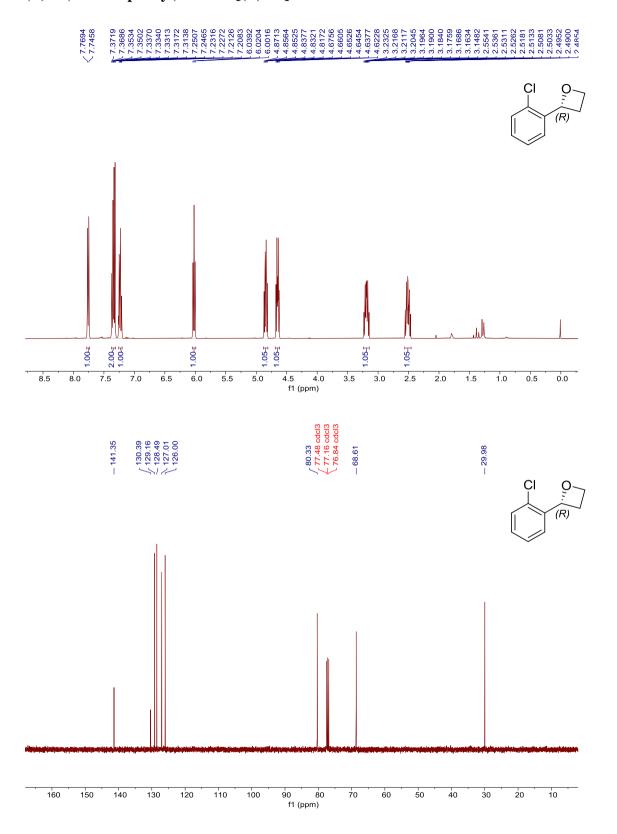


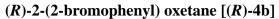


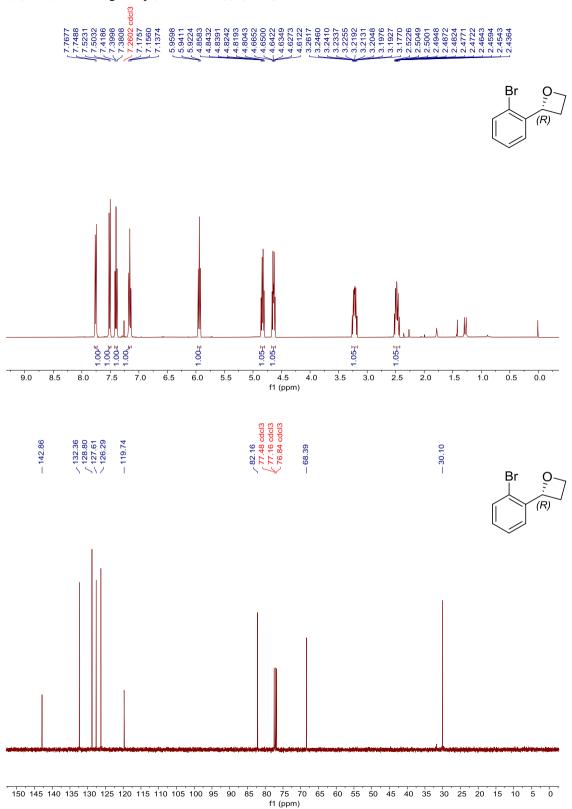


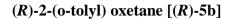


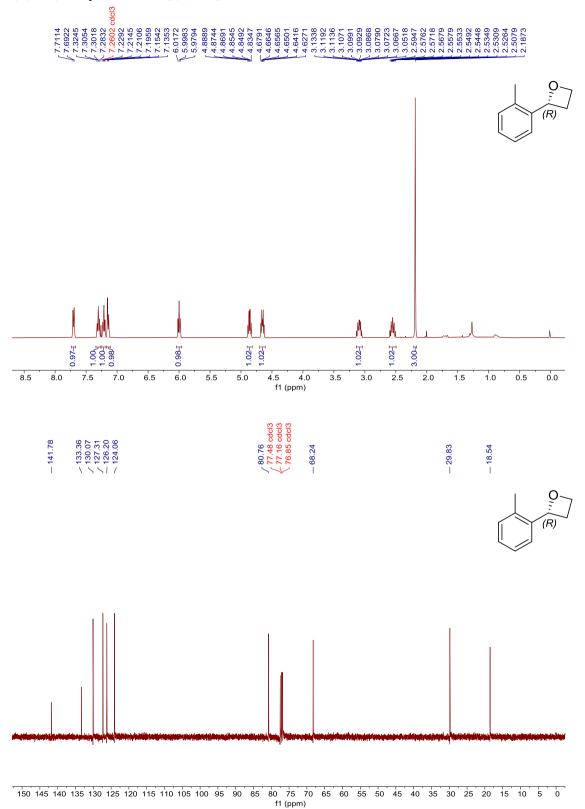

(R)-2-phenyloxetane [(R)-1b] from 22a

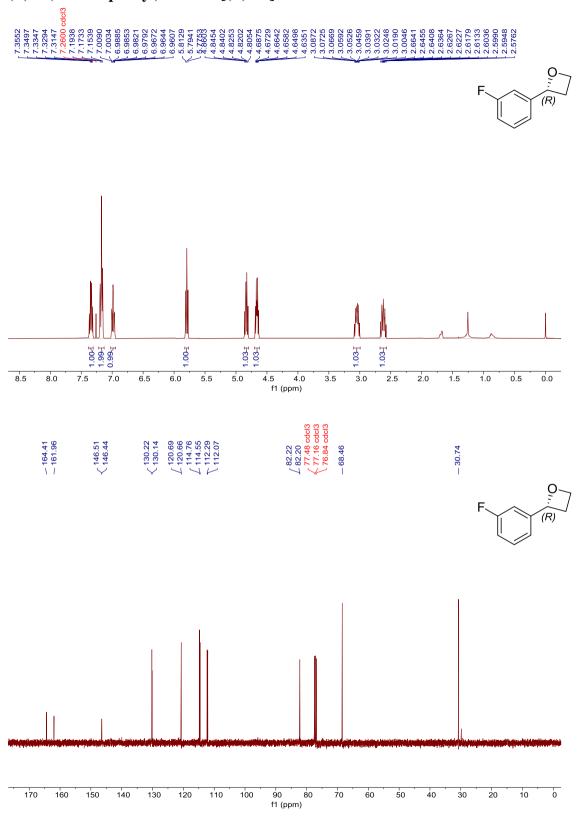

(R)-2-phenyloxetane [(R)-1b] from 23a

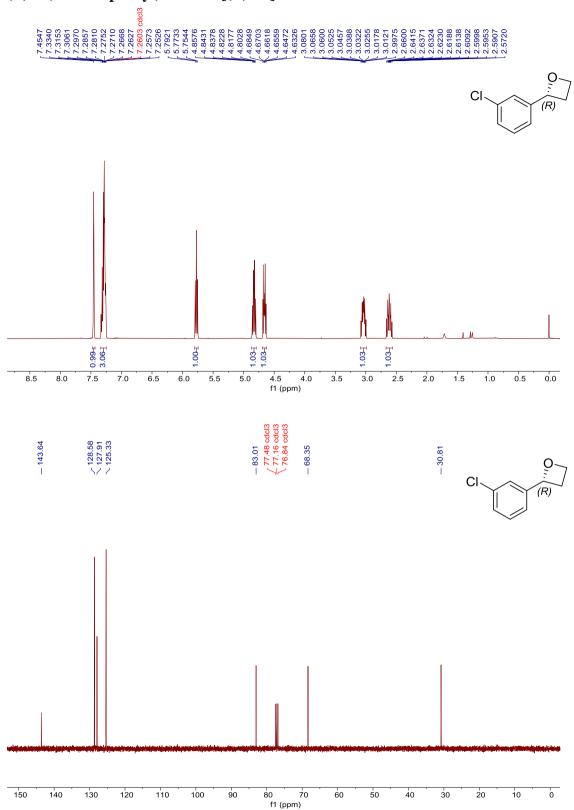


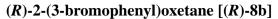


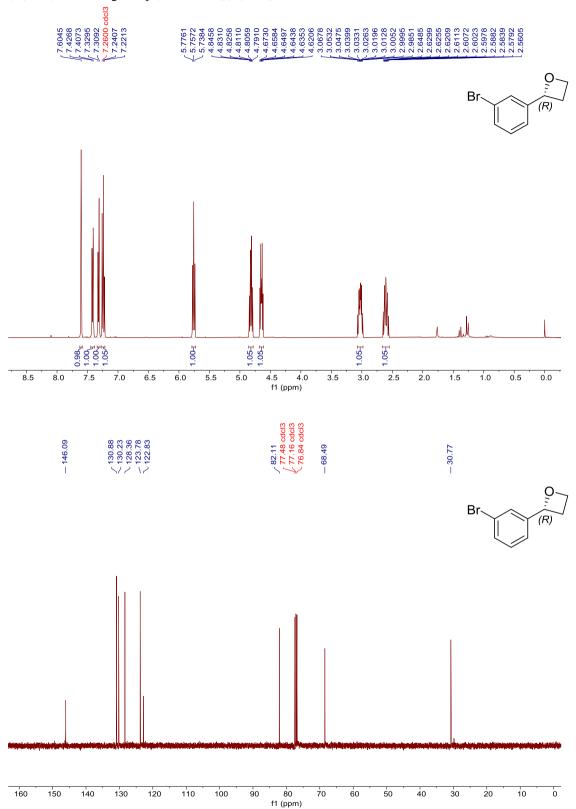


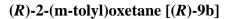

(R)-2-(2-chlorophenyl) oxetane[(R)-3b]

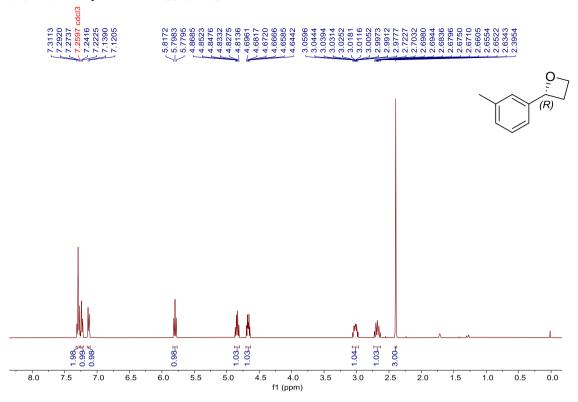


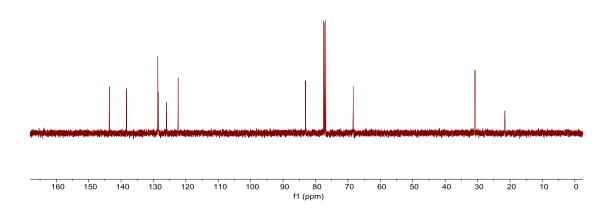


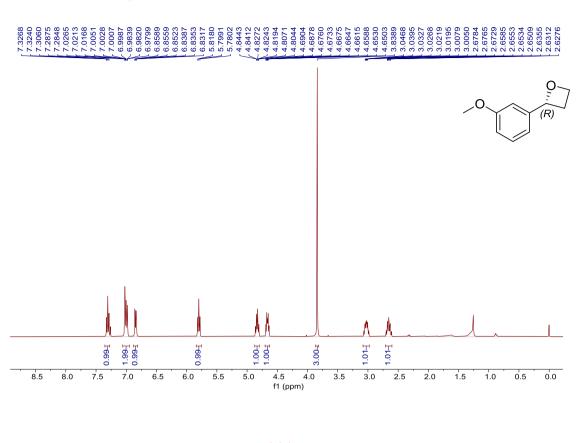


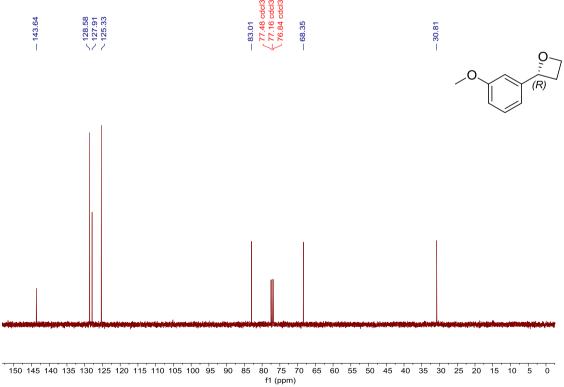

(R)-2-(3-fluorophenyl) oxetane [(R)-6b]

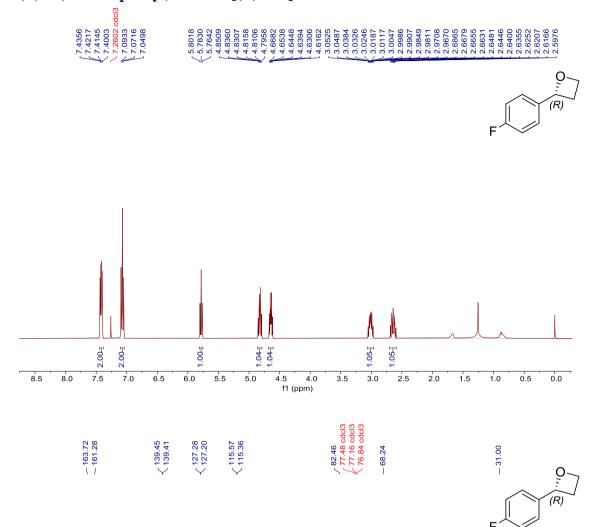


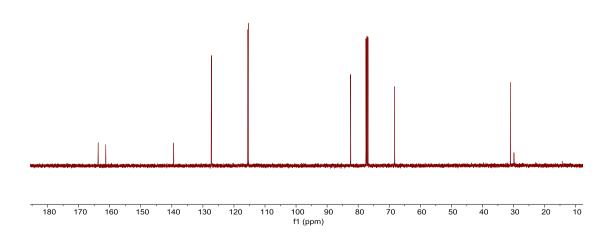

(R)-2-(3-chlorophenyl) oxetane [(R)-7b]

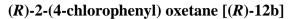


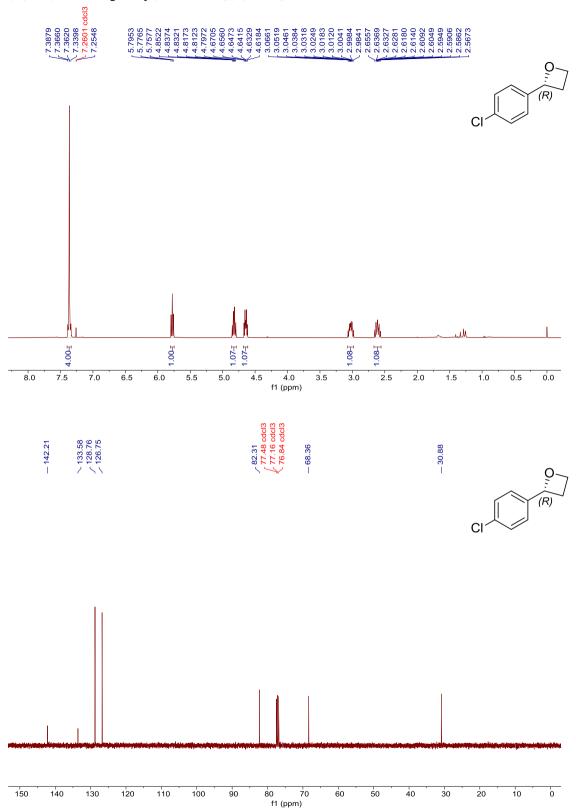




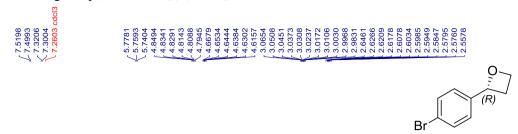


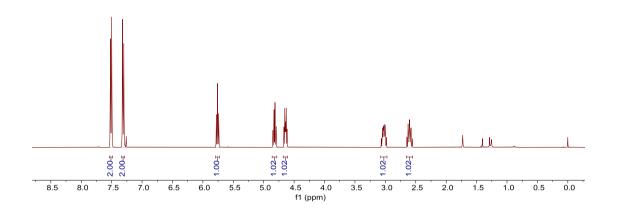

(R)-2-(3-methoxyphenyl)oxetane [(R)-10b]

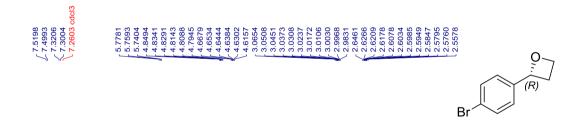


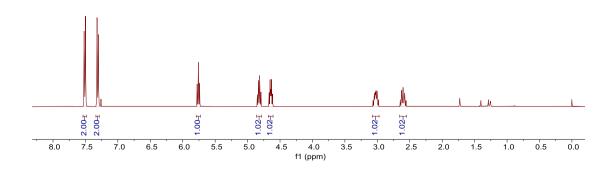


(R)-2-(4-fluorophenyl) oxetane [(R)-11b]

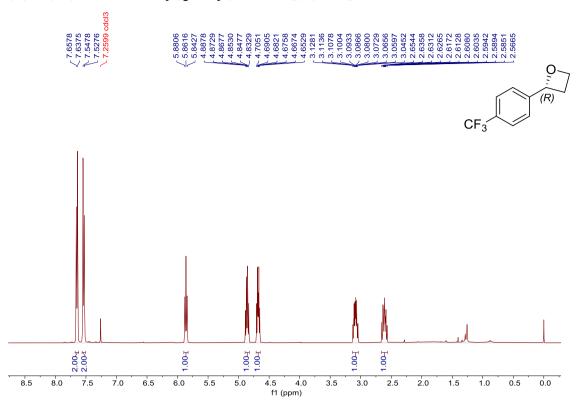


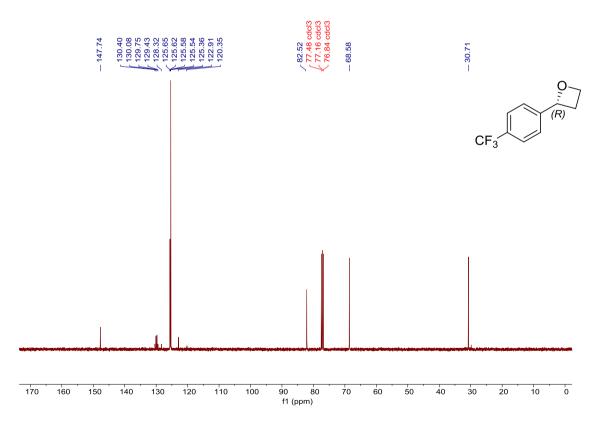


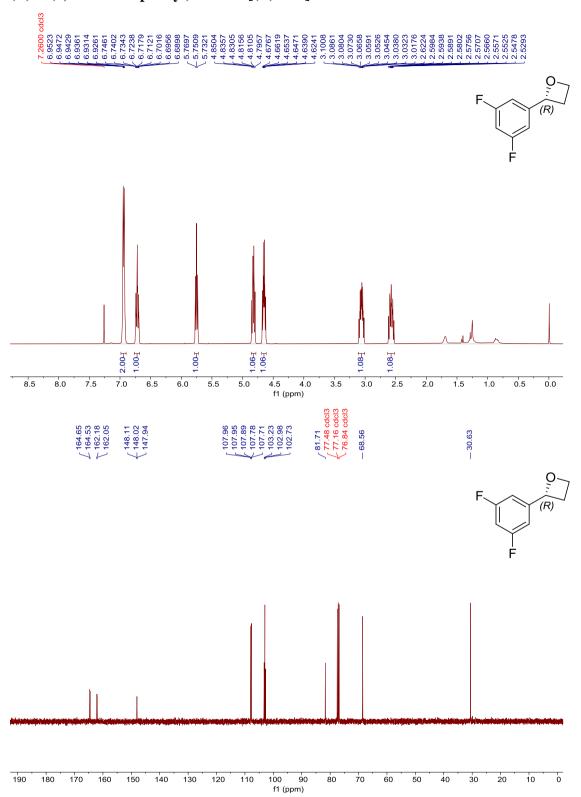


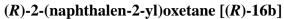


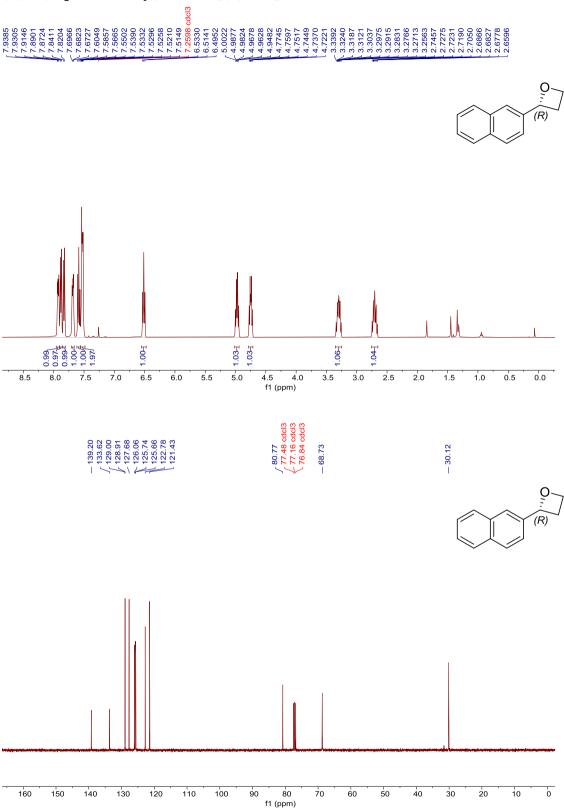
(R)-2-(4-bromophenyl) oxetane [(R)-13b]

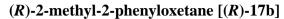


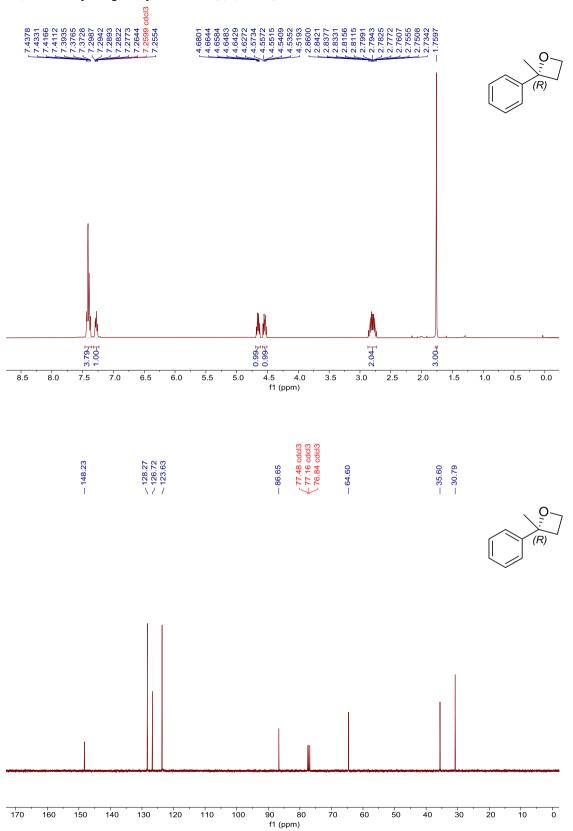


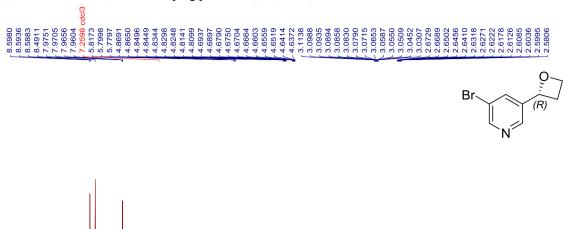


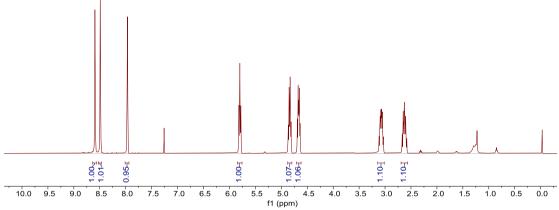

(R)-2-(4-(trifluoromethyl)phenyl)oxetane [(R)-14b]

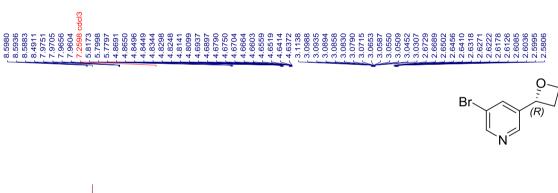


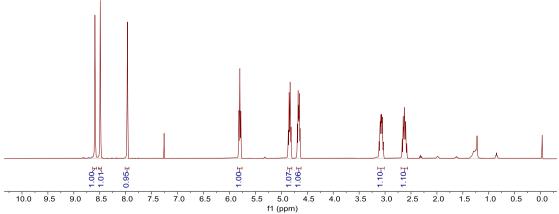



(R)-2-(3, 5-difluorophenyl)oxetane [(R)-15b]

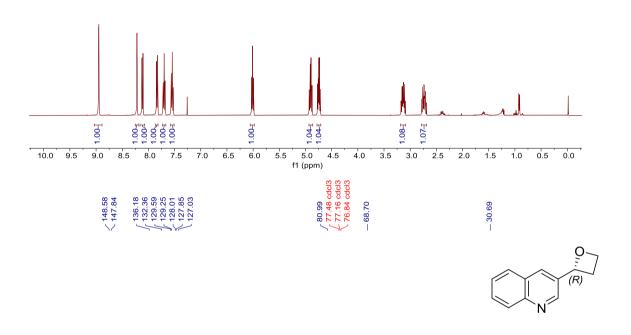


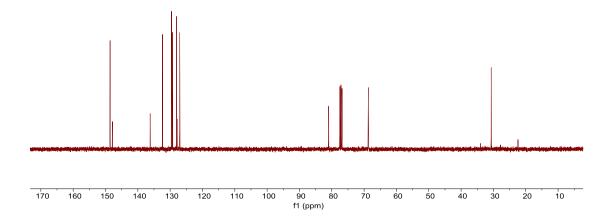


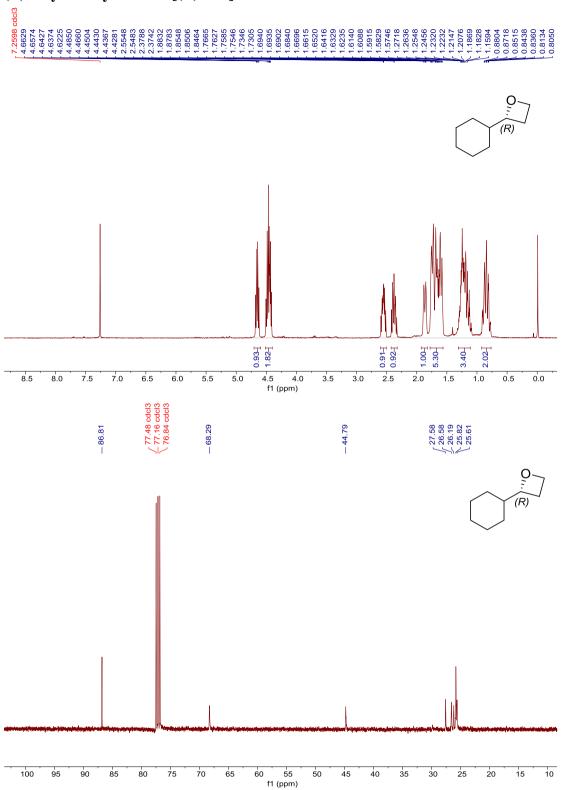


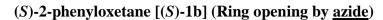


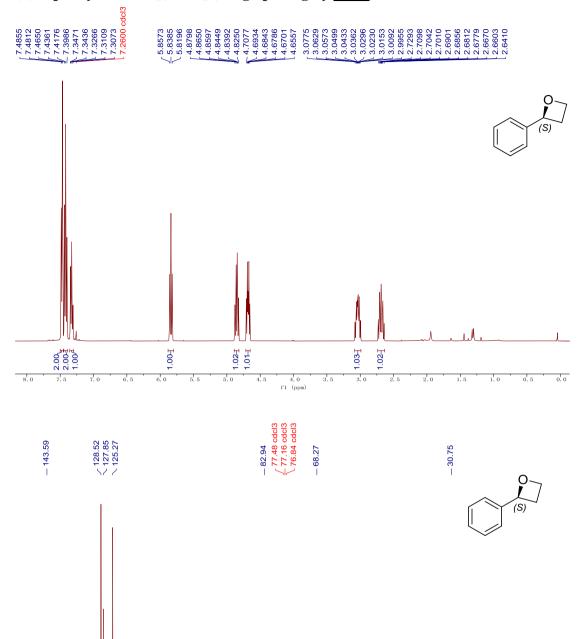
(R)-3-bromo-5-(oxetan-2-yl)pyridine [(R)-18b]

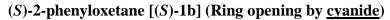


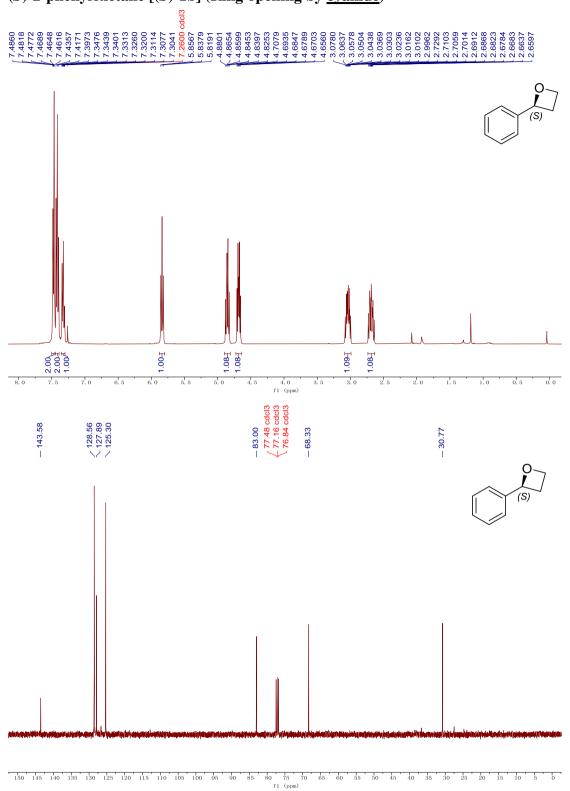


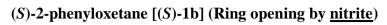

(R)-3-bromo-5-(oxetan-2-yl)pyridine [(R)-19b]

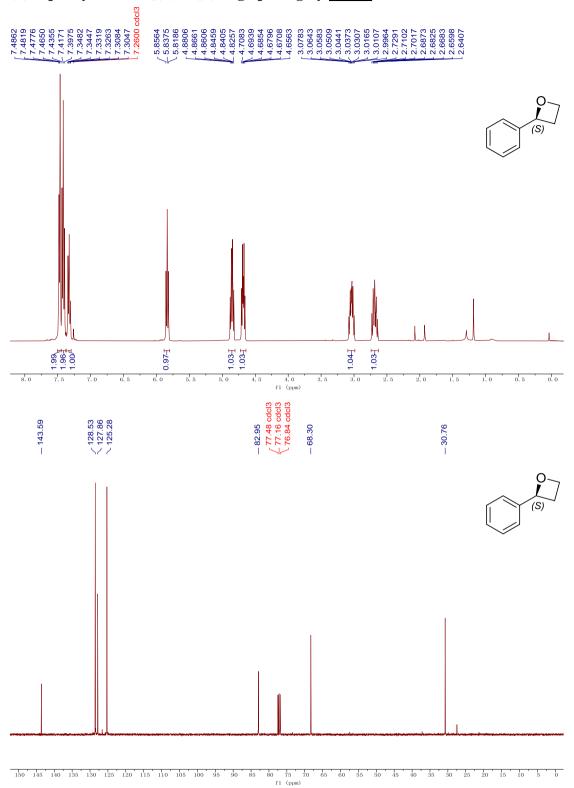


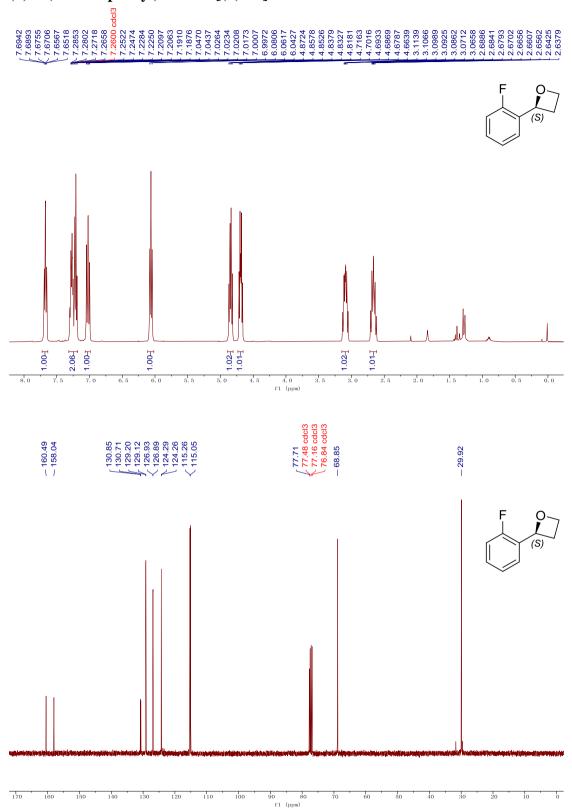


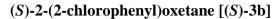


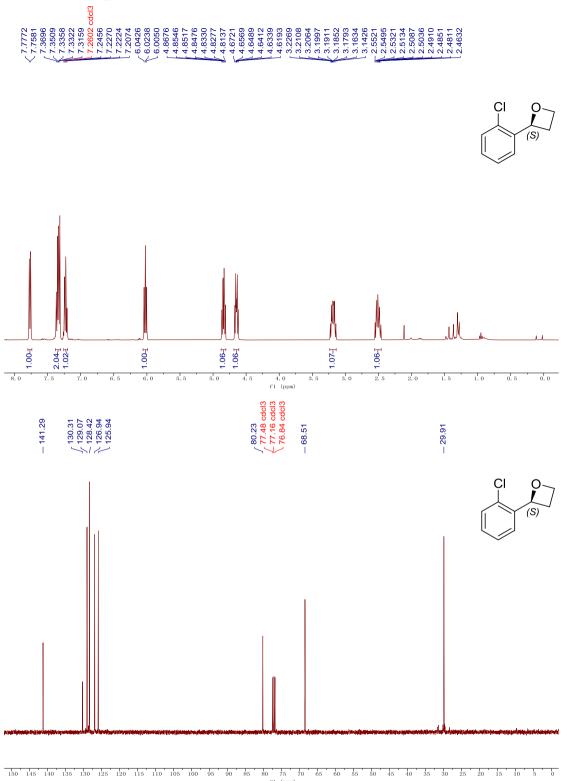


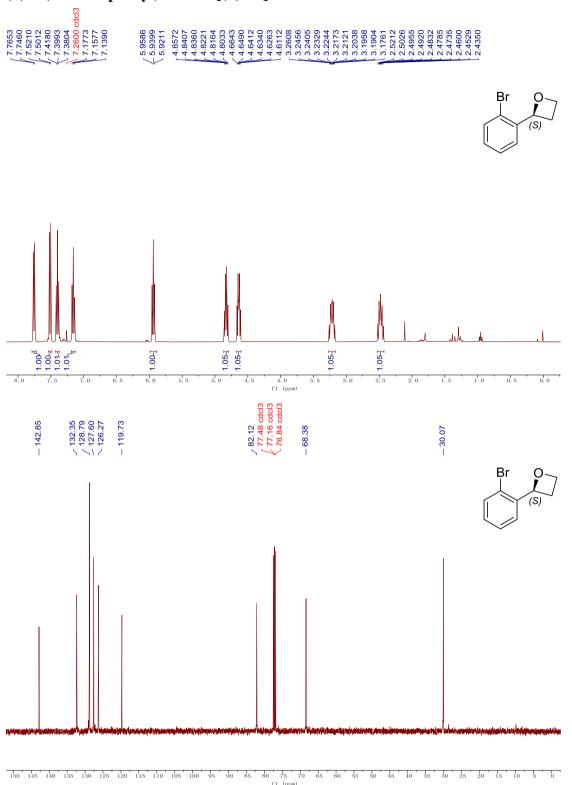


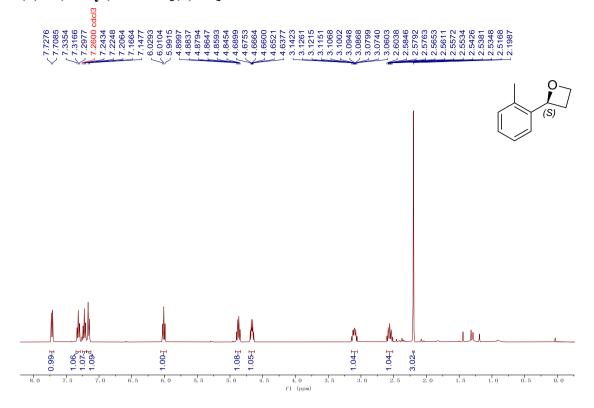


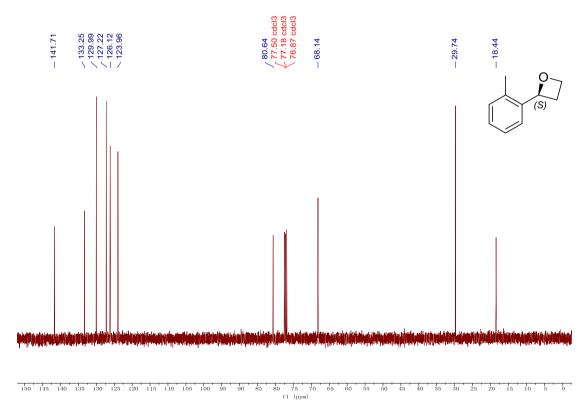


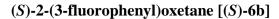


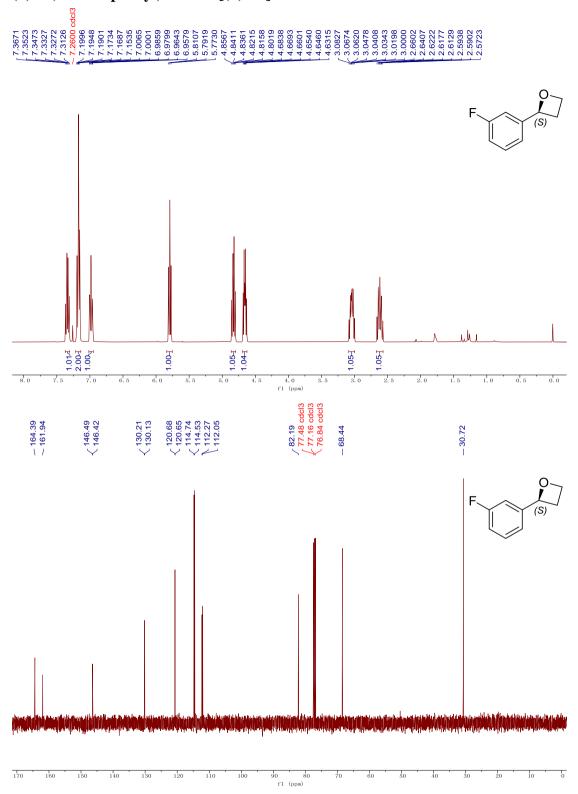


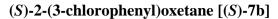

(S)-2-(2-fluorophenyl)oxetane [(S)-2b]

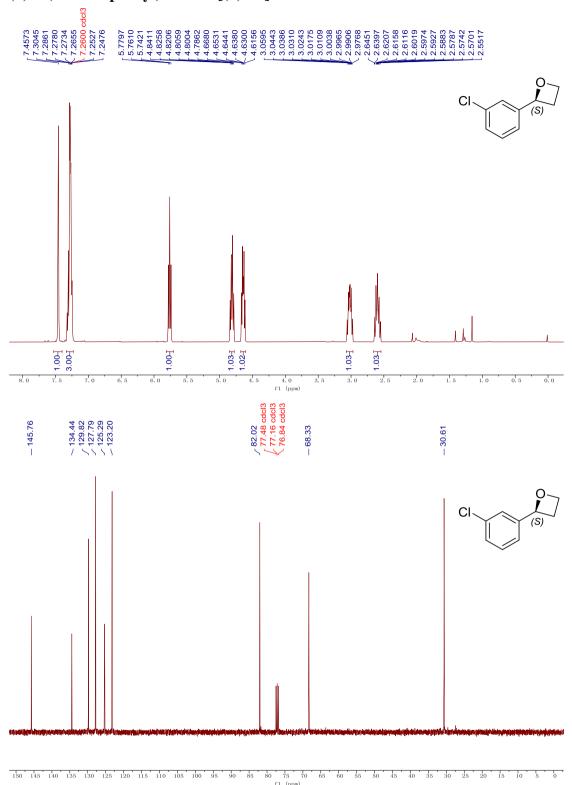


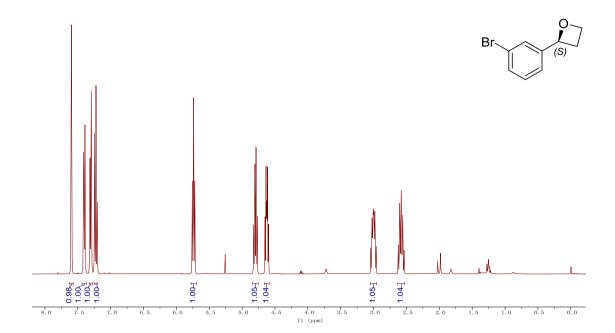


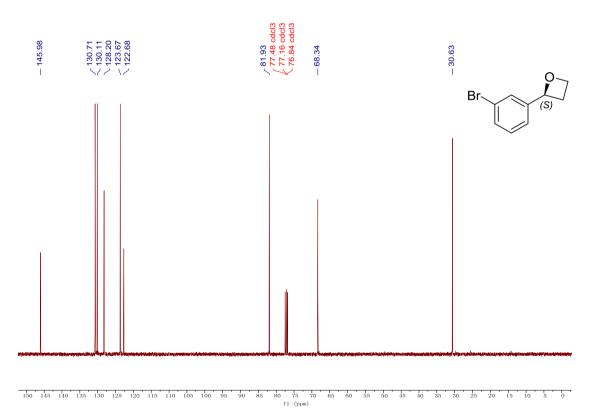

(S)-2-(2-bromophenyl)oxetane [(S)-4b]

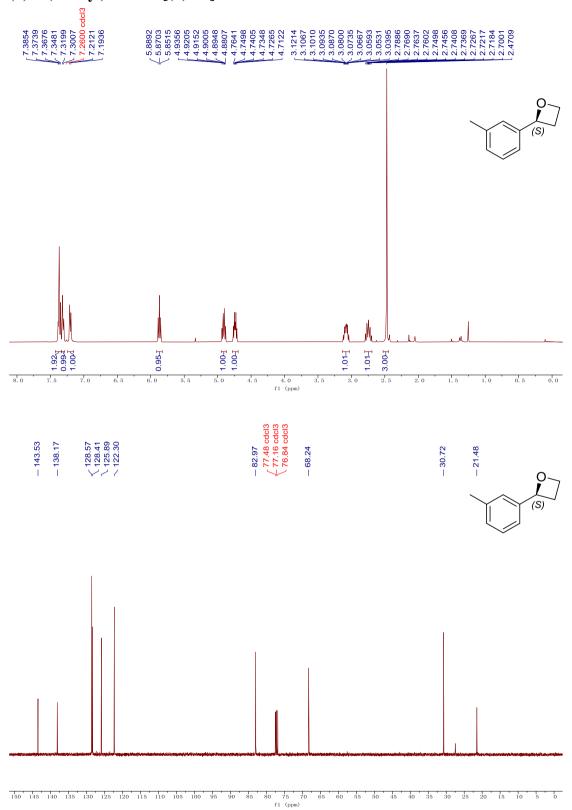


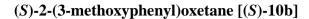


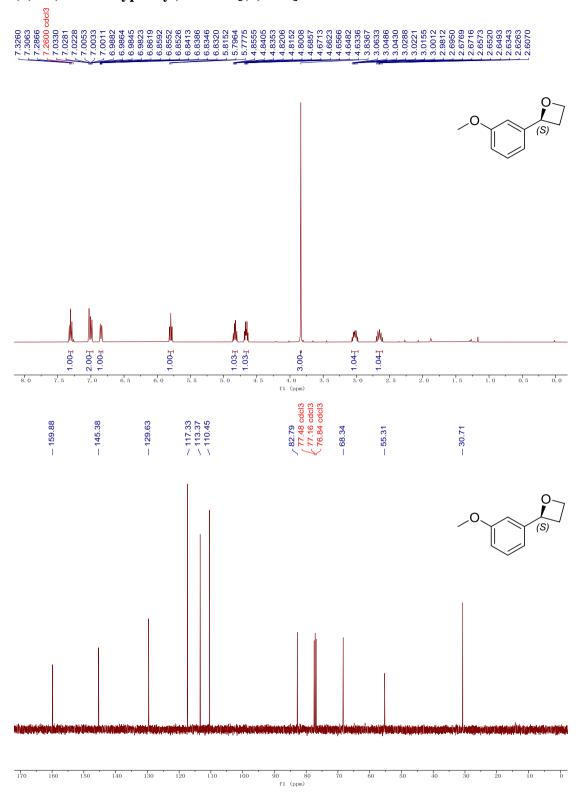


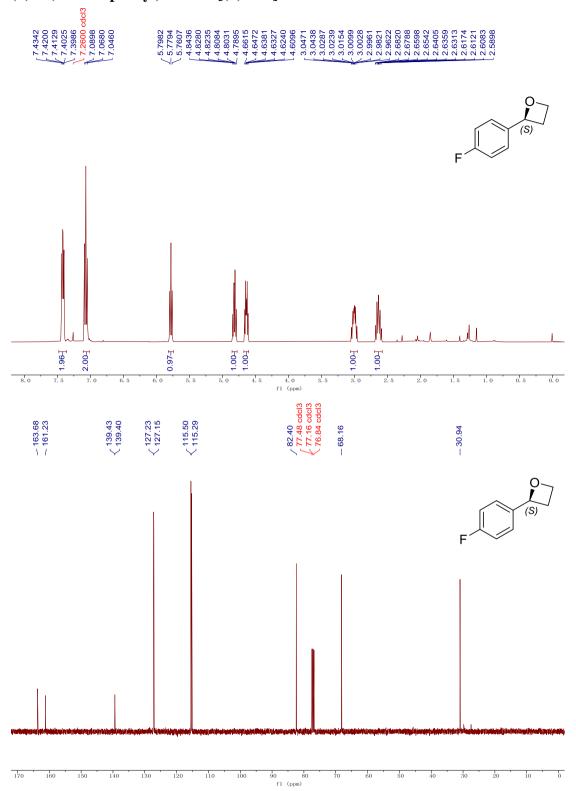


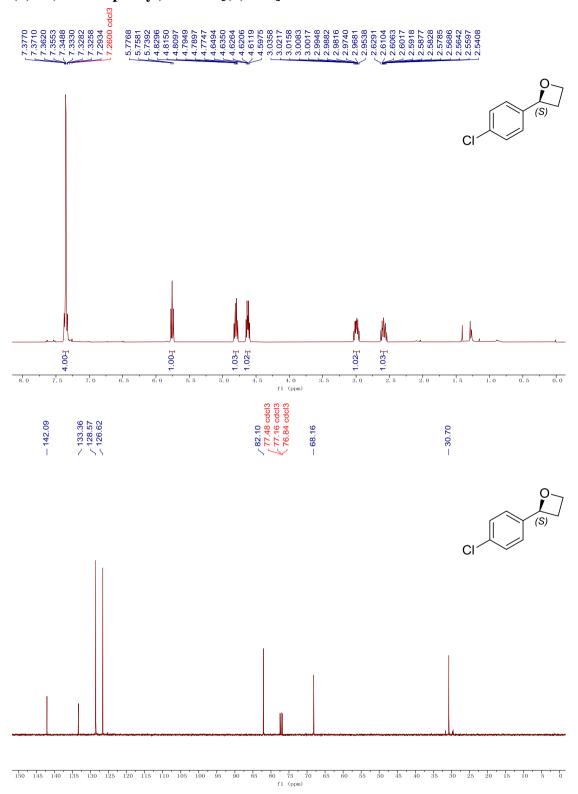


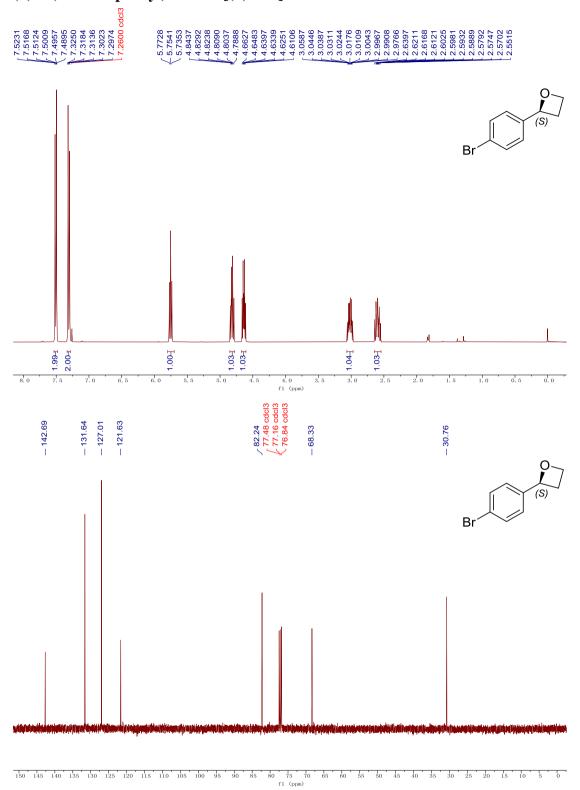

(S)-2-(3-bromophenyl)oxetane [(S)-8b]

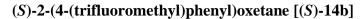


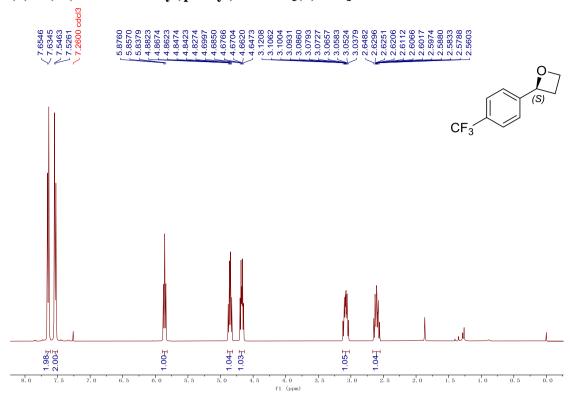


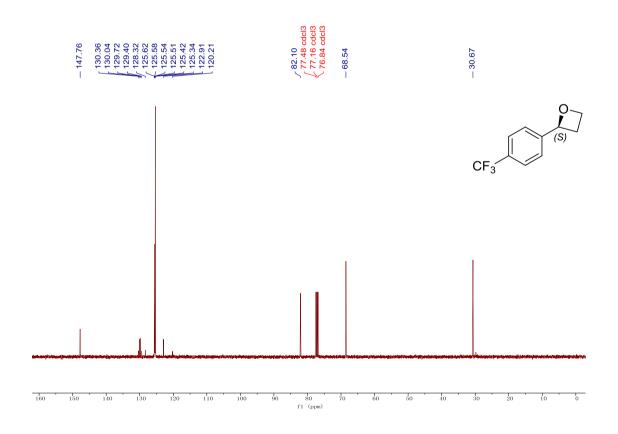




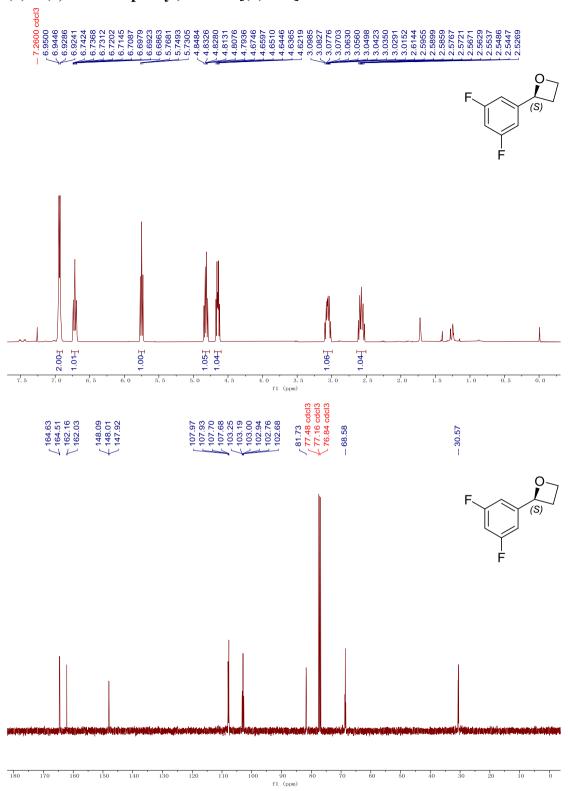


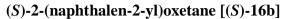


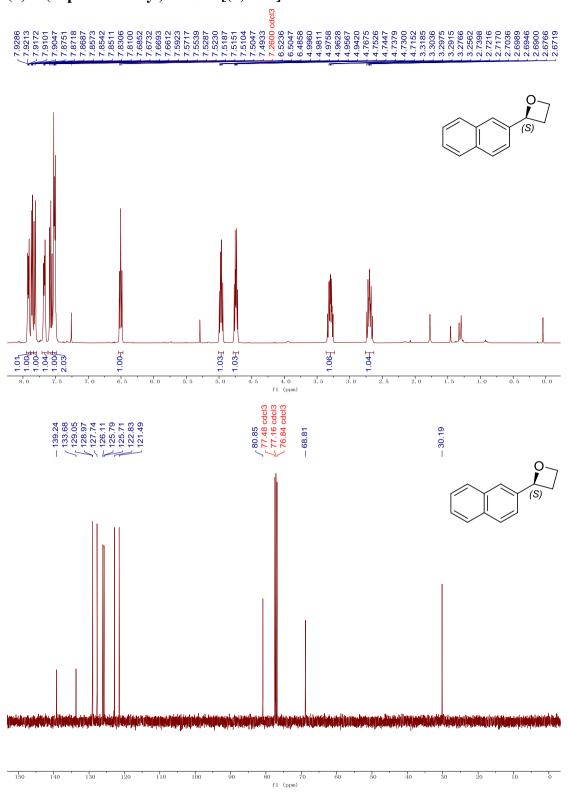

(S)-2-(4-chlorophenyl)oxetane [(S)-12b]

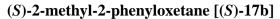


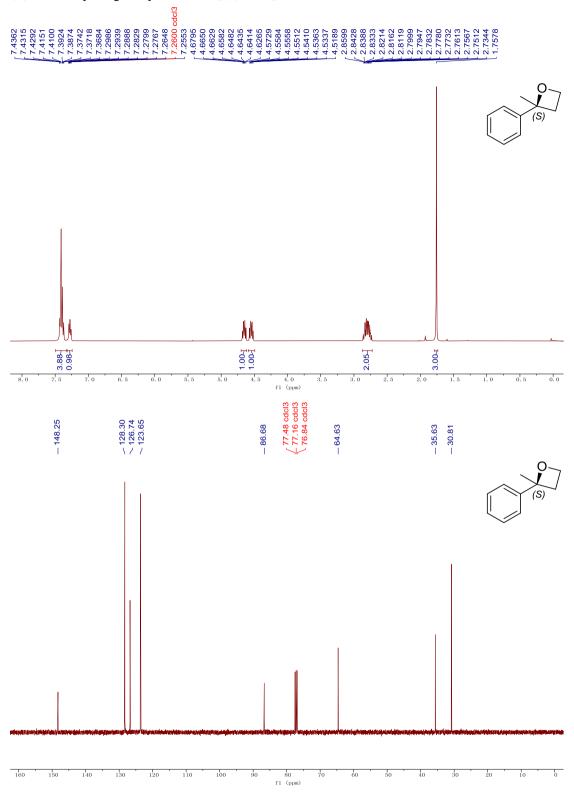
(S)-2-(4-bromophenyl)oxetane [(S)-13b]

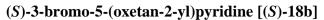


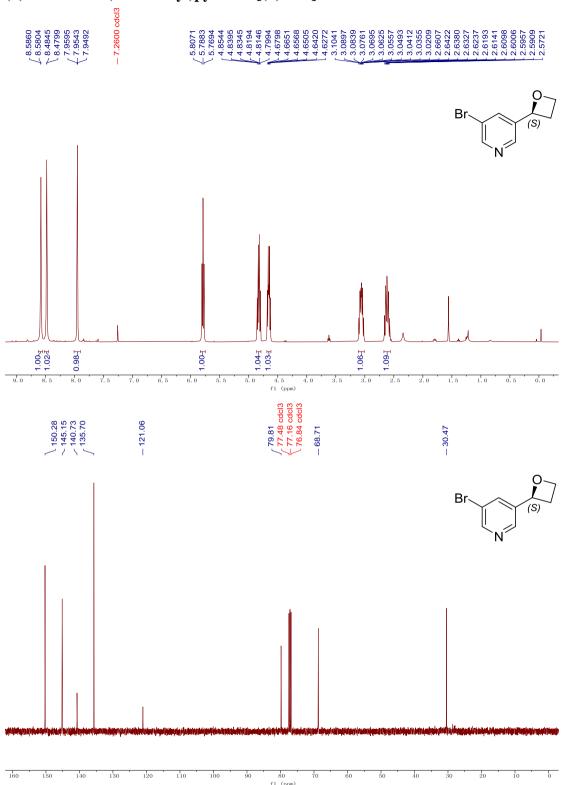


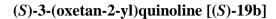


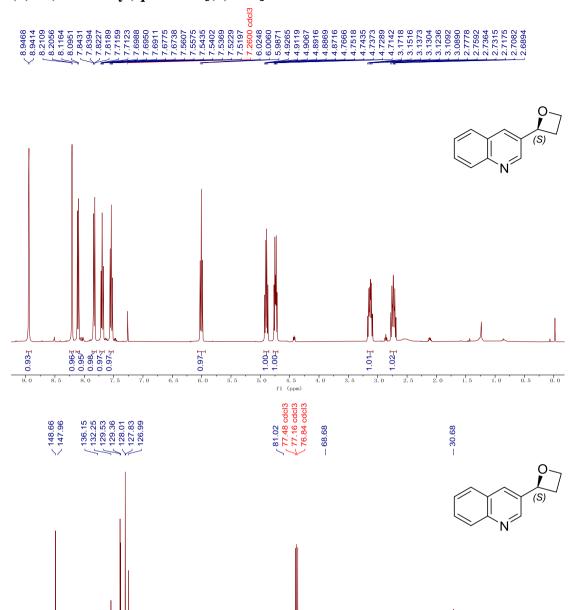


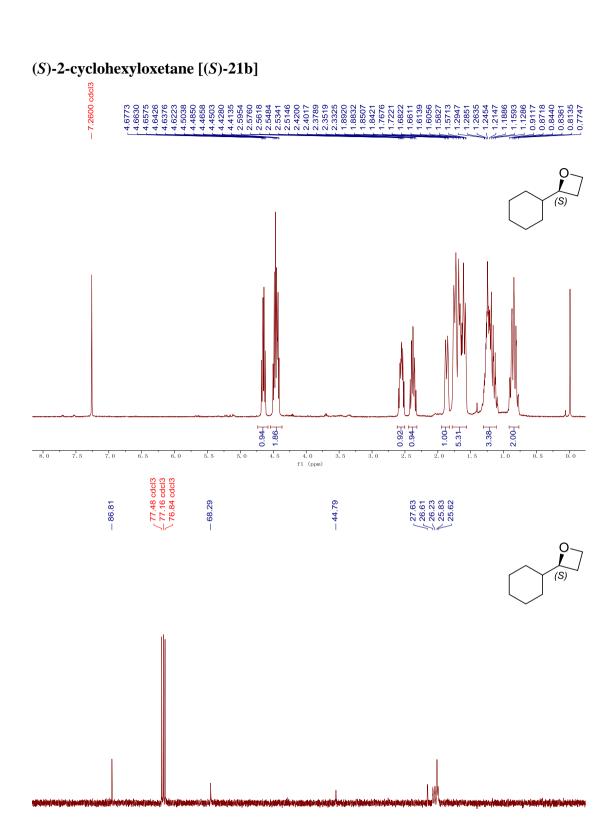

(S)-2-(3,5-difluorophenyl)oxetane [(S)-15b]

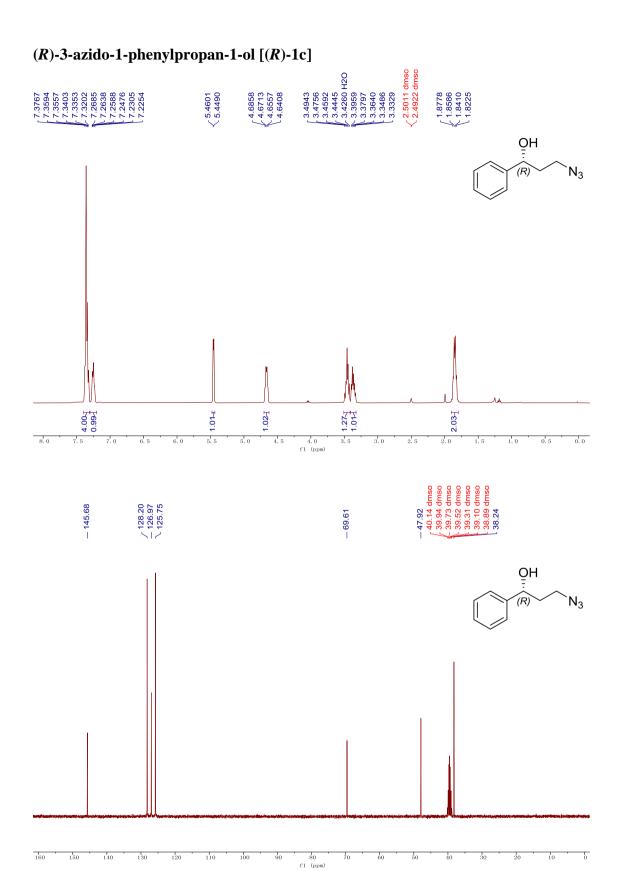


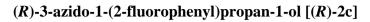


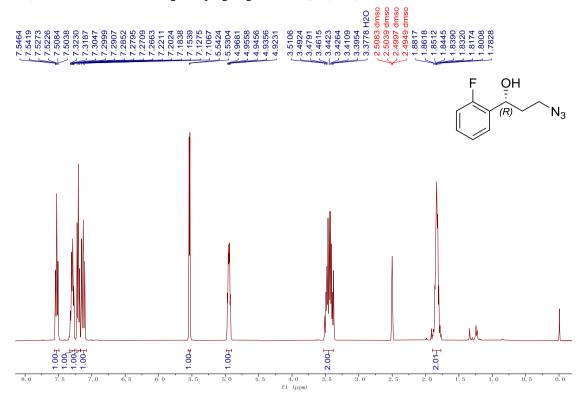


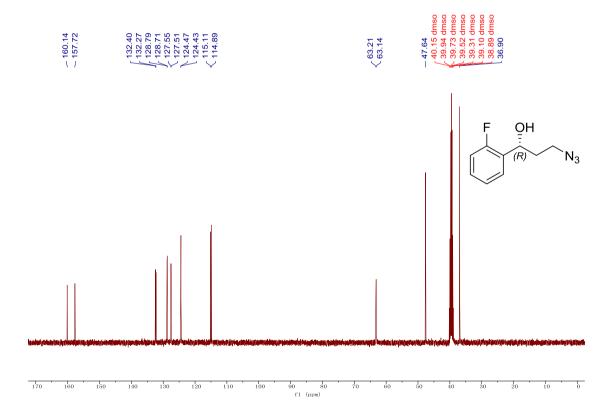


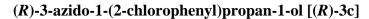


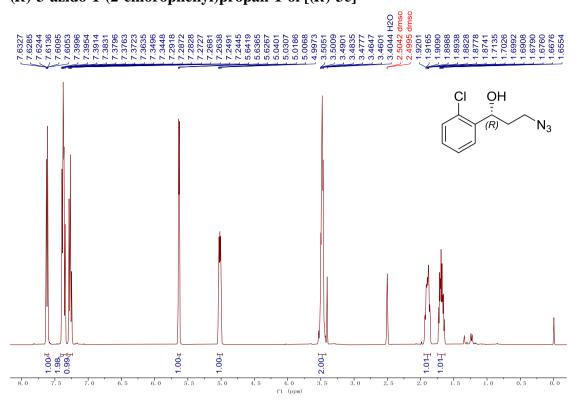


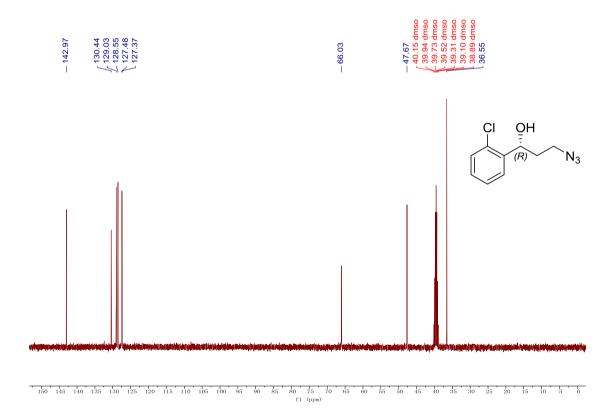


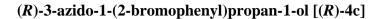

f1 (ppm)

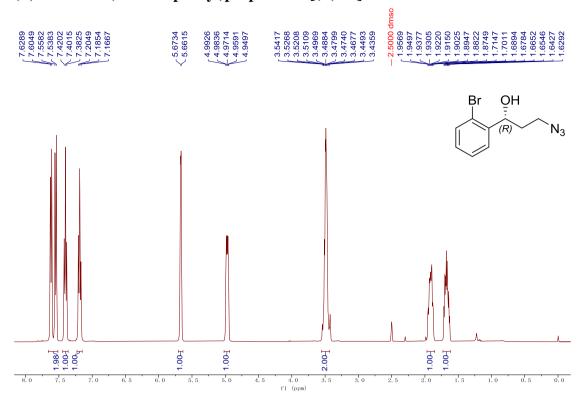


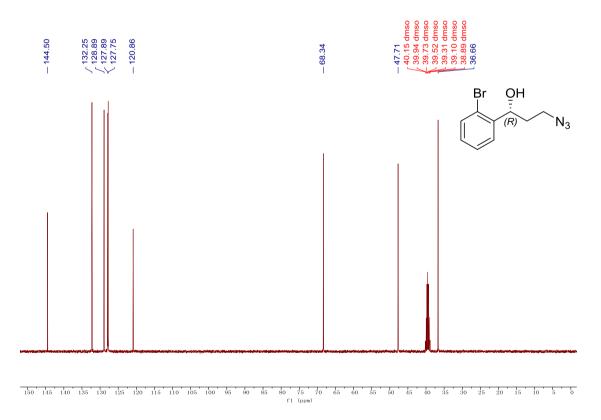

50 f1 (ppm)

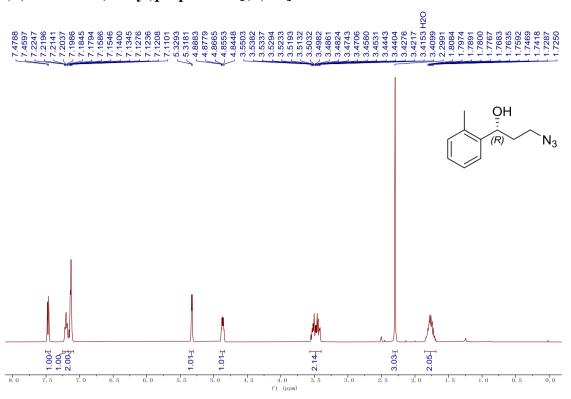


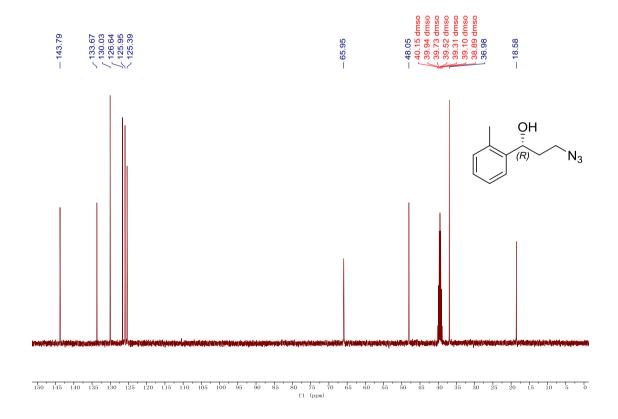


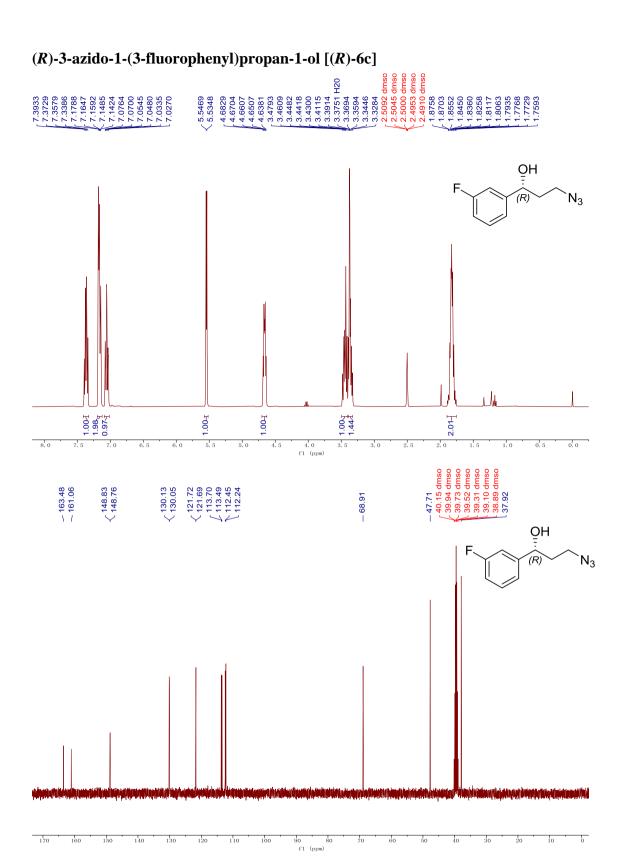




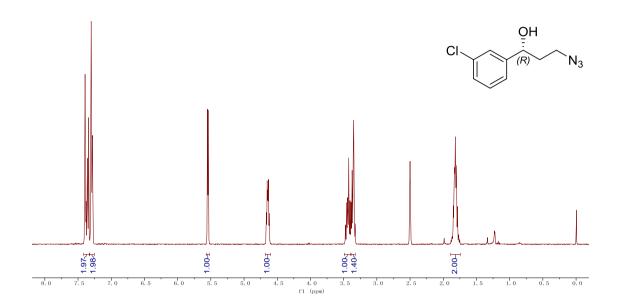


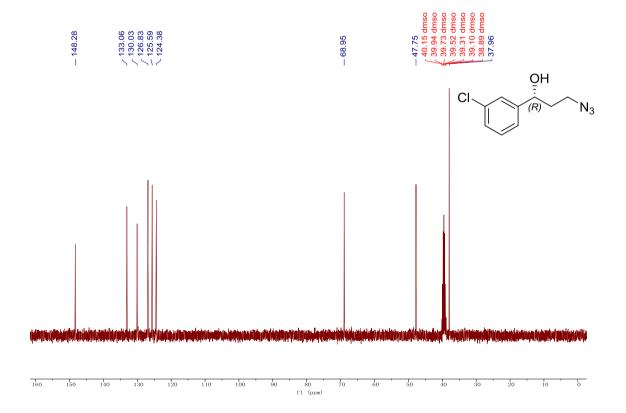


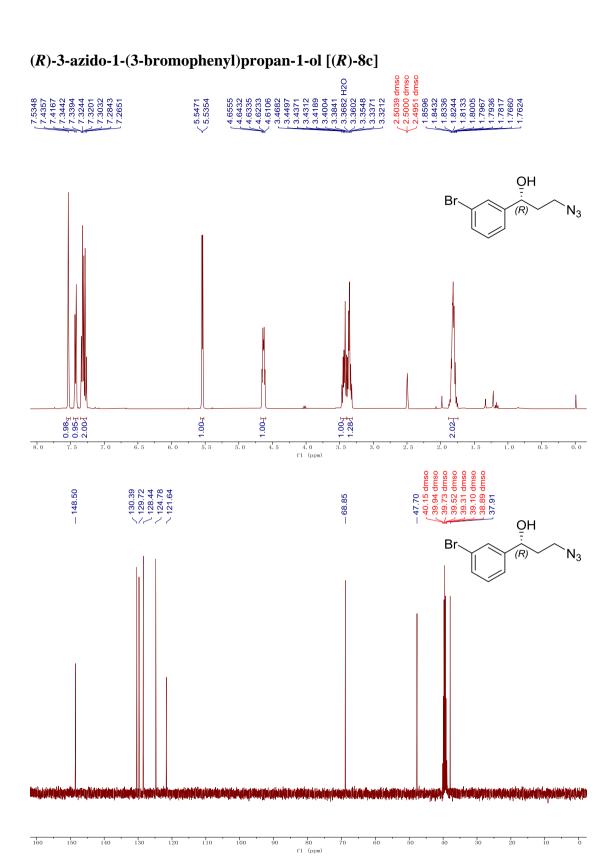


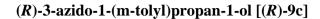


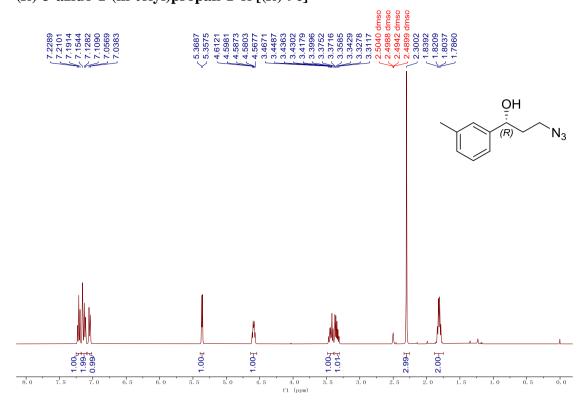


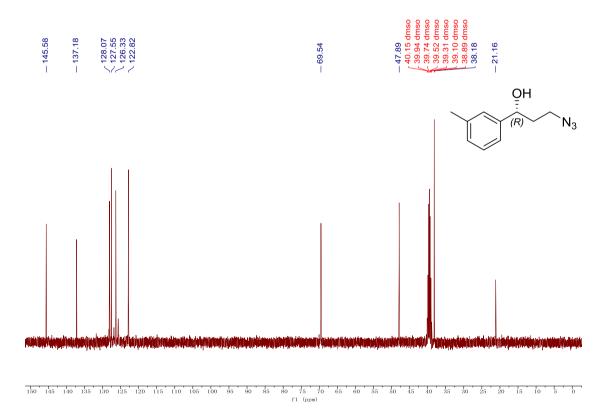


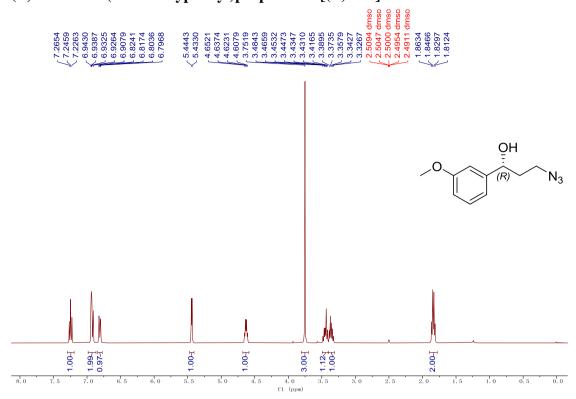


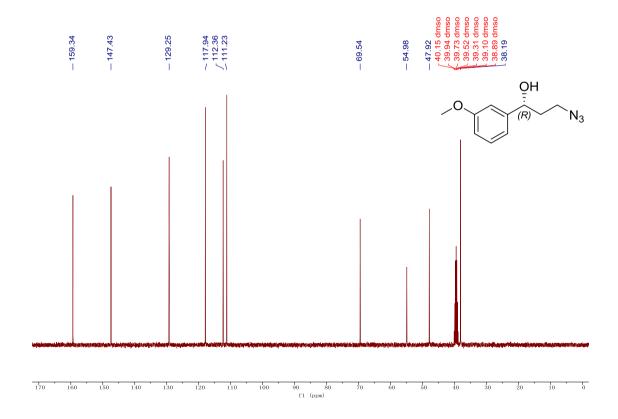


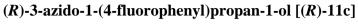


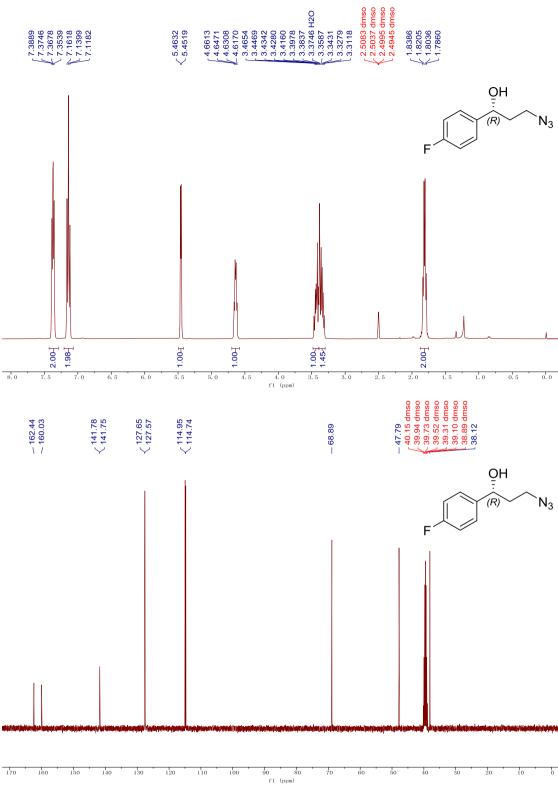


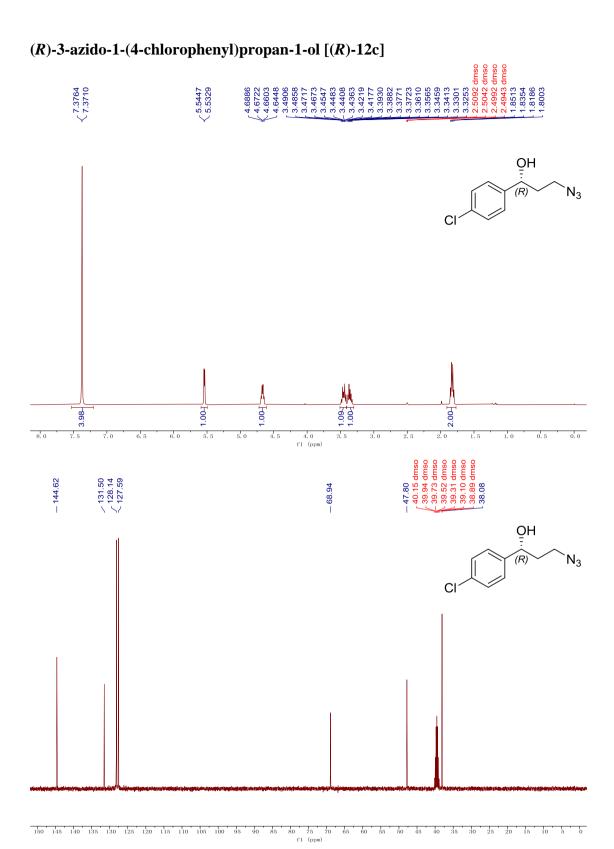




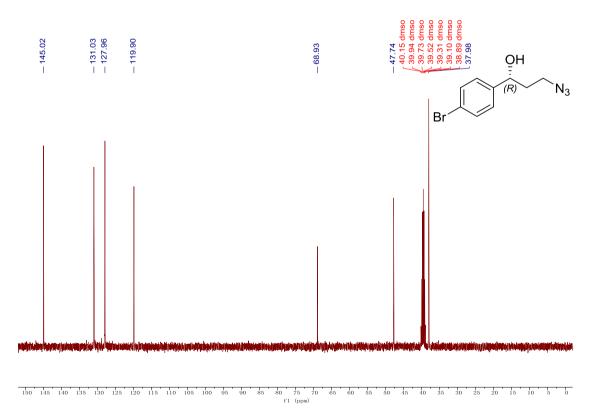


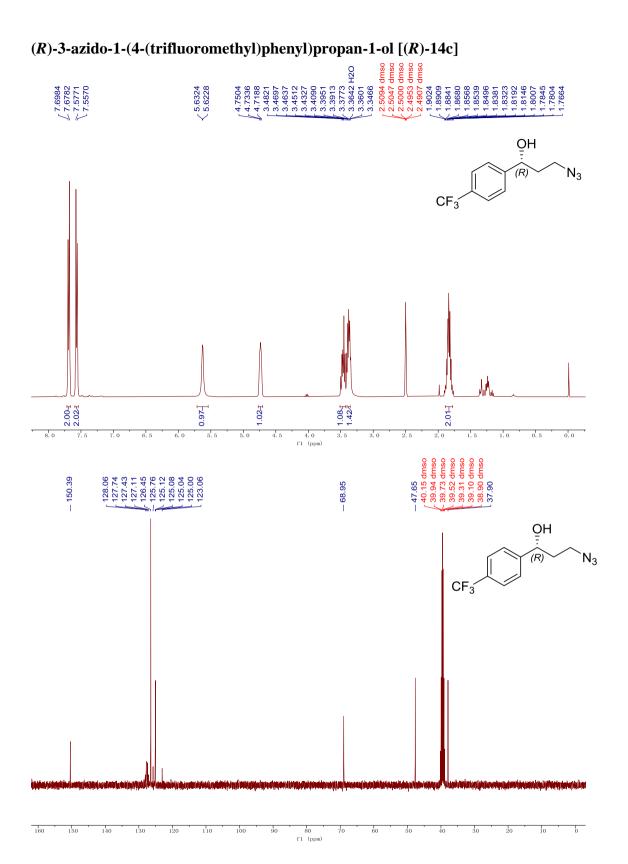


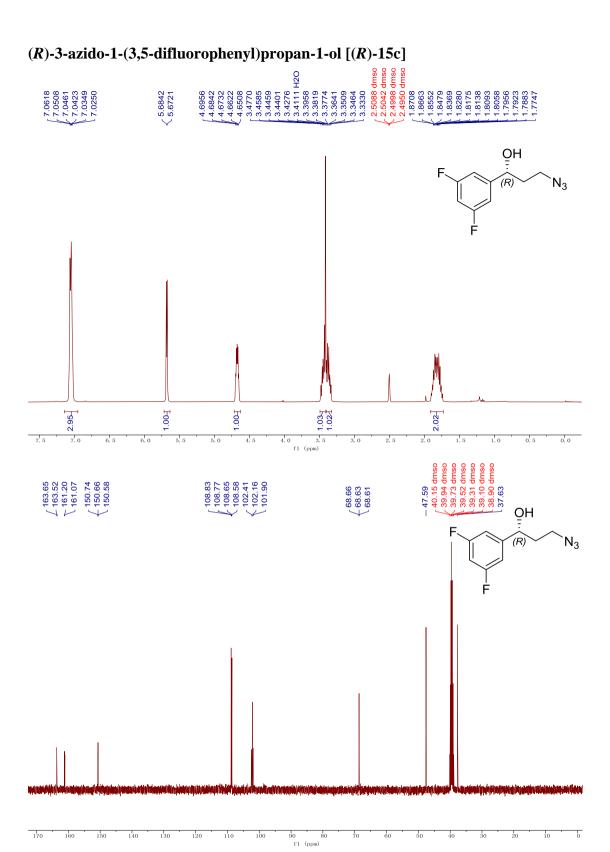


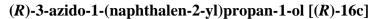


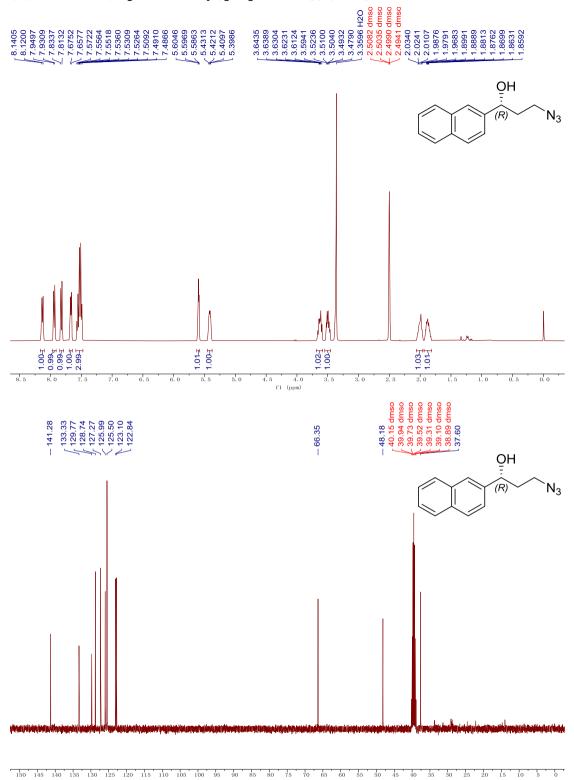


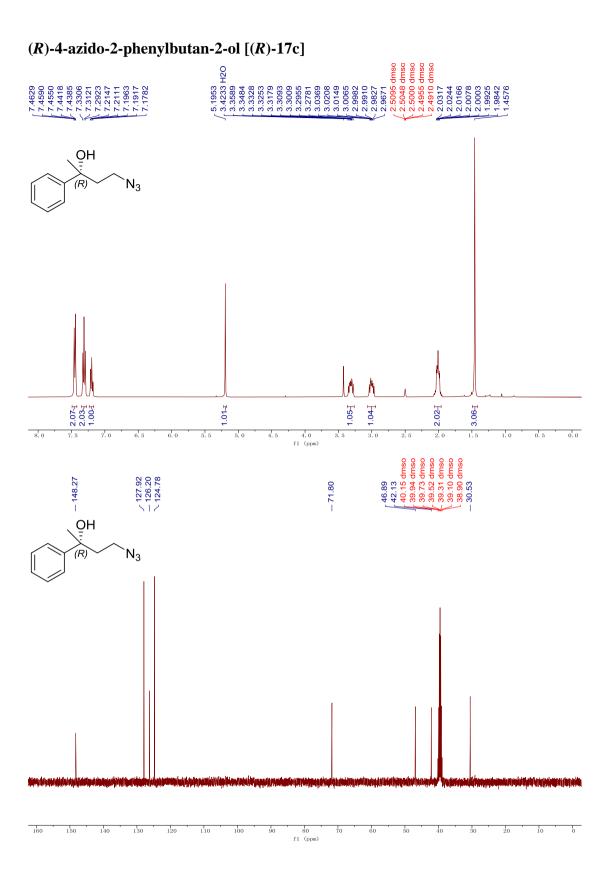


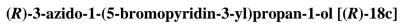


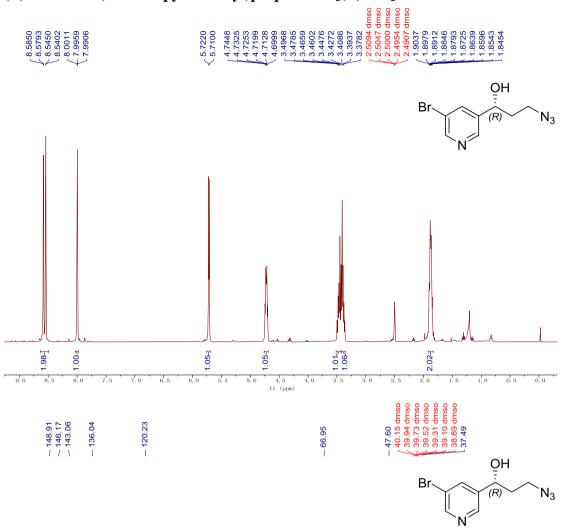


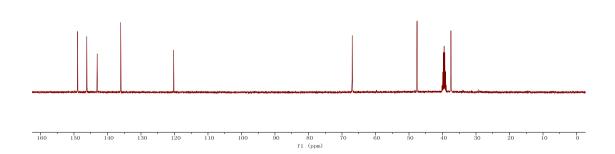

(R)-3-azido-1-(4-bromophenyl)propan-1-ol [(R)-13c]

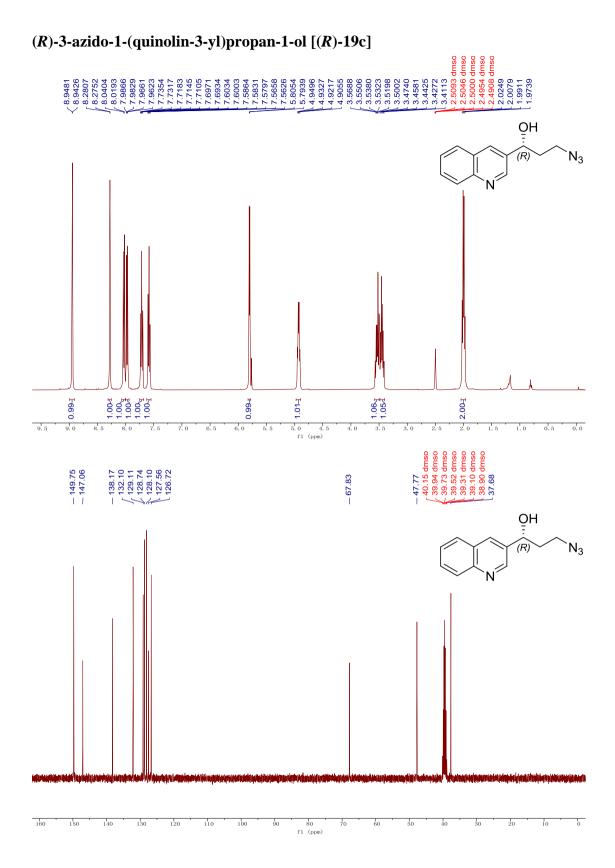


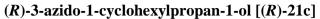


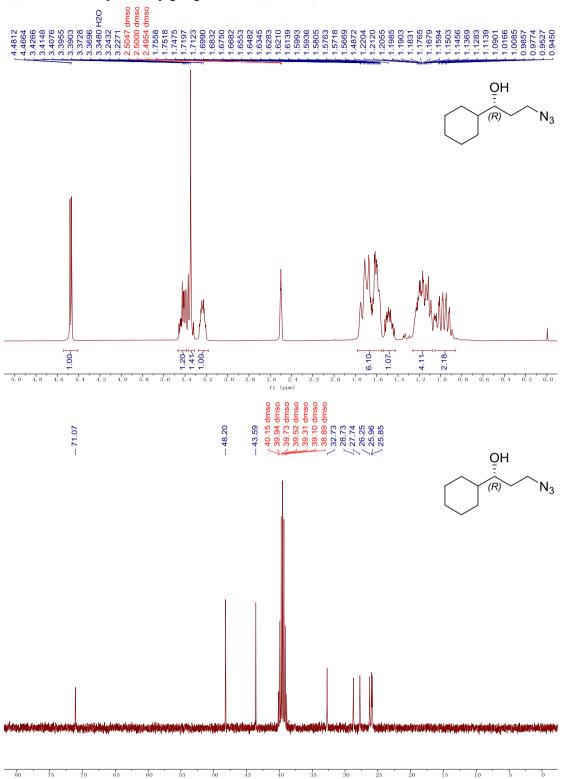


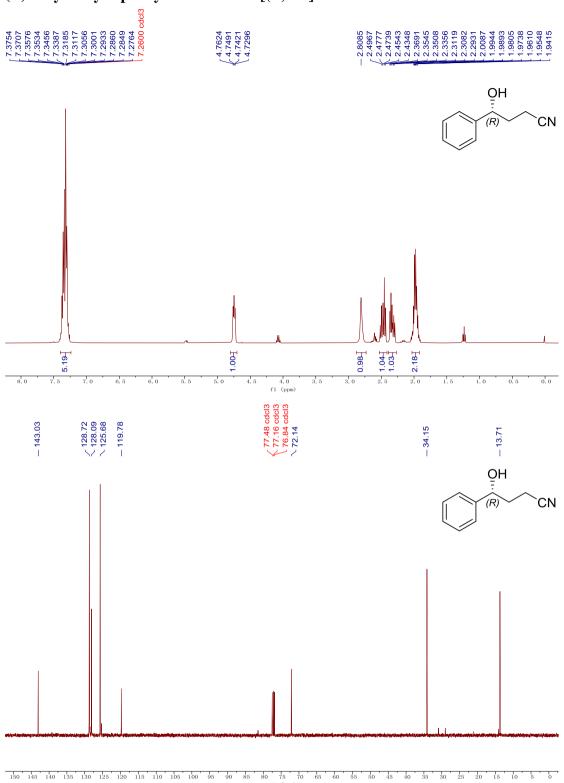


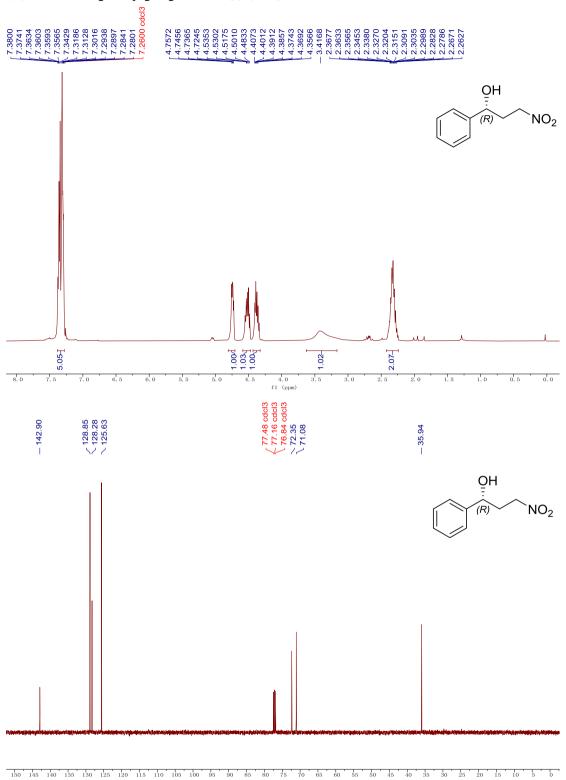


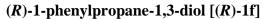


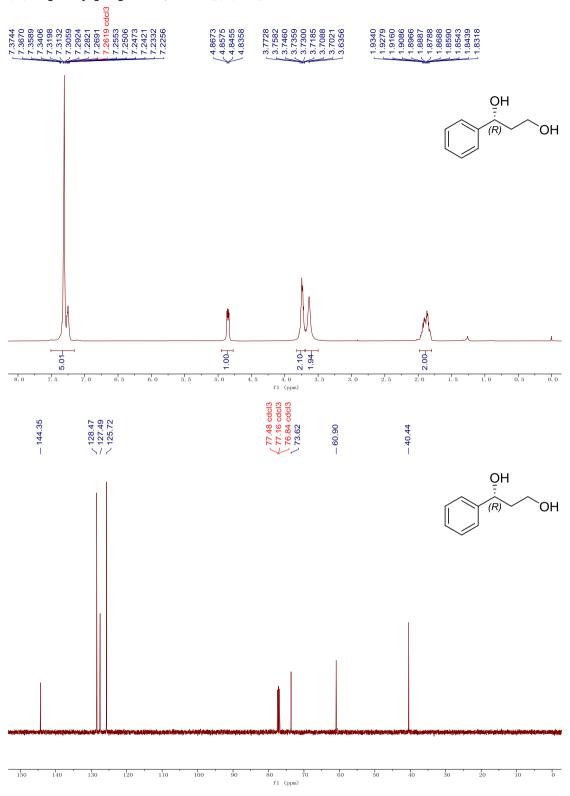


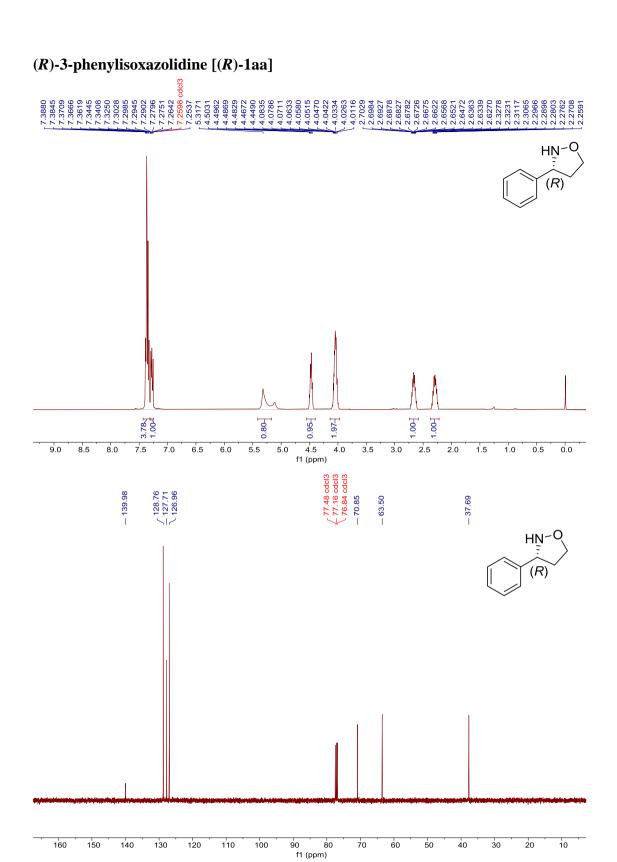


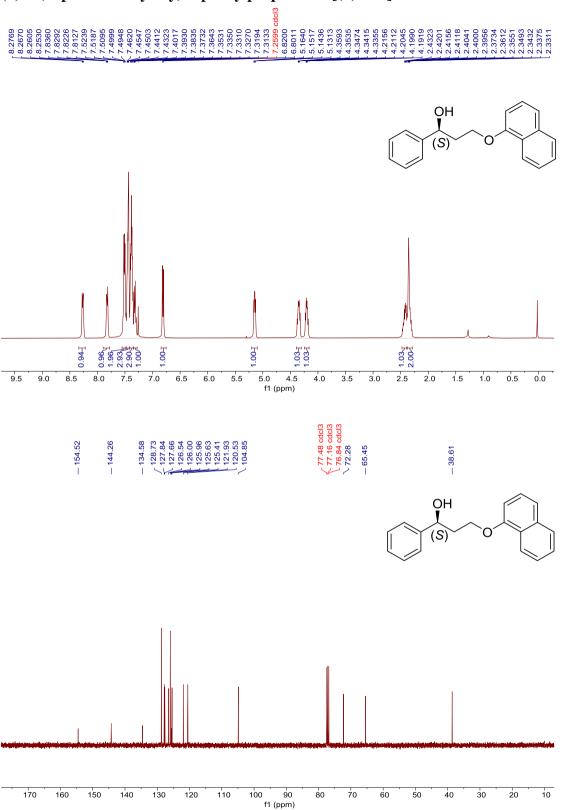


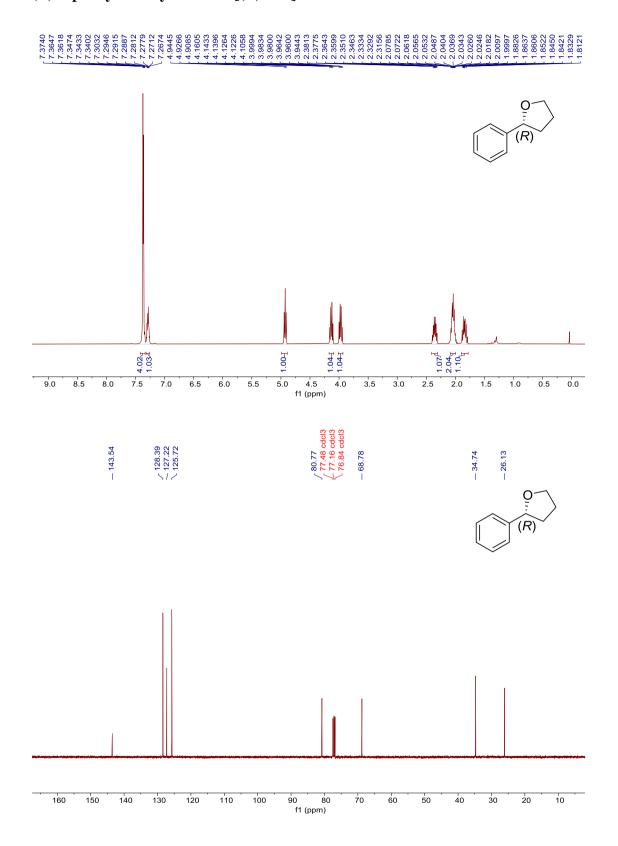




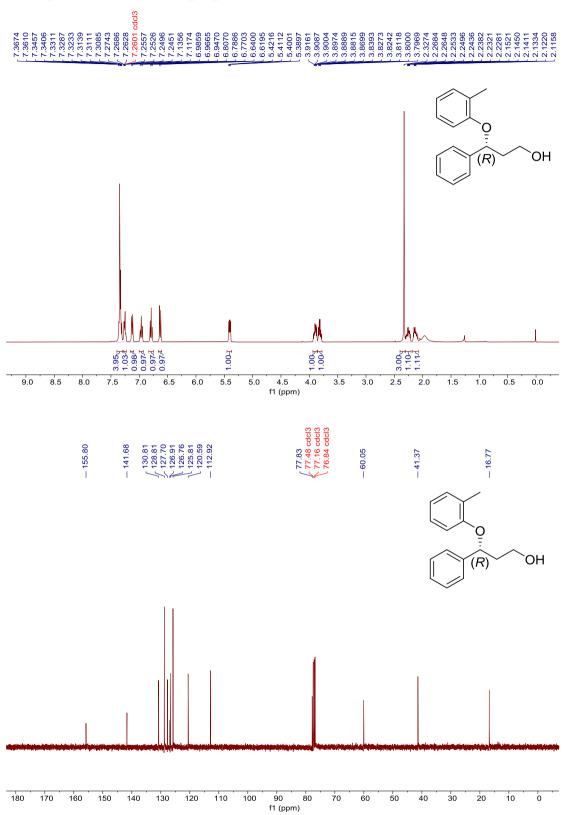


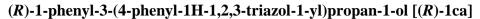


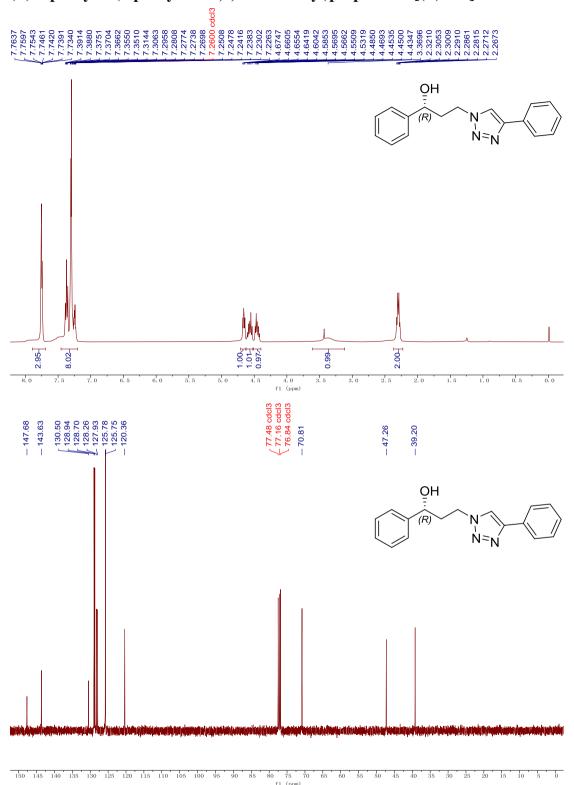


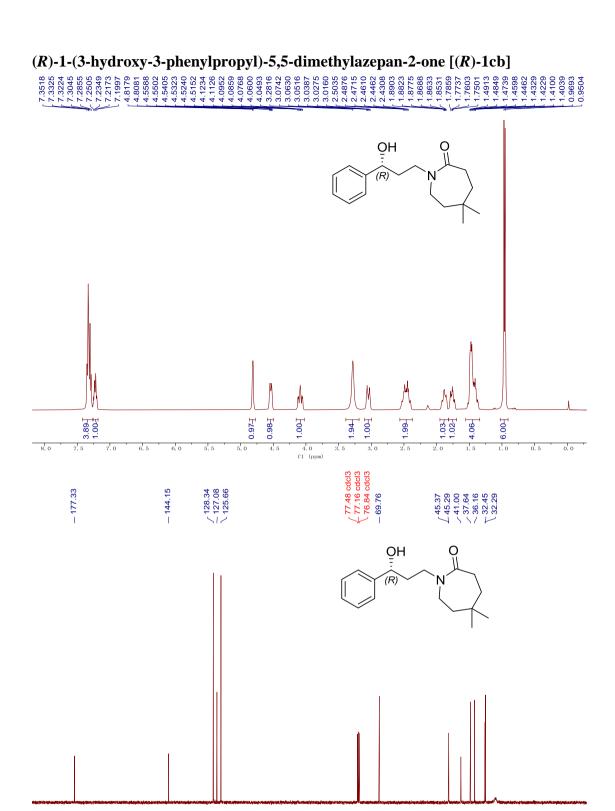


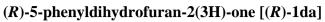


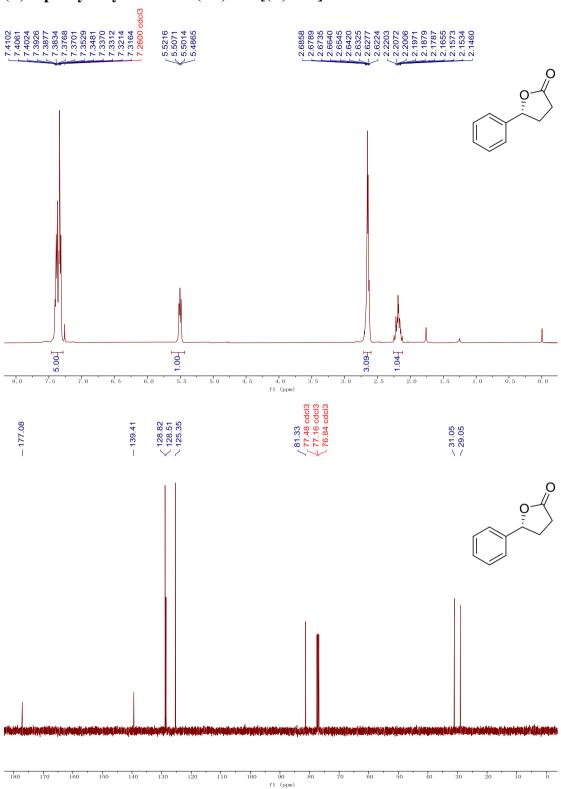

(S)-3-(naphthalen-1-yloxy)-1-phenylpropan-1-ol [(S)-1ab]



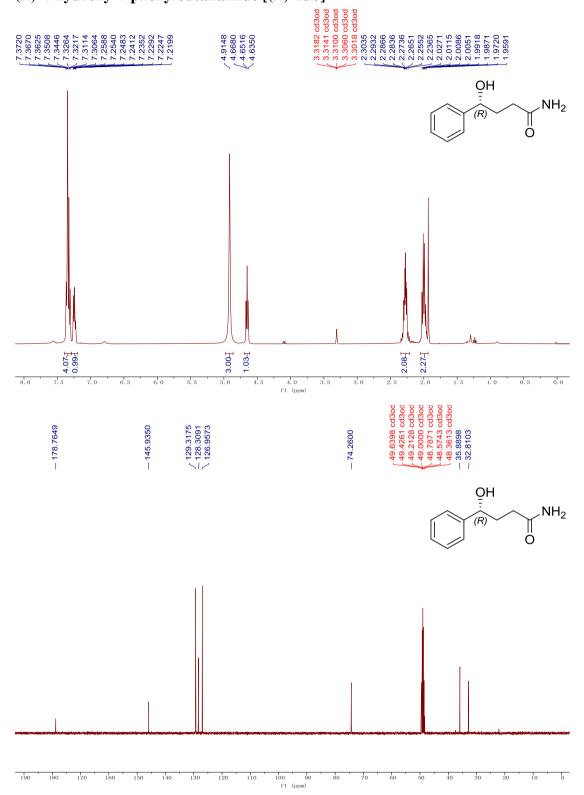

(R)-2-phenyltetrahydrofuran [(R)-1ba]



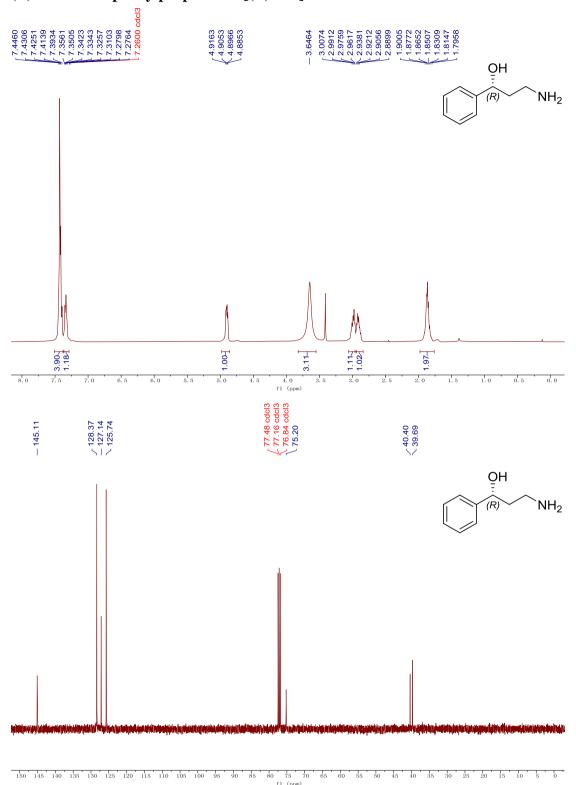


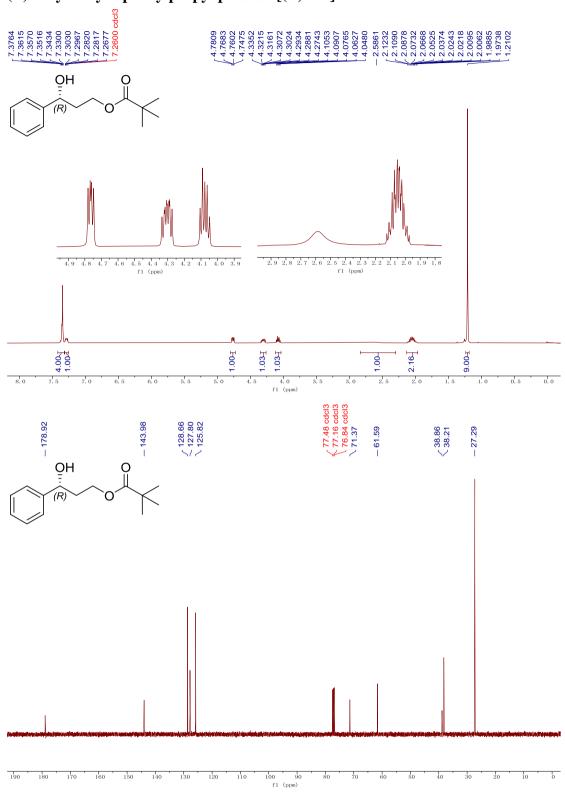


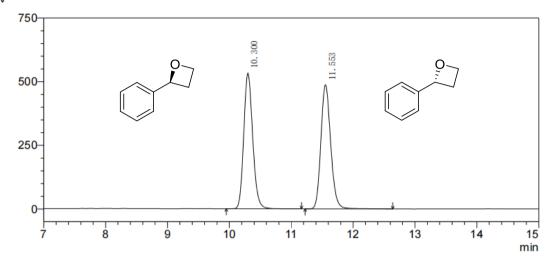
100 90 f1 (ppm) 40


120

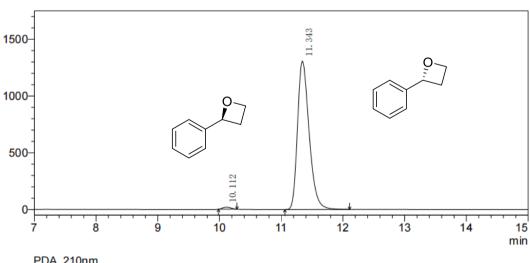
150







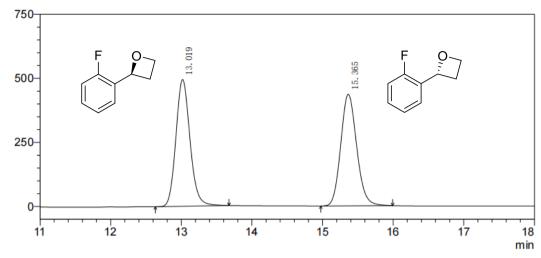
11. Chiral HPLC/GC Traces


Chemical synthesized (rac)-1b

mV

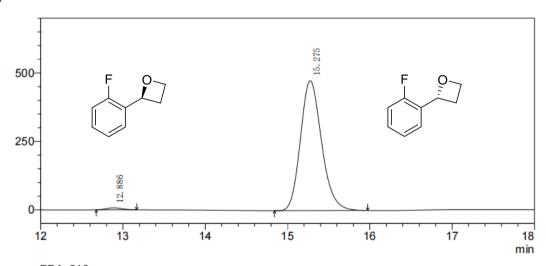
PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	10.300	5360586	532422	49.946			
2	11.553	5372125	487092	50.054			

Enzymatic synthesized (R)-1b



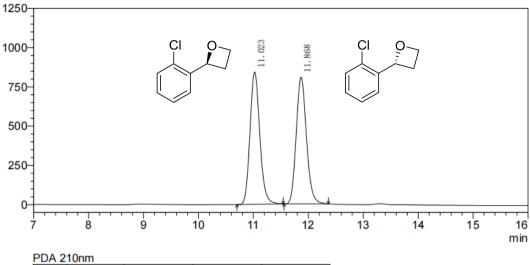
1	PDA ZTORIII							
	ID#	Rt. Time	Area	Height	Area %			
	1	10.112	167593	17743	0.969			
	2	11.343	17132548	1306991	99.031			

Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 10.1$ min, $t_{(R)} = 11.3$ min.


Chemical synthesized (rac)-2b

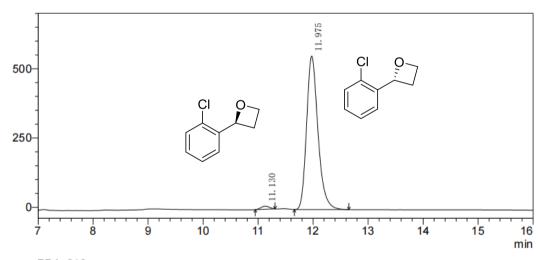
PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	13.019	6873612	494730	50.145			
2	15.365	6833943	435465	49.855			

Enzymatic synthesized (R)-2b



PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	12.886	97710	7238	1.141			
2	15.275	8467016	474839	98.859			

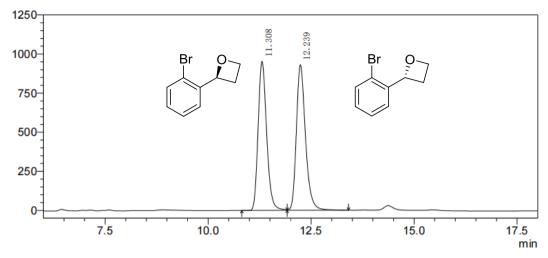
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 12.9$ min, $t_{(R)} = 15.3$ min.


Chemical synthesized (rac)-3b

mV

PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	11.023	10477966	842802	50.015			
2	11.868	10471835	807073	49.985			

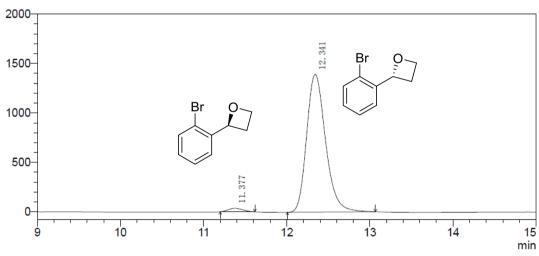
Enzymatic synthesized (R)-3b



PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	11.130	118531	10775	1.463				
2	11.975	7981297	553990	98.537				

Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 11.1 min, $t_{(R)}$ = 12.0 min.

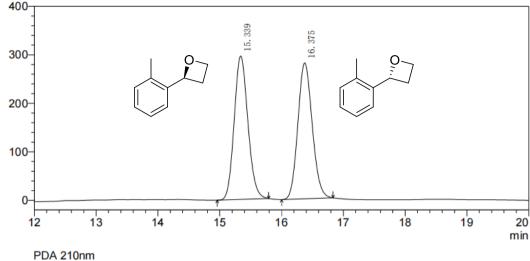
Chemical synthesized (rac)-4b


mV

PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	11.308	13680017	952846	48.911			
2	12.239	14289030	930444	51.089			

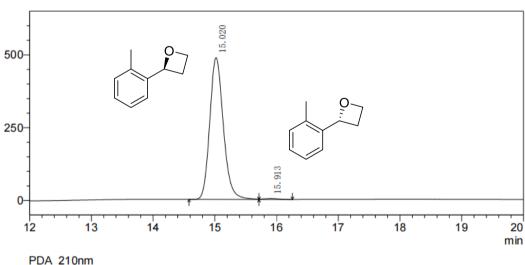
Enzymatic synthesized (R)-4b

m۷



PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	11.377	435422	35585	1.935			
2	12.341	22070085	1395365	98.065			

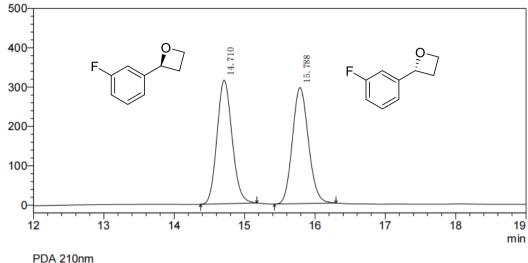
Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 11.4$ min, $t_{(R)} = 12.3$ min.


Chemical synthesized (rac)-5b

mV

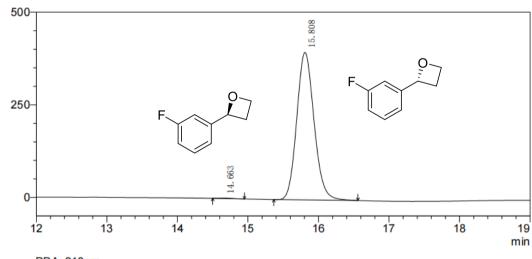
Н	PDA 210nm							
	ID#	Rt. Time	Area	Height	Area %			
	1	15.339	4557692	295629	50.171			
	2	16.375	4526543	280296	49.829			

Enzymatic synthesized (*R*)-**5b**



ŀ	PDA 210nm							
Γ	ID#	Rt. Time	Area	Height	Area %			
Γ	1	15.020	7469458	486657	99.376			
	2	15.913	46869	2909	0.624			

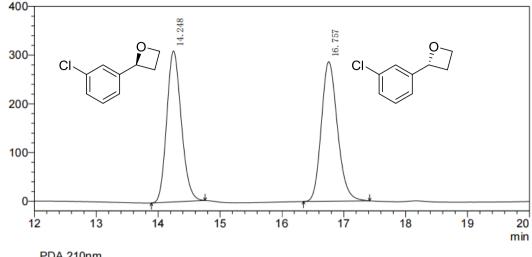
Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(R)} = 15.0$ min, $t_{(S)} = 15.9$ min.


Chemical synthesized (rac)-6b

mV

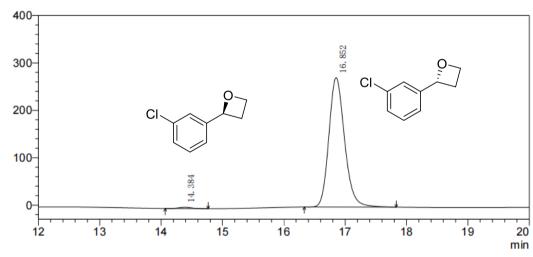
PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	14.710	4685654	314313	50.058			
2	15.788	4674777	294836	49.942			

Enzymatic synthesized (R)-6b



PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	14.663	13409	987	0.197			
2	15.808	6797786	398108	99.803			

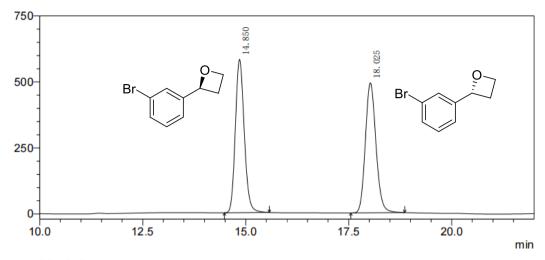
Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.7$ min, $t_{(R)} = 15.8$ min.


Chemical synthesized (rac)-7b

mV

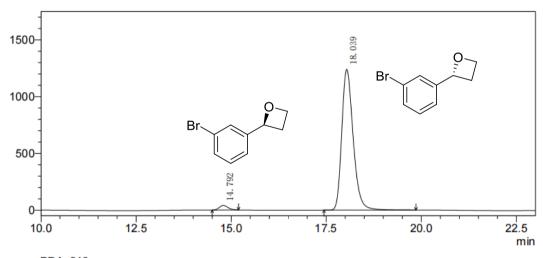
PDA 210nm					
ID#	Rt. Time	Area	Height	Area %	
1	14.248	5071931	309698	49.402	
2	16.757	5194628	286570	50.598	

Enzymatic synthesized (*R*)-**7b**



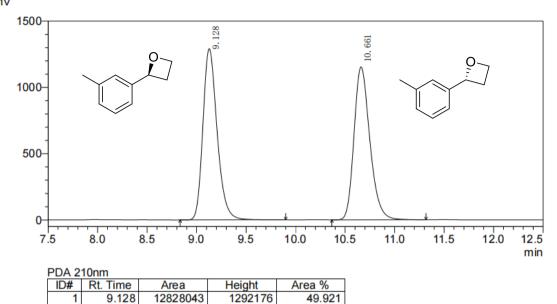
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	14.384	38653	2672	0.789		
2	16.852	4862444	272960	99.211		

Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.4$ min, $t_{(R)} = 16.9$ min.


Chemical synthesized (rac)-8b

mV

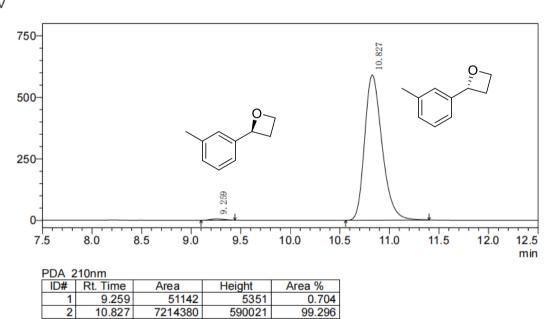
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	14.850	8738172	580656	49.772		
2	18.025	8818386	492475	50.228		


Enzymatic synthesized (*R*)-**8b**

PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	14.792	651484	40578	2.453		
2	18.039	25907514	1240476	97.547		

Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.8$ min, $t_{(R)} = 18.0$ min.

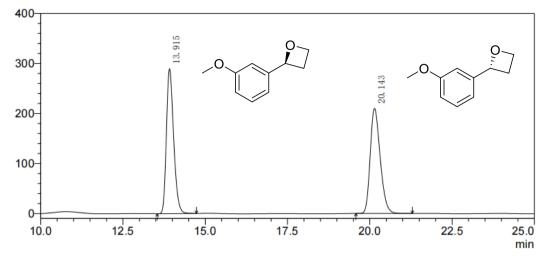
Chemical synthesized (rac)-**9b** mV


1153061

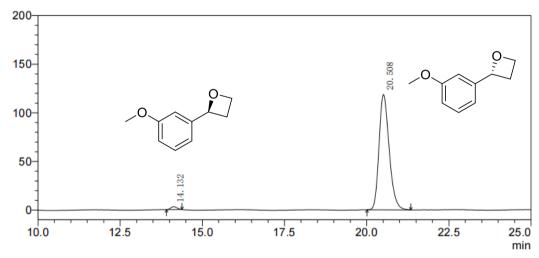
50.079

Enzymatic synthesized (R)-**9b** mV

10.661


12868475

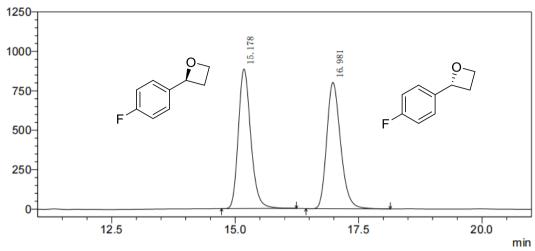
Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 9.3$ min, $t_{(R)} = 10.8$ min.


Chemical synthesized (rac)-10b

mV

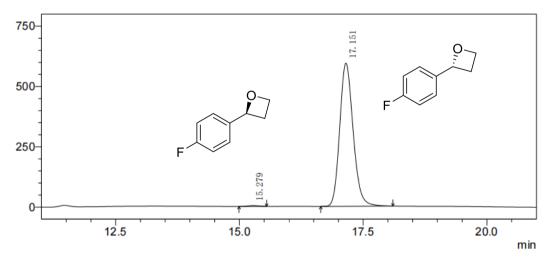
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	13.915	4392816	289673	49.937		
2	20.143	4403967	210165	50.063		

Enzymatic synthesized (R)-10b

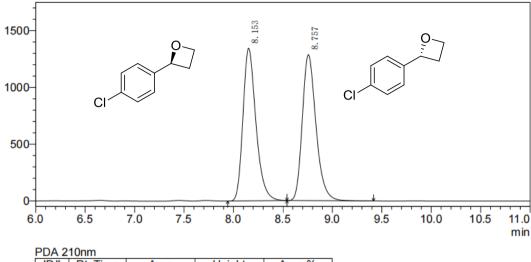


PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	14.132	39118	2913	1.512		
2	20.508	2547915	118524	98.488		

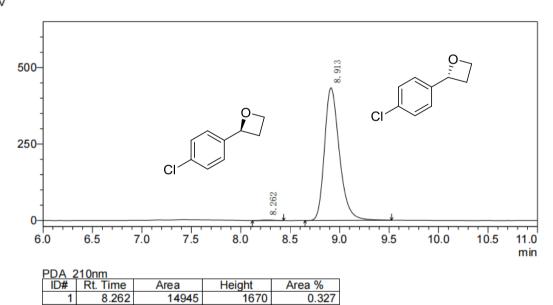
Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.1$ min, $t_{(R)} = 20.5$ min.


Chemical synthesized (rac)-11b

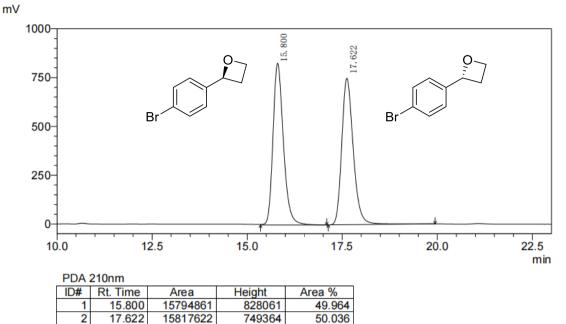
PDA				
ID#	Rt. Time	Area	Height	Area %
1	15.178	15574056	884420	49.968
2	16.981	15594051	800141	50.032


Enzymatic synthesized (R)-11b

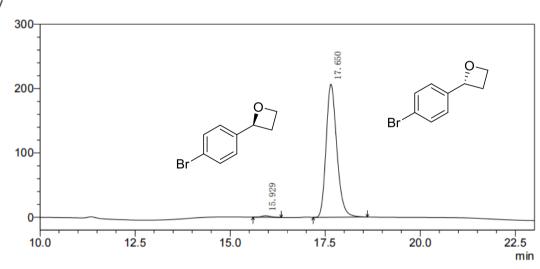
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	15.279	53961	3636	0.481		
2	17.151	11156067	593498	99.519		


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 15.3 min, $t_{(R)}$ = 17.2 min.

Chemical synthesized (rac)-12b mV


PDA 210nm
| ID# | Rt. Time | Area | Height | Area % |
| 1 | 8.153 | 12371846 | 1346303 | 49.976 |
| 2 | 8.757 | 12383649 | 1287291 | 50.024

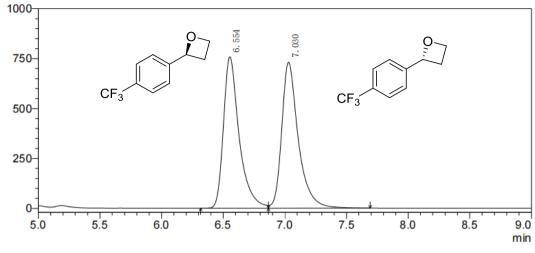
Enzymatic synthesized (R)-12b mV



Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 8.3$ min, $t_{(R)} = 8.9$ min.

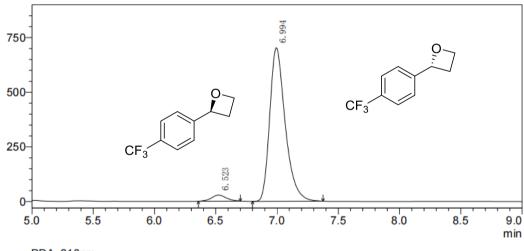
Chemical synthesized (rac)-13b

Enzymatic synthesized (*R*)-13b



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	15.929	40308	2366	0.981		
2	17.650	4066469	206855	99.019		

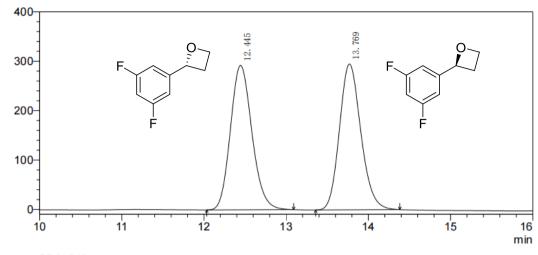
Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 15.9$ min, $t_{(R)} = 17.7$ min.


Chemical synthesized (rac)-14b

mV

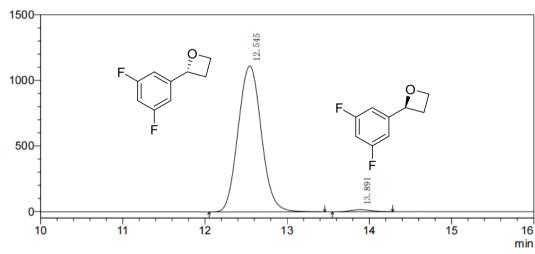
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	6.554	6706285	757087	49.538		
2	7.030	6831275	731356	50.462		

Enzymatic synthesized (R)-14b



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	6.523	234064	27946	3.641		
2	6.994	6194052	702525	96.359		

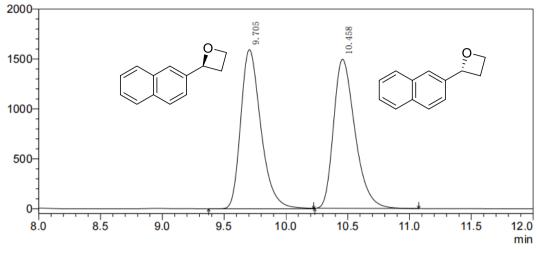
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm. $t_{(S)} = 6.5$ min, $t_{(R)} = 7.0$ min.


Chemical synthesized (rac)-15b

mV

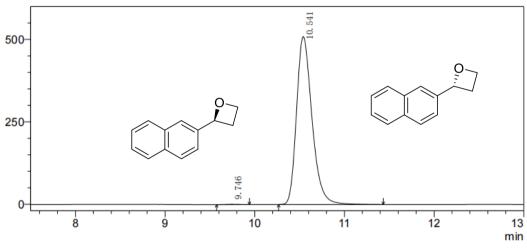
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	12.445	5334535	292511	49.881		
2	13.769	5360025	295561	50.119		

Enzymatic synthesized (R)-15b



PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	12.545	21901931	1113279	98.765				
2 13.891		273945	16388	1.235				

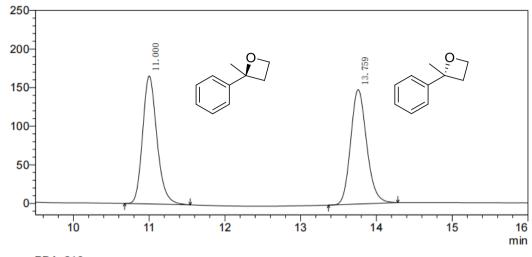
Chiral HPLC analysis: Diacel Chiralpak IA-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm. $t_{(R)}$ = 12.5 min, $t_{(S)}$ = 13.9 min.


Chemical synthesized (rac)-16b

mV

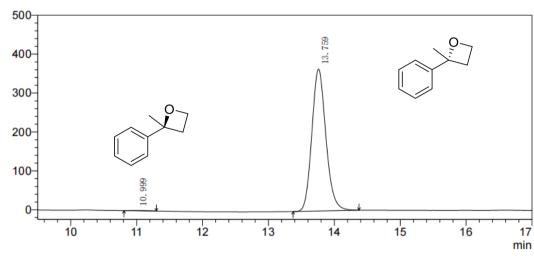
PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	9.705	18172670	1595119	50.191			
2	10.458	18034694	1494464	49.809			

Enzymatic synthesized (R)-16b



PDA 210nm									
	ID#	Rt. Time	Area	Height	Area %				
	1	9.746	8436	840	0.138				
	2	10.541	6110915	509757	99.862				

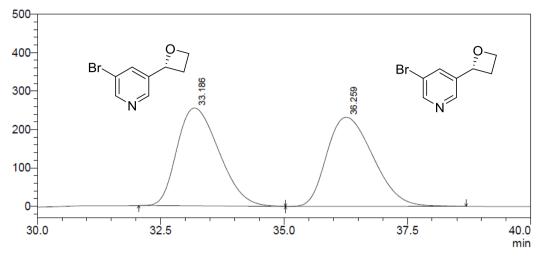
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm. $t_{(S)} = 9.7$ min, $t_{(R)} = 10.5$ min.


Chemical synthesized (rac)-17b

mV

PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	11.000	2181178	165876	49.984				
2	13.759	2182556	148316	50.016				

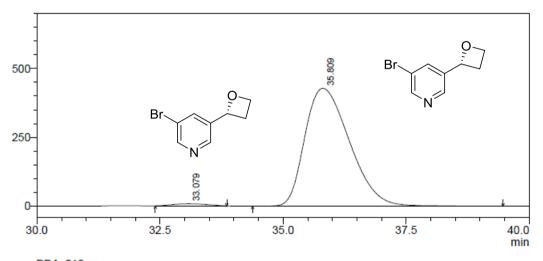
Enzymatic synthesized (R)-17b



PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	10.999	12545	857	0.230				
2	13.759	5433345	364819	99.770				

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm. $t_{(S)}$ = 11.0 min, $t_{(R)}$ = 13.8 min.

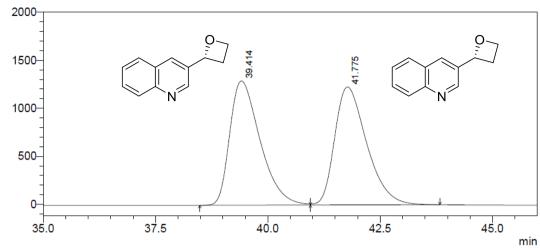
Chemical synthesized (rac)-18b


m۷

PDA 210nm								
ID#	Rt. Time	Area	Height	Area%				
1	33.186	15091005	254835	49.929				
2	36.259	15133746	232002	50.071				

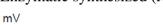
Enzymatic synthesized (R)-18b

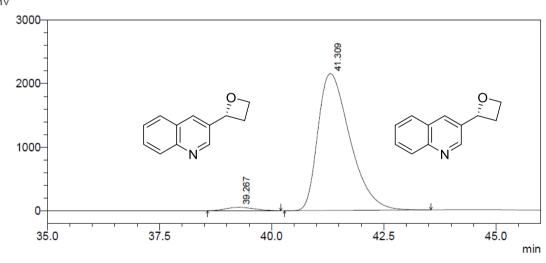
m۷



PDA 210nm								
ID# Rt. Time		Area	Height	Area%				
1	33.079	364895	7586	1.331				
2	35.809	27048154	428316	98.669				

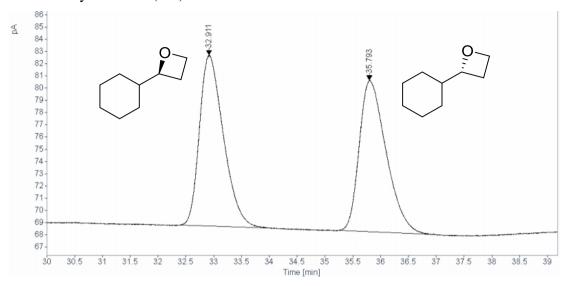
Chiral HPLC analysis: Diacel Chiralpak OB-H, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm. $t_{(S)}$ = 33.1 min, $t_{(R)}$ = 35.8 min.


Chemical synthesized (rac)-19b

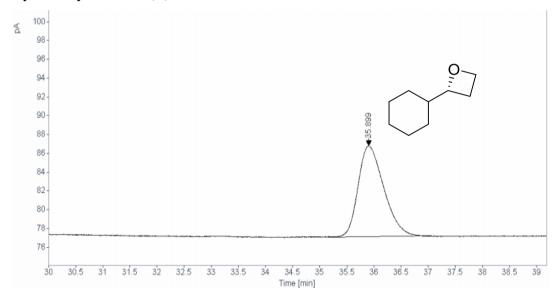


PDA 210nm								
ID#	Rt. Time	Area	Height	Area%				
1	39.414	60781337	1293276	49.923				
2	41.775	60968364	1227764	50.077				

Enzymatic synthesized (R)-19b



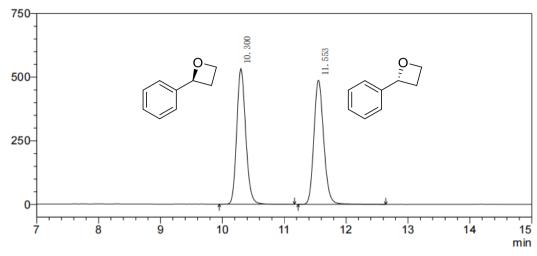
PDA 210nm									
ID#	Rt. Time	Area	Height	Area%					
1	39.267	2320262	53883	2.117					
2	41.309	107264534	2152504	97.883					


Chiral HPLC analysis: Diacel Chiralpak AD-H, n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 210 nm. $t_{(S)}$ = 39.3 min, $t_{(R)}$ = 41.3 min.

Chemical synthesized (rac)-21b

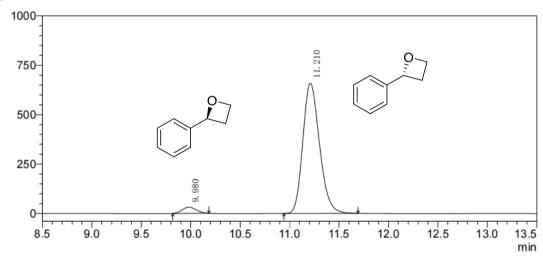
ID#	Ret. Time	Area	Height	Area%	Resolution
1	32.911	420.903	14.020	50.148	
1	35.793	418.413	12.422	49.852	3.468

Enzymatic synthesized (R)-22b

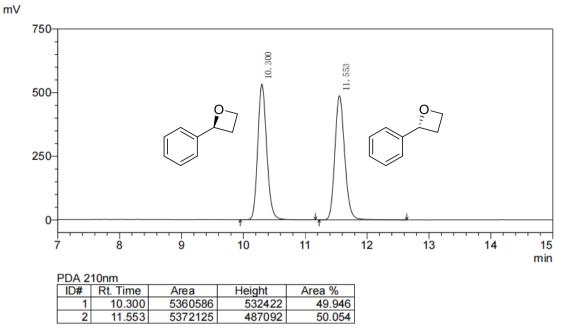


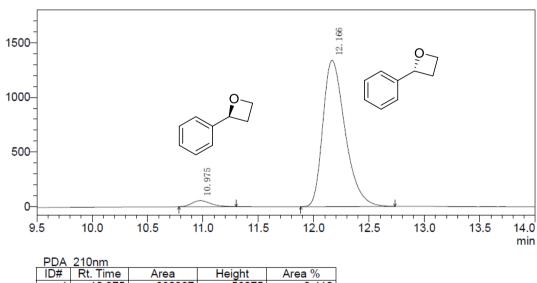
ID#	Ret. Time	Area	Height	Area%	Resolution
2	35.899	319.265	9.684	100.000	

Chiral GC analysis: Rt-bDEXcst (RESTEK), 80 °C for 45 min, $t_{(S)} = 32.9$ min, $t_{(R)} = 35.9$ min.


Chemical synthesized (rac)-1b from 22a

PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	10.300	5360586	532422	49.946			
2	11.553	5372125	487092	50.054			

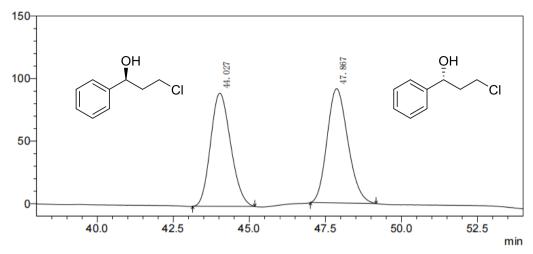

Enzymatic synthesized (R)-1b from 22a


PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	9.980	309572	31377	3.854		
2	11.210	7722247	659815	96.146		

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, λ = 210 nm. $t_{(S)}$ = 10.0 min, $t_{(R)}$ = 11.2 min.

Chemical synthesized (rac)-1b from 23a

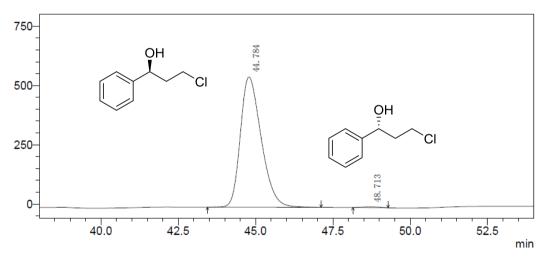
Enzymatic synthesized (R)-1b from 23a mV



PDA	210nm			
ID#	Rt. Time	Area	Height	Area %
1	10.975	662397	56075	3.410
2	12.166	18765120	1342199	96.590

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm. $t_{(S)} = 11.0$ min, $t_{(R)} = 12.2$ min.

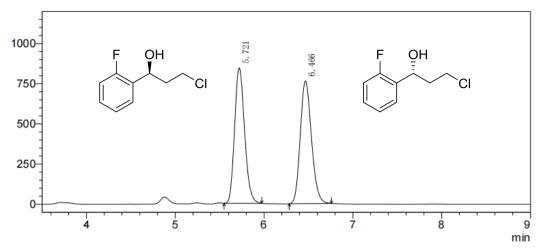
Chemical synthesized (rac)-1a



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	44.027	4170848	90440	48.911		
2	47.867	4356621	91297	51.089		

Enzymatic synthesized (S)-1a

 $\mathsf{m} \mathsf{V}$



PDA 210nm						
	ID#	Rt. Time	Area	Height	Area %	
	1	44.784	25792192	549589	99.542	
	2	48.713	118781	3121	0.458	

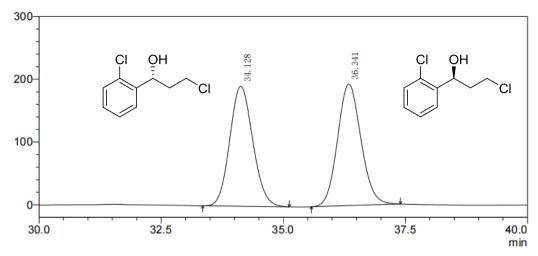
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 44.8 min, $t_{(R)}$ = 48.7 min.

Chemical synthesized (rac)-2a

mV

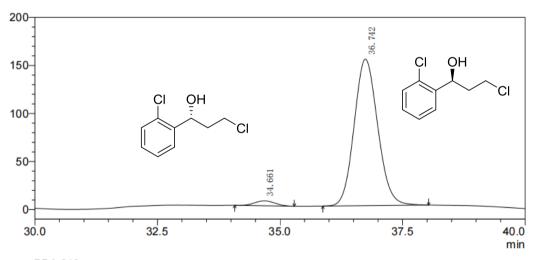
PDA 210nm						
	ID#	Rt. Time	Area	Height	Area %	
	1	5.721	6592144	842409	49.654	
	2	6.466	6684094	763639	50.346	

Enzymatic synthesized (S)-2a



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	5.677	10452211	1315327	98.915		
2	6.386	114640	15245	1.085		

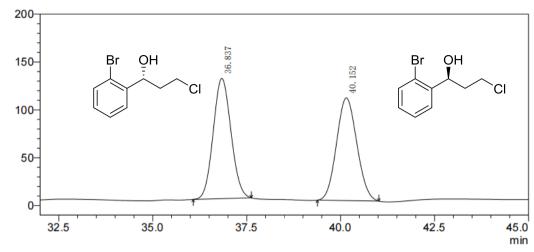
Chiral HPLC analysis: Diacel Chiralpak OD-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 5.7$ min, $t_{(R)} = 6.4$ min.


Chemical synthesized (rac)-3a

mV

PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	34.128	6279753	191176	49.277				
2	36.341	6464133	193514	50.723				

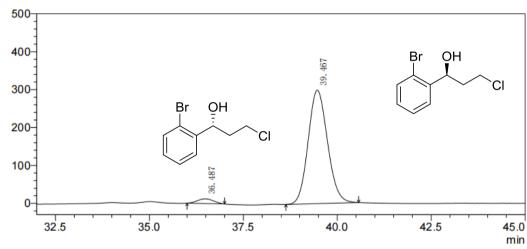
Enzymatic synthesized (S)-3a



PDA 210nm									
ID#	Rt. Time	Area	Height	Area %					
1	34.661	148102	5090	2.823					
2	36.742	5098305	152580	97.177					

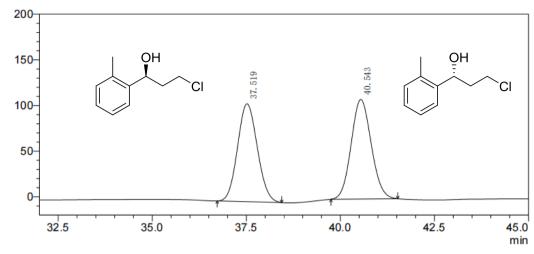
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(R)} = 34.7$ min, $t_{(S)} = 36.7$ min.

Chemical synthesized (rac)-4a



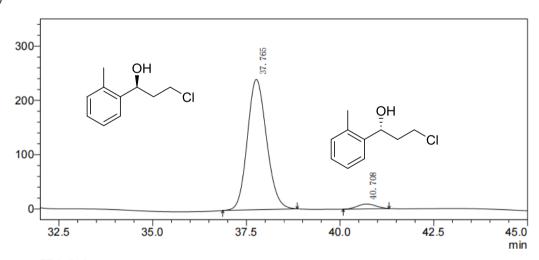
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	36.837	4144476	125617	50.650				
2	40.152	4038095	107240	49.350				

Enzymatic synthesized (S)-4a



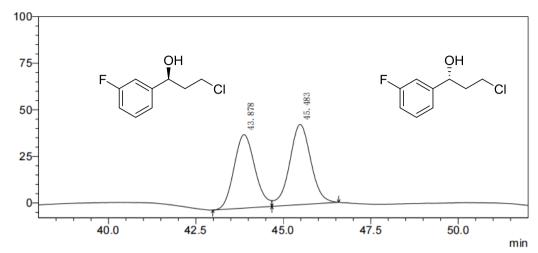
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	36.487	370934	12385	3.341				
2	39.467	10731262	299359	96.659				

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(R)}$ = 36.5 min, $t_{(S)}$ = 39.5 min.


Chemical synthesized (rac)-5a

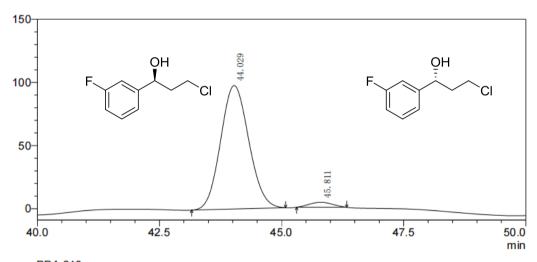
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	37.519	3919814	107123	49.188				
2	40.543	4049266	108941	50.812				

Enzymatic synthesized (S)-5a



PDA 210nm									
ID#	Rt. Time	Area	Height	Area %					
1	37.765	8604714	240169	96.560					
2	40.708	306501	8886	3.440					

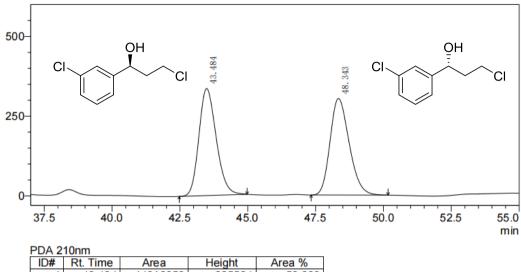
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 37.8$ min, $t_{(R)} = 40.7$ min.


Chemical synthesized (rac)-6a

mV

PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	43.878	1640174	39450	47.347				
2	45.483	1823950	43025	52.653				

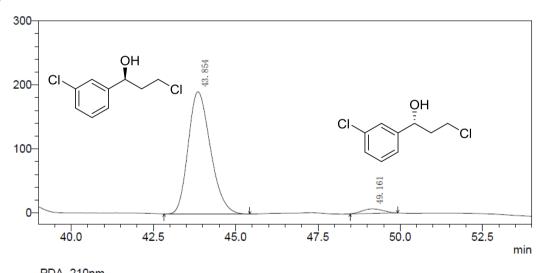
Enzymatic synthesized (S)-6a



PDA 210nm									
ID#	Rt. Time	Area	Height	Area %					
1	44.029	3930510	97801	96.804					
2	45.811	129779	3915	3.196					

Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 44.0$ min, $t_{(R)} = 45.8$ min.

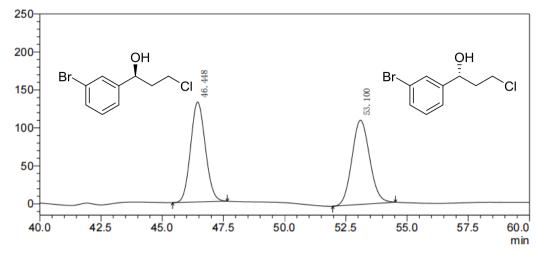
Chemical synthesized (rac)-7a


mV

ID# Rt. Time Area Height Area % 1 43.484 14910958 335534 50.069 2 48.343 14869975 302683 49.931

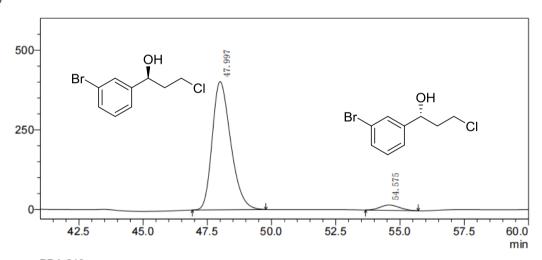
Enzymatic synthesized (S)-7a

 mV



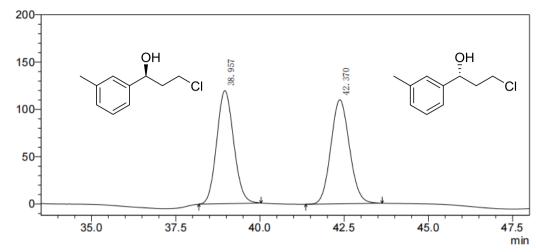
PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	43.854	9008485	191053	96.615			
2	49.161	315597	7192	3.385			

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 43.8 min, $t_{(R)}$ = 49.2 min.


Chemical synthesized (rac)-8a

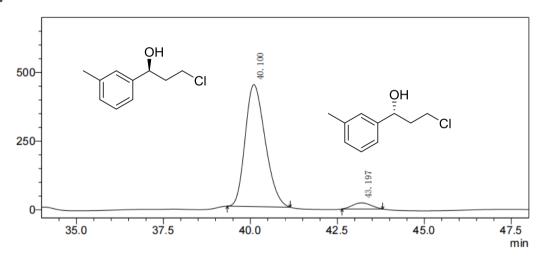
PD	PDA 210nm							
II	#	Rt. Time	Area	Height	Area %			
	1	46.448	5522598	131641	49.653			
	2	53.100	5599756	110957	50.347			

Enzymatic synthesized (S)-8a



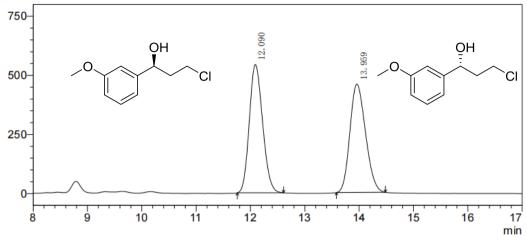
PDA 210nm									
ID#	Rt. Time	Area	Height	Area %					
1	47.997	20204529	402273	95.835					
2	54.575	878137	16663	4.165					

Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 48.0$ min, $t_{(R)} = 54.6$ min.


Chemical synthesized (rac)-9a

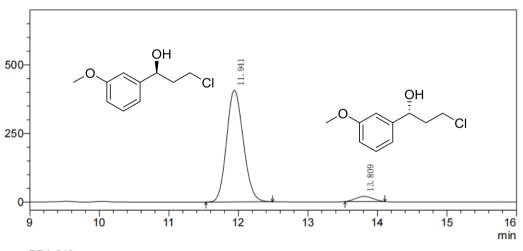
PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	38.957	4212505	119440	49.839			
2	42.370	4239719	109891	50.161			

Enzymatic synthesized (S)-9a



PDA 210nm									
ID#	Rt. Time	Area	Height	Area %					
1	40.100	17812647	444013	95.620					
2	43.197	816026	22089	4.380					

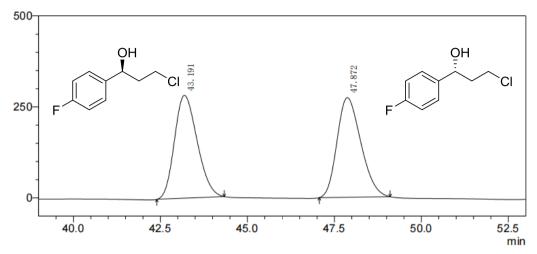
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 40.1$ min, $t_{(R)} = 43.2$ min.


Chemical synthesized (rac)-10a

mV

PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	12.090	9259966	542740	50.274				
2	13.959	9158901	458506	49.726				

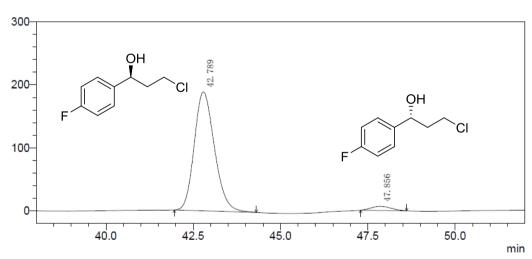
Enzymatic synthesized (S)-10a



PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	11.941	6808404	406954	95.485				
2	13.809	321906	18565	4.515				

Chiral HPLC analysis: Diacel Chiralpak OD-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, $t_{(S)}$ = 11.9 min, $t_{(R)}$ = 13.8 min.

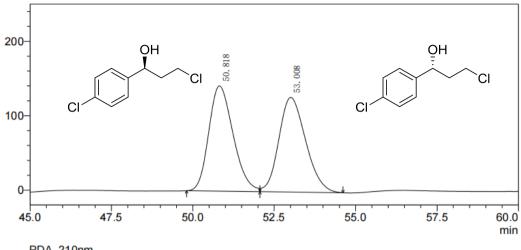
Chemical synthesized (rac)-11a


mV

PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	43.191	12831821	282362	49.596				
2	47.872	13041054	273620	50.404				

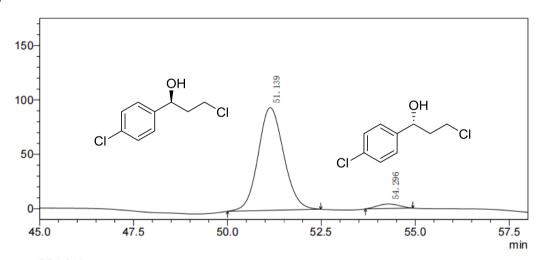
Enzymatic synthesized (S)-11a

m۷



	PDA 210nm								
ĺ	ID#	Rt. Time	Area	Height	Area %				
ĺ	1	42.789	7622547	188856	96.670				
i	2	47.856	262610	6579	3.330				

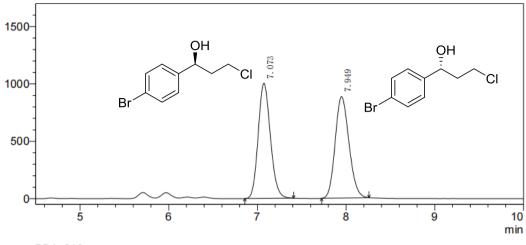
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 42.8 min, $t_{(R)}$ = 47.9 min.


Chemical synthesized (rac)-12a

mV

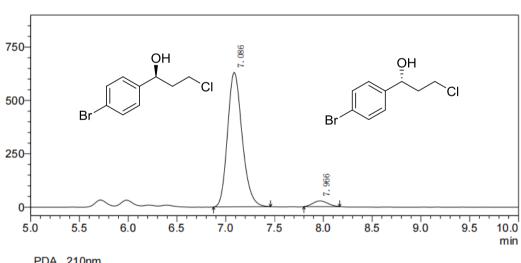
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	50.818	7354674	141389	50.268				
2	53.008	7276120	127150	49.732				

Enzymatic synthesized (S)-12a



PDA 210nm									
ID#	Rt. Time	Area	Height	Area %					
1	51.139	4481146	94464	96.397					
2	54.296	167486	4082	3,603					

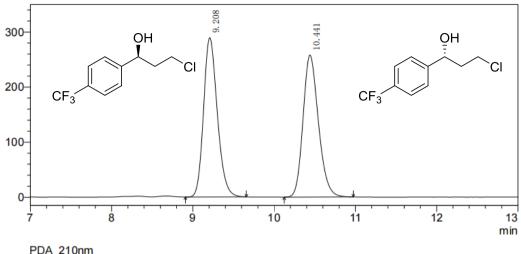
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 51.1$ min, $t_{(R)} = 54.3$ min.


Chemical synthesized (rac)-13a

mV

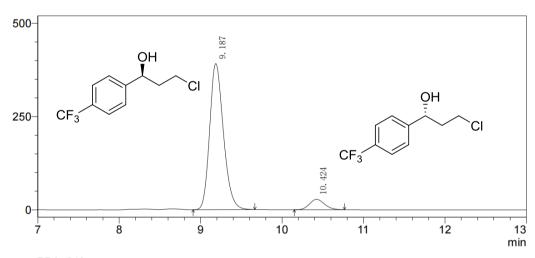
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	7.073	9615969	1003581	50.201				
2	7.949	9539085	884114	49.799				

Enzymatic synthesized (S)-13a



PDA	210nm			
ID#	Rt. Time	Area	Height	Area %
1	7.086	6591918	629680	95.867
2	7.966	284204	26757	4.133

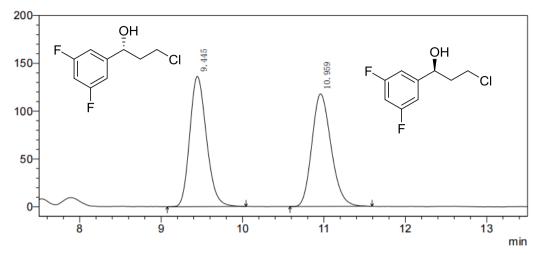
Chiral HPLC analysis: Diacel Chiralpak OD-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, $t_{(S)}$ = 7.1 min, $t_{(R)}$ = 8.0 min.


Chemical synthesized (rac)-14a

mV

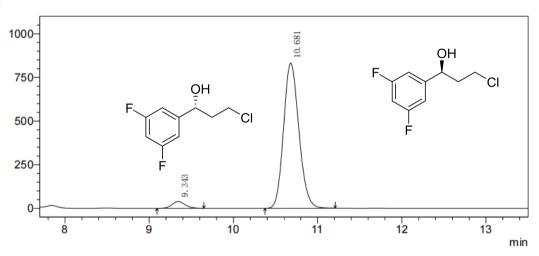
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	9.208	3405433	289261	50.024				
2	10.441	3402131	257769	49.976				

Enzymatic synthesized (S)-14a



PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	9.187	4616016	391588	92.795				
2	10.424	358394	27895	7.205				

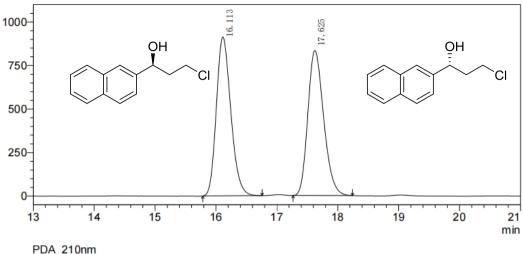
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 9.2$ min, $t_{(R)} = 10.4$ min.


Chemical synthesized (rac)-15a

mV

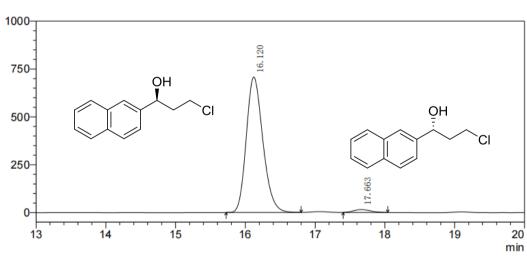
PDA 214nm								
ID#	Rt. Time	Area	Height	Area %				
1	9.443	107719	7565	49.673				
2	10.958	109137	6571	50.327				

Enzymatic synthesized (S)-15a



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	9.343	424182	38899	3.873		
2	10.681	10528943	831972	96.127		

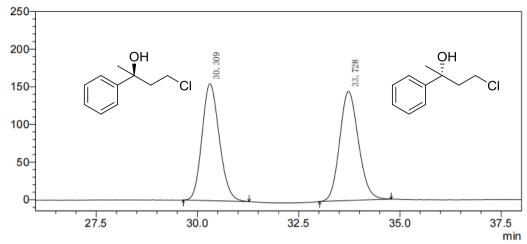
Chiral HPLC analysis: Diacel Chiralpak AD-H, n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 210 nm, $t_{(R)}$ = 9.3 min, $t_{(S)}$ = 10.7 min.


Chemical synthesized (rac)-16a

mV

PDA 210nm ID# Rt. Time Area Height Area % 1 16.113 15060137 911913 50.018 2 17.625 15049309 832034 49.982

Enzymatic synthesized (S)-16a



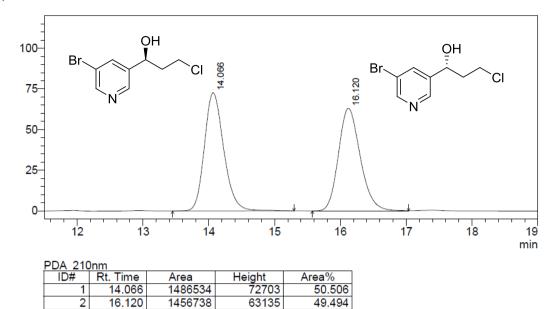
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	16.120	11691594	707301	97.852		
2	17.663	256644	15384	2.148		

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 16.1$ min, $t_{(R)} = 17.7$ min.

Chemical synthesized (rac)-17a

PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	30.309	4623106	155207	49.697		
2	33.728	4679505	144950	50.303		

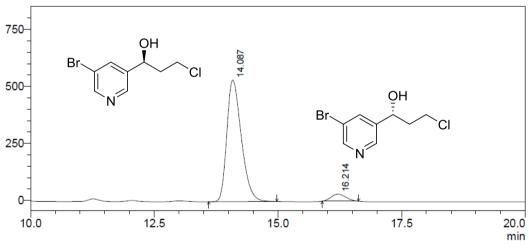
Enzymatic synthesized (S)-17a



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	30.410	9251269	306687	99.849		
2	33.771	14014	657	0.151		

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 30.4$ min, $t_{(R)} = 33.8$ min.

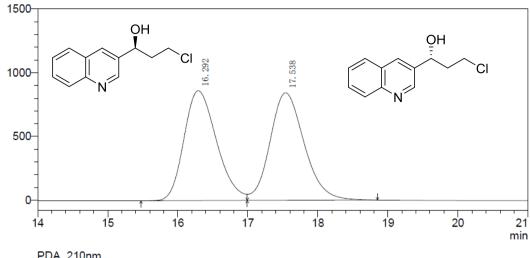
Chemical synthesized (rac)-18a


m۷

Enzymatic synthesized (S)-18a

16.120

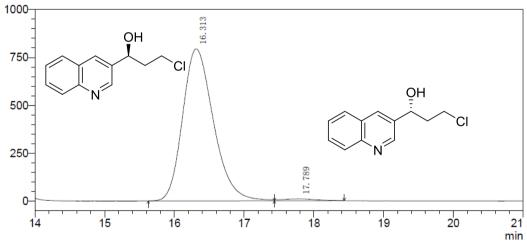
 $\mathsf{m} \mathsf{V}$



PDA 210nm						
ID#	Rt. Time	Area	Height	Area%		
1	14.087	10890307	533487	94.340		
2	16.214	653336	31126	5.660		

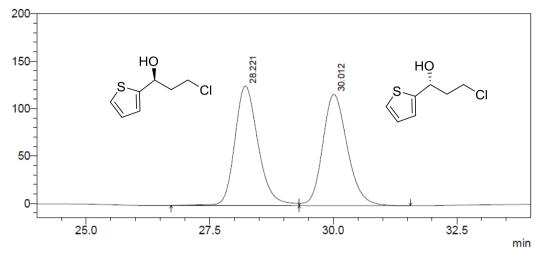
Chiral HPLC analysis: Diacel Chiralpak OJ-H, n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.1$ min, $t_{(R)} = 16.2$ min.

Chemical synthesized (rac)-19a



PDA 210nm					
ID#	Rt. Time	Area	Height	Area %	
1	16.292	27907744	861485	49.385	
2	17.538	28602498	843190	50.615	

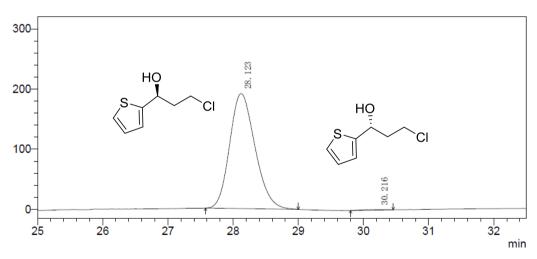
Enzymatic synthesized (S)-19a



	PDA 210nm						
	ID#	Rt. Time	Area	Height	Area %		
ĺ	1	16.313	24453210	793448	98.672		
ĺ	2	17.789	329064	9653	1.328		

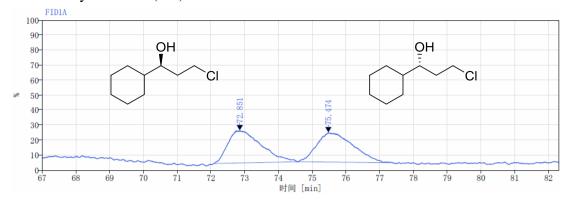
Chiral HPLC analysis: Diacel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 16.3$ min, $t_{(R)} = 17.8$ min.

Chemical synthesized (rac)-20a

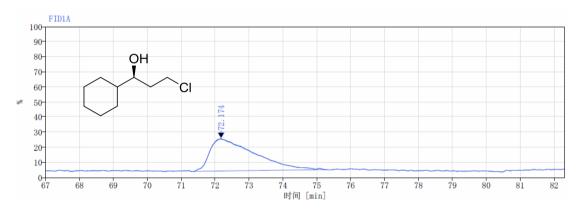

mV

PDA 210nm						
ID#	Rt. Time	Area	Height	Area%		
1	28.221	4139076	125958	50.407		
2	30.012	4072170	117311	49.593		

Enzymatic synthesized (S)-20a


m۷

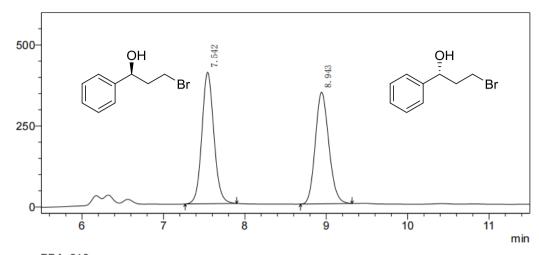
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	28.123	5163009	190880	99.689		
2	30.216	16082	675	0.311		


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 98/2, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 28.1$ min, $t_{(R)} = 30.2$ min.

Chemical synthesized (rac)-21a

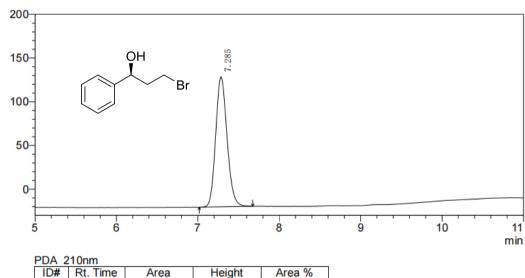
FID1A		
RT. Time [min]	Area	Area%
72.851	239.03	50. 18
75. 474	237.33	49.82
Tota1	476.36	

Enzymatic synthesized (S)-21a



FID1A			
RT. Time [min]	Area	Area%	
72. 174	800.98	100.00	
Tato1	800.98		

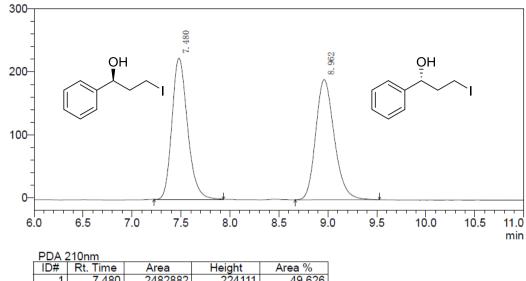
Chiral GC analysis: CYCLODEX-B, 110 °C for 85 min, $t_{(S)} = 72.2$ min, $t_{(R)} = 75.5$ min..


Chemical synthesized (rac)-22a

mV

PDA 210nm					
ID#	Rt. Time	Area	Height	Area %	
1	7.542	4166331	405994	50.972	
2	8.943	4007396	344770	49.028	

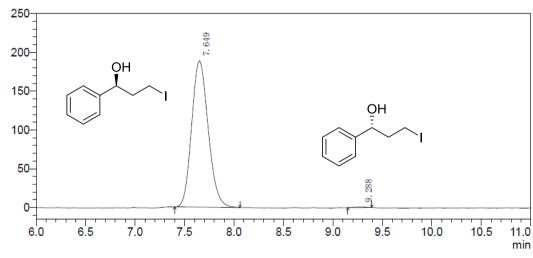
Enzymatic synthesized (S)-22a



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	7.285	1435713	148674	100.000		

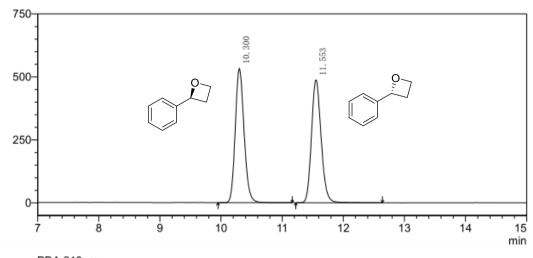
Chiral HPLC analysis: Diacel Chiralpak OD-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 7.3$ min, $t_{(R)} = 8.9$ min..

Chemical synthesized (rac)-23a



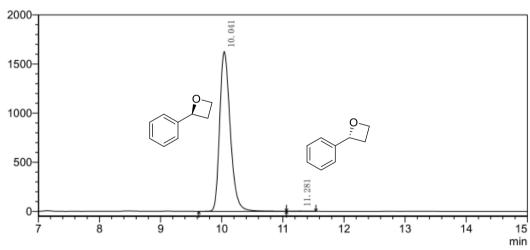
Area 2482882 2520308 Area % 49.626 50.374 Height 224111 7.480 8.962 2 190948

Enzymatic synthesized (S)-23a

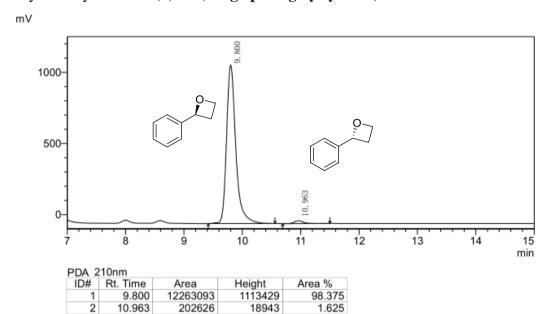


PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	7.649	2193218	188775	99.709		
2	9.288	6399	861	0.291		

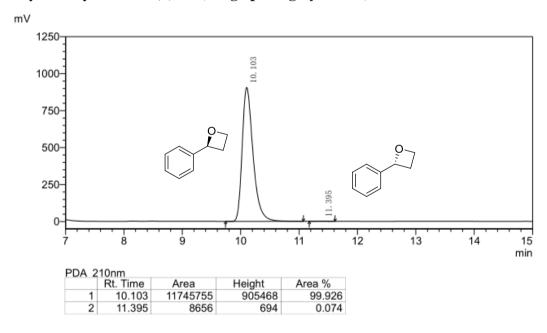
Chiral HPLC analysis: Diacel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 7.6$ min, $t_{(R)} = 9.3$ min.


Chemical synthesized (rac)-1b

mV

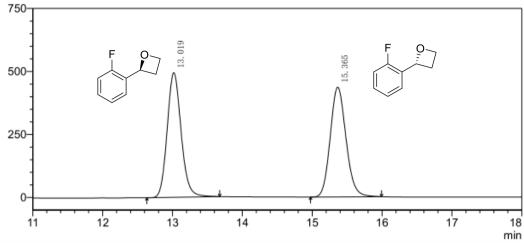

PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	10.300	5360586	532422	49.946		
2	11.553	5372125	487092	50.054		

Enzymatic synthesized (S)-1b (Ring opening by azide)

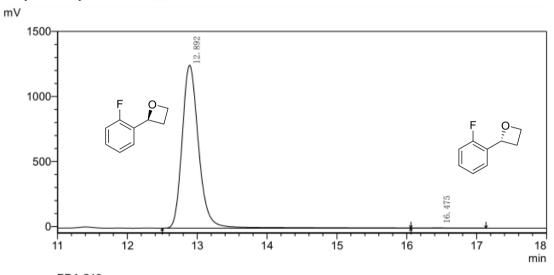


PDA 2	210nm			
ID#	Rt. Time	Area	Height	Area %
1	10.041	19606794	1626792	99.939
2	11.281	11935	936	0.061

Enzymatic synthesized (S)-1b (Ring opening by cyanide)

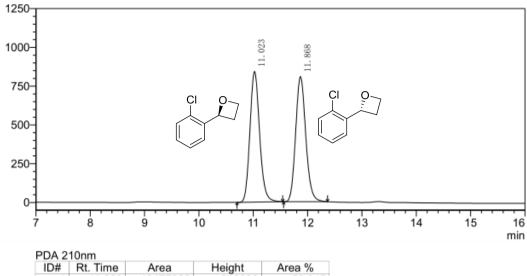

Enzymatic synthesized (S)-1b (Ring opening by nitirte)

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, λ = 210 nm, $t_{(S)}$ = 10.3 min, $t_{(R)}$ = 11.6 min.


Chemical synthesized (rac)-2b

PD/	۱2	10nm			
ID	#	Rt. Time	Area	Height	Area %
	1	13.019	6873612	494730	50.145
	2	15.365	6833943	435465	49.855

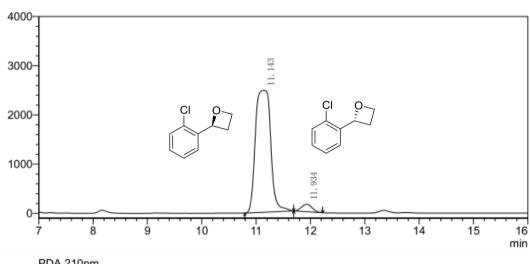
Enzymatic synthesized (S)-2b



PDA 2	PDA 210nm						
ID#	Rt. Time	Area	Height	Area %			
1	12.892	20768180	1254039	99.902			
2	16.475	20278	649	0.098			

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 12.9$ min, $t_{(R)} = 16.5$ min.

Chemical synthesized (rac)-3b



Enzymatic synthesized (S)-3b

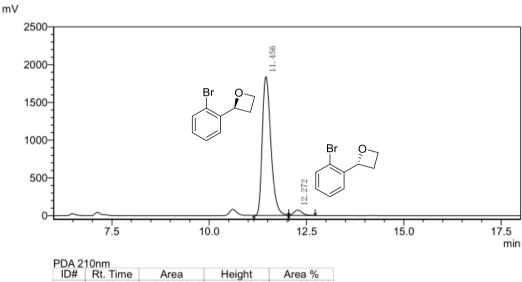
- 1	PDA 210nm						
	ID#	Rt. Time	Area	Height	Area %		
	1	11.143	48580461	2480612	95.915		
	2	11.934	2068838	153675	4.085		

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 11.1 min, $t_{(R)}$ = 11.9 min.

Chemical synthesized (rac)-4b

1250 1000-750-500-250-

12.5

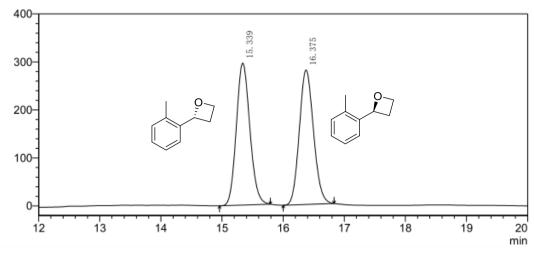

15.0

PDA 2	10nm			
ID#	Rt. Time	Area	Height	Area %
1	11.308	13680017	952846	48.911
2	12.239	14289030	930444	51.089

10.0

Enzymatic synthesized (S)-4b

7.5



Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 11.5 min, $t_{(R)}$ = 12.3 min.

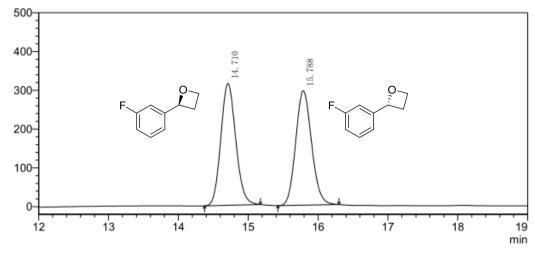
17.5 min

Chemical synthesized (rac)-5b

mV

PDA 2	10nm			
ID#	Rt. Time	Area	Height	Area %
1	15.339	4557692	295629	50.171
2	16.375	4526543	280296	49.829

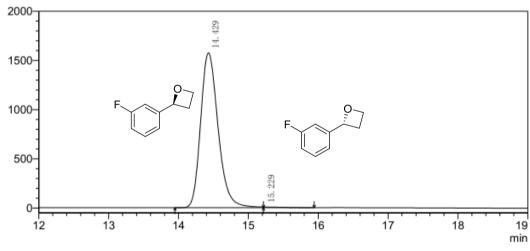
Enzymatic synthesized (S)-5b



PDA 2	PDA 210nm						
ID#	Rt. Time	Area	Height	Area %			
1	14.429	380662	28250	1.308			
2	15.063	28728727	1806388	98.692			

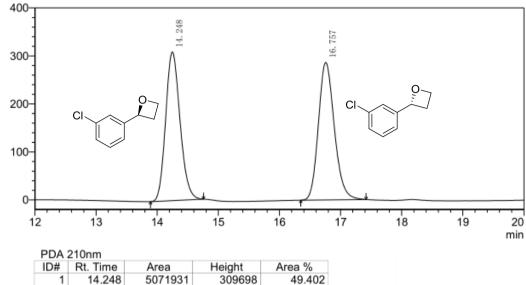
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(R)} = 14.4$ min, $t_{(S)} = 15.1$ min.

Chemical synthesized (rac)-6b



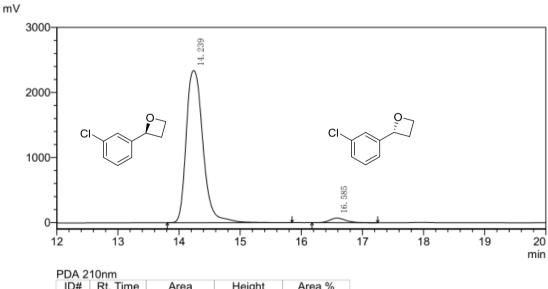
PDA 2	PDA 210nm						
ID#	Rt. Time	Area	Height	Area %			
1	14.710	4685654	314313	50.058			
2	15.788	4674777	294836	49.942			

Enzymatic synthesized (S)-6b



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	14.429	27367970	1573438	99.591		
2	15.229	112367	6415	0.409		

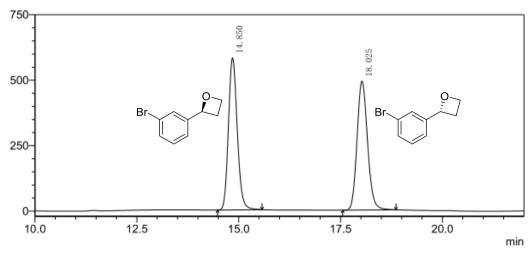
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.4$ min, $t_{(R)} = 15.2$ min.


Chemical synthesized (rac)-7b

mV

Height 309698 Area % 49.402 14.248 5071931 16.757 5194628 286570 50.598

Enzymatic synthesized (S)-7b



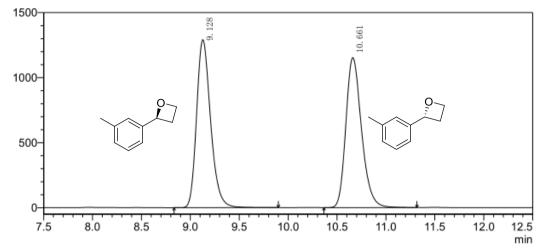
1	PDA ZTUNM							
	ID#	Rt. Time	Area	Height	Area %			
	1	14.239	44557843	2338876	97.168			
	2	16.585	1298751	70430	2.832			

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.2$ min, $t_{(R)} = 16.6$ min.


Chemical synthesized (rac)-8b

PDA 2	PDA 210nm							
ID#	Rt. Time	Area	Height	Area %				
1	14.850	8738172	580656	49.772				
2	18.025	8818386	492475	50.228				

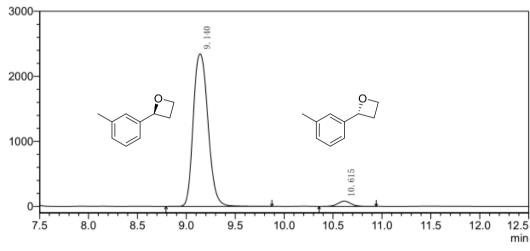
Enzymatic synthesized (S)-8b



PDA 2	PDA 210nm						
ID#	Rt. Time	Area	Height	Area %			
1	14.666	53549061	2510287	97.641			
2	17.949	1293685	62586	2.359			

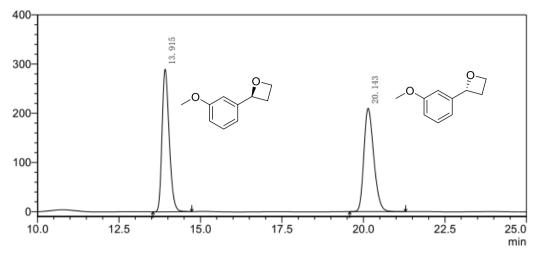
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.7$ min, $t_{(R)} = 17.9$ min.

Chemical synthesized (rac)-9b



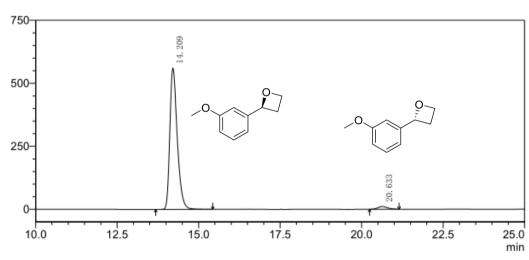
PD	PDA 210nm								
I	D#	Rt. Time	Area	Height	Area %				
	1	9.128	12828043	1292176	49.921				
	2	10.661	12868475	1153061	50.079				

Enzymatic synthesized (S)-9b



PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	9.140	24440703	2345540	96.955			
2	10.615	767634	81325	3.045			

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 9.1$ min, $t_{(R)} = 10.6$ min.

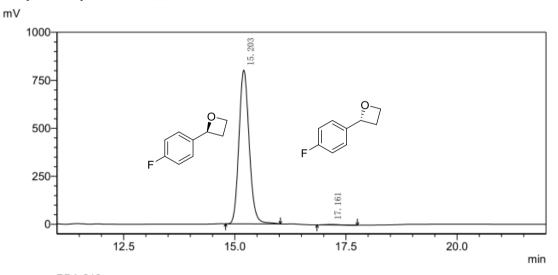

Chemical synthesized (rac)-10b

mV

PDA 2	PDA 210nm							
ID#	Rt. Time	Area	Height	Area %				
1	13.915	4392816	289673	49.937				
2	20.143	4403967	210165	50.063				

Enzymatic synthesized (S)-10b

PDA 2	PDA 210nm							
ID#	Rt. Time	Area	Height	Area %				
1	14.209	8931756	559931	97.546				
2	20.633	224701	10833	2.454				

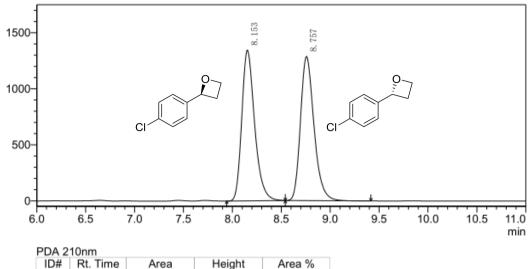

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.2$ min, $t_{(R)} = 20.6$ min.

Chemical synthesized (rac)-11b

1250 1000 750 250 250 12.5 15.0 17.5 20.0 min

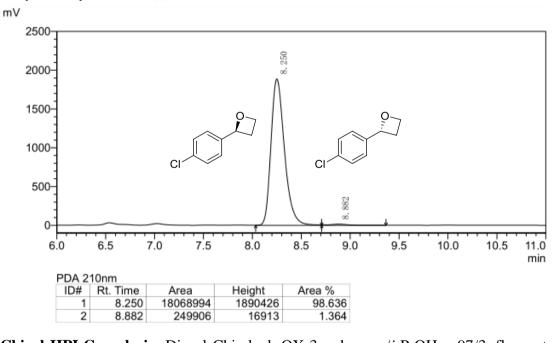
PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	15.178	15574056	884420	49.968			
2	16.981	15594051	800141	50.032			

Enzymatic synthesized (S)-11b

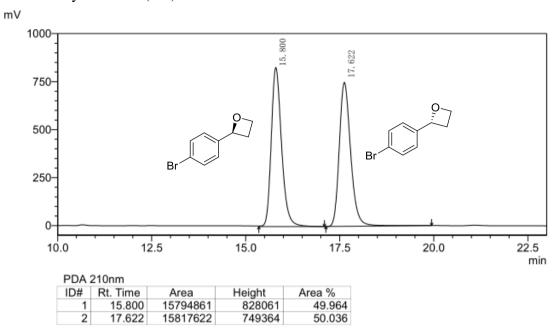


PDA 2	PDA 210nm						
ID#	Rt. Time	Area	Height	Area %			
1	15.203	12847589	800715	99.536			
2	17.161	59830	2765	0.464			

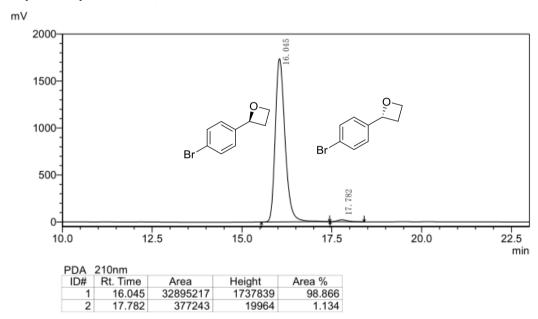
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 15.2$ min, $t_{(R)} = 17.2$ min.


Chemical synthesized (rac)-12b

mV

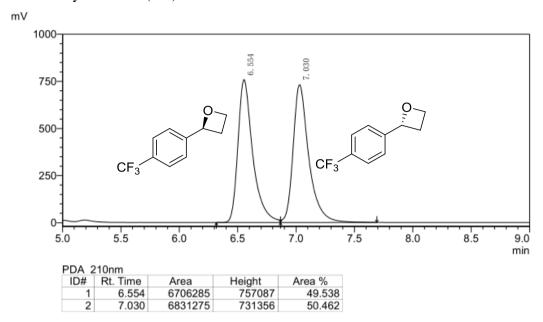

PDA 210nm							
ID#	Rt. Time	Area	Height	Area %			
1	8.153	12371846	1346303	49.976			
2	8.757	12383649	1287291	50.024			

Enzymatic synthesized (S)-12b

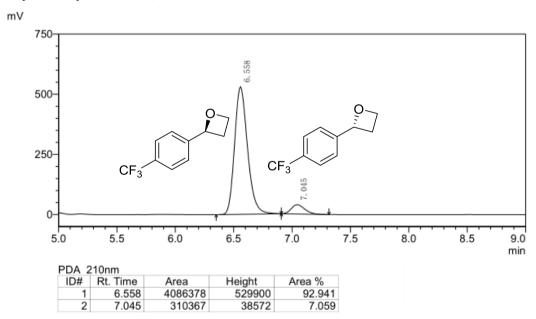


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 8.3$ min, $t_{(R)} = 8.9$ min.

Chemical synthesized (rac)-13b

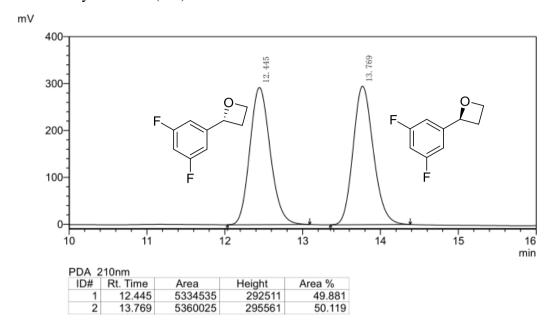


Enzymatic synthesized (S)-13b

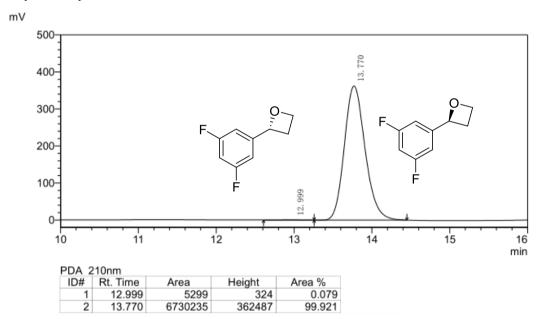


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 16.0$ min, $t_{(R)} = 17.8$ min.

Chemical synthesized (rac)-14b

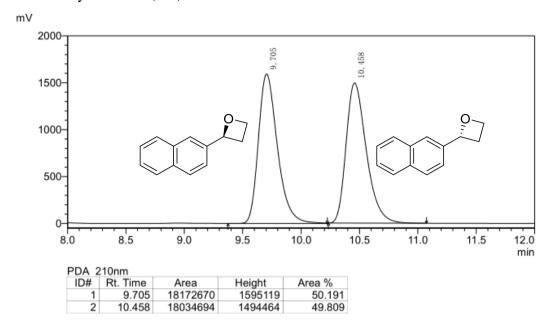


Enzymatic synthesized (S)-14b

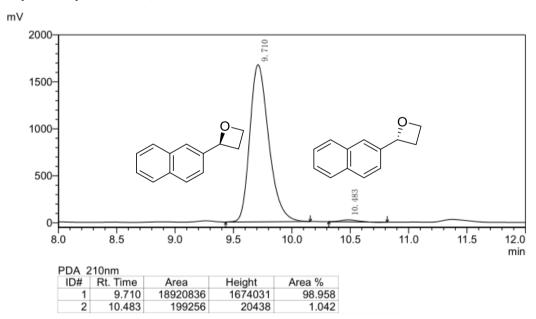


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 6.6$ min, $t_{(R)} = 7.0$ min.

Chemical synthesized (rac)-15b

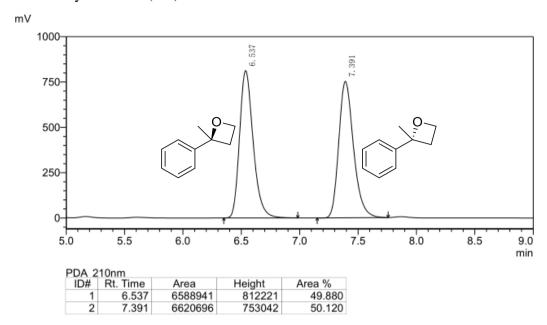


Enzymatic synthesized (S)-15b

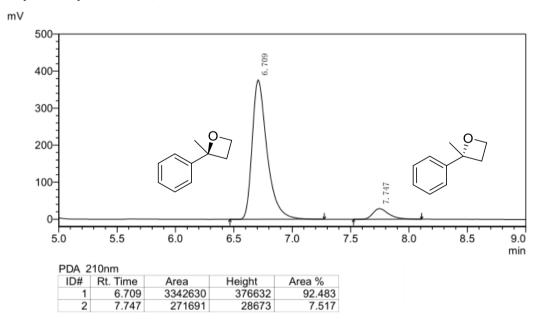


Chiral HPLC analysis: Diacel Chiralpak IA-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(R)} = 13.0$ min, $t_{(S)} = 13.8$ min.

Chemical synthesized (rac)-16b

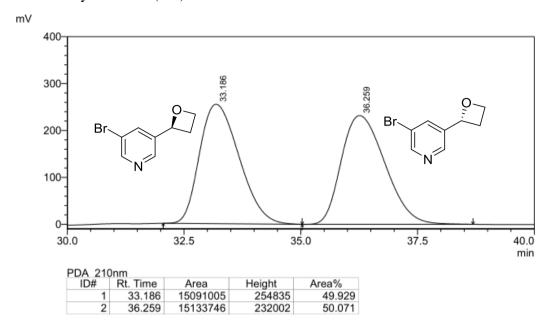


Enzymatic synthesized (S)-16b

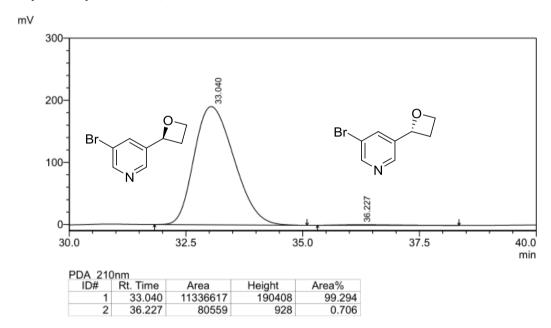


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 9.7$ min, $t_{(R)} = 10.5$ min.

Chemical synthesized (rac)-17b

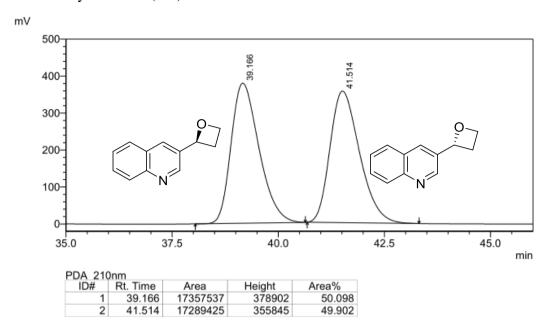


Enzymatic synthesized (S)-17b

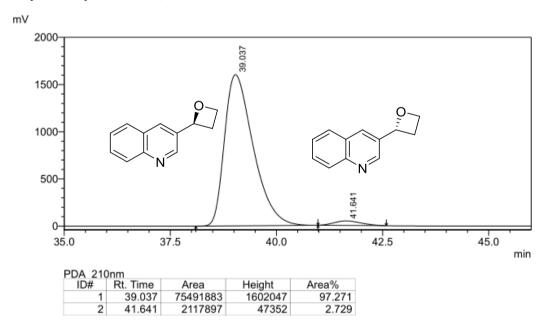


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 6.7$ min, $t_{(R)} = 7.7$ min.

Chemical synthesized (rac)-18b

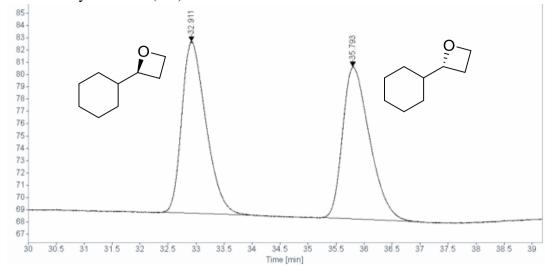


Enzymatic synthesized (S)-18b

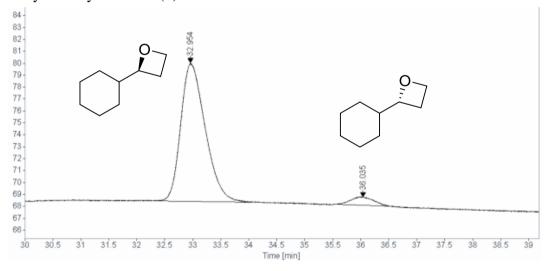


Chiral HPLC analysis: Diacel Chiralpak OB-H, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 33.0min, $t_{(R)}$ = 36.2 min.

Chemical synthesized (rac)-19b



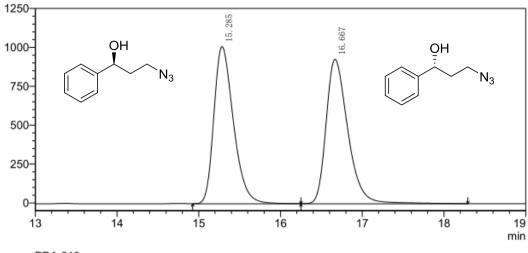
Enzymatic synthesized (S)-19b


Chiral HPLC analysis: Diacel Chiralpak AD-H, n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 39.0 min, $t_{(R)}$ = 41.6 min.

Chemical synthesized (rac)-21b

	ID#	Ret. Time	Area	Height	Area%	Resolution
	1	32.911	420.903	14.020	50.148	
ı	1	35.793	418.413	12.422	49.852	3.468

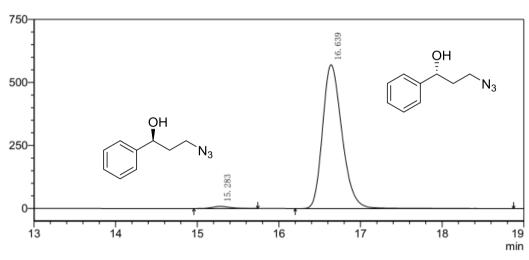
Enzymatic synthesized (S)-21b



ID#	Ret. Time	Area	Height	Area%	Resolution
1	32.954	353.312	11.617	94.490	
1	36.035	20.602	0.709	5.510	3.879

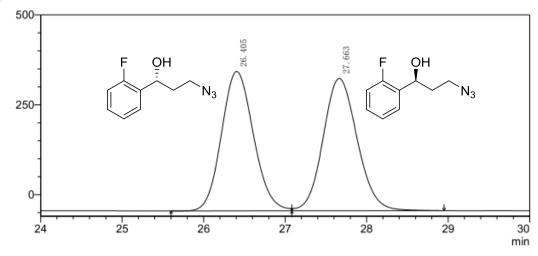
Chiral GC analysis: Rt-bDEXcst (RESTEK), 80°C for 45 min, $t_{(S)} = 33.0$ min, $t_{(R)} = 36.0$ min.

Chemical synthesized (rac)-1c


mV

PDA 2	10nm			
ID#	Rt. Time	Area	Height	Area %
1	15.285	16871725	1011036	49.343
2	16.667	17320955	929151	50.657

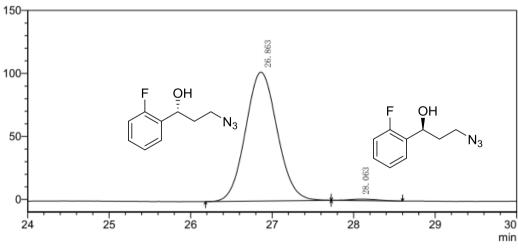
Enzymatic synthesized (*R*)-1c



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	15.283	125756	8561	1.314		
2	16.639	9447869	570375	98.686		

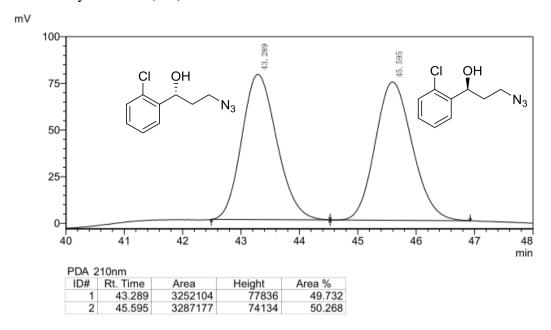
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 15.3$ min, $t_{(R)} = 16.6$ min.

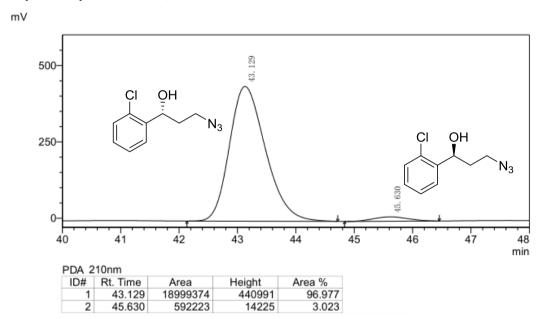
Chemical synthesized (rac)-2c


mV

PDA 210nm					
ID#	Rt. Time	Area	Height	Area %	
1	26.405	10579814	387621	49.693	
2	27.663	10710724	367992	50.307	

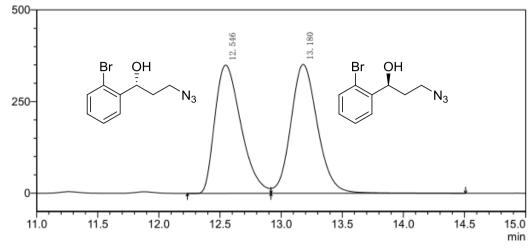
Enzymatic synthesized (*R*)-2c



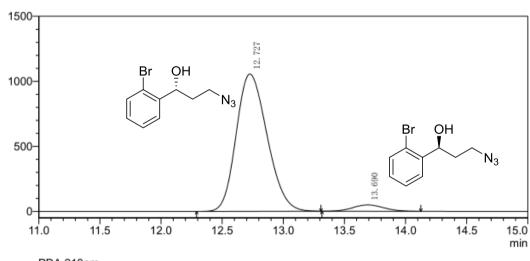

PDA 2	10nm			
ID#	Rt. Time	Area	Height	Area %
1	26.863	2766975	102209	99.037
2	28.063	26914	1086	0.963

Chiral HPLC analysis: Diacel Chiralpak IH, n-hexane/i-PrOH = 97/3, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(R)} = 26.9$ min, $t_{(S)} = 28.1$ min.

Chemical synthesized (rac)-3c


Enzymatic synthesized (R)-3c

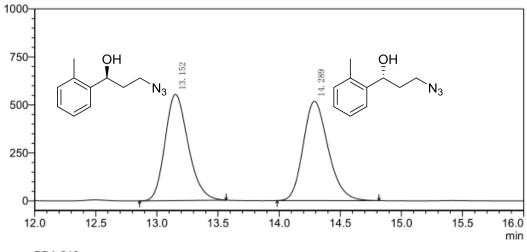
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(R)}$ = 43.1 min, $t_{(S)}$ = 45.6 min.


Chemical synthesized (rac)-4c

mV

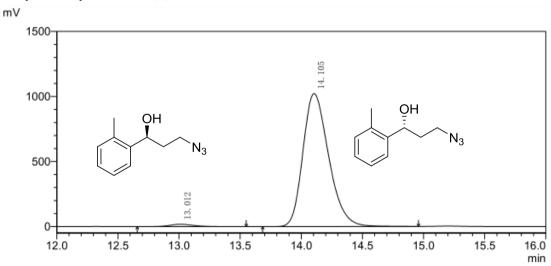
PDA 2	10nm			
ID#	Rt. Time	Area	Height	Area %
1	12.546	5202604	349802	49.281
2	13.180	5354390	351855	50.719

Enzymatic synthesized (*R*)-4c



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	12.727	18601283	1055810	95.549		
2	13.690	866503	48851	4.451		

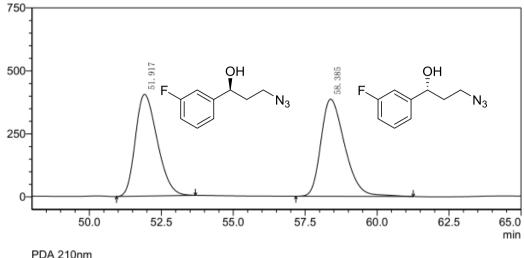
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(R)} = 12.7$ min, $t_{(S)} = 13.7$ min.


Chemical synthesized (rac)-5c

mV

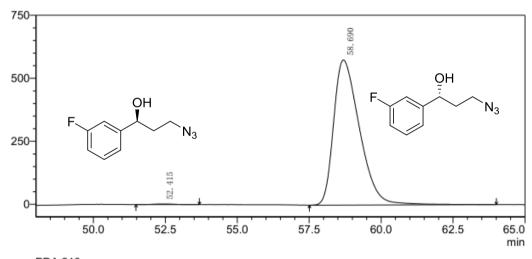
PDA 2	10nm			
ID#	Rt. Time	Area	Height	Area %
1	13.152	7305302	553682	49.752
2	14.289	7378269	517180	50.248

Enzymatic synthesized (*R*)-5c



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	13.012	243869	18328	1.601		
2	14.105	14986855	1021777	98.399		

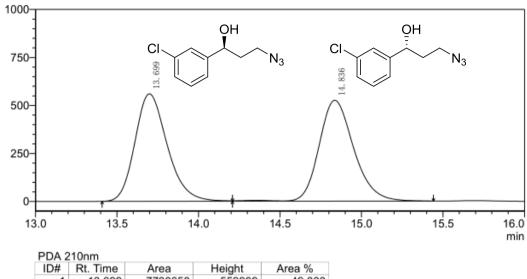
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 13.0$ min, $t_{(R)} = 14.1$ min.


Chemical synthesized (rac)-6c

mV

PDA 2	10nm			
ID#	Rt. Time	Area	Height	Area %
1	51.917	21405810	403687	49.041
2	58.385	22242570	385396	50.959

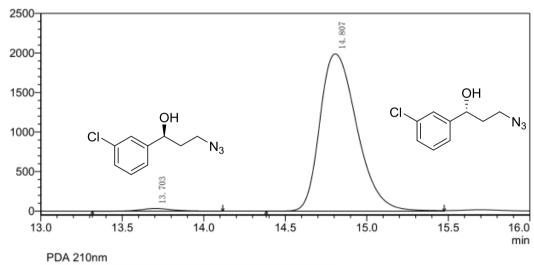
Enzymatic synthesized (*R*)-6c



PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	52.415	112396	2468	0.310		
2	58.690	36193336	575719	99.690		

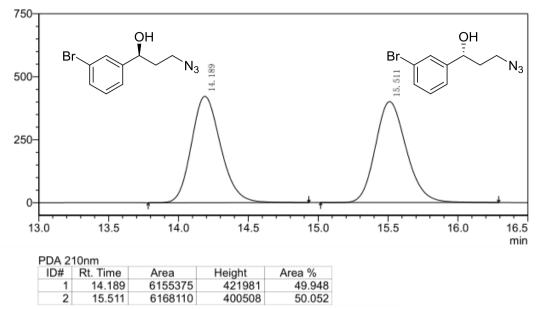
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 52.4$ min, $t_{(R)} = 58.7$ min.

Chemical synthesized (rac)-7c



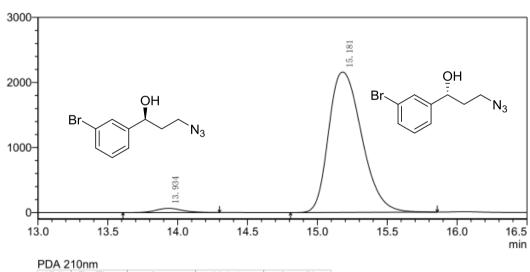
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	13.699	7730658	559909	49.800		
2	14.836	7792621	525288	50.200		

Enzymatic synthesized (*R*)-7c



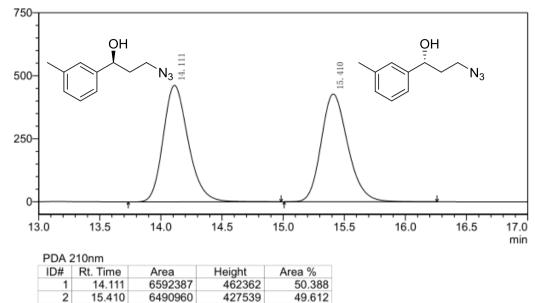
Height 32574 1989490 Area % 1.399 Rt. Time Area 13.703 446579 14.807 31468747 98.601

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda=210$ nm, $t_{(S)}=13.7$ min, $t_{(R)}=14.8$ min.

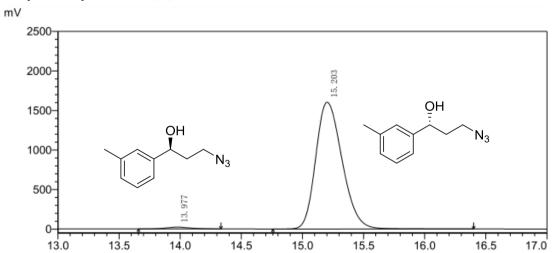

Chemical synthesized (rac)-8c

mV

Enzymatic synthesized (R)-8c



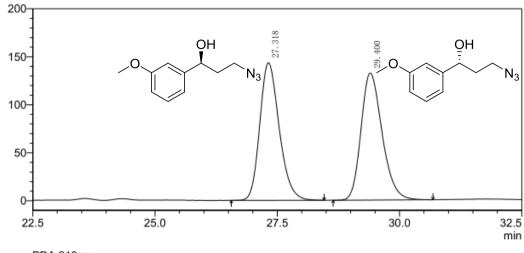
PDA 210nm							
ID)#	Rt. Time	Area	Height	Area %		
	1	13.934	853502	64333	2.344		
	2	15.181	35559398	2157690	97.656		


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 13.9$ min, $t_{(R)} = 15.2$ min.

Chemical synthesized (rac)-9c

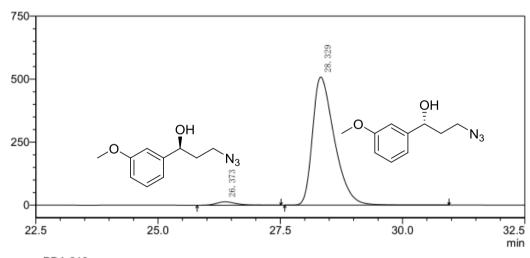
mV

Enzymatic synthesized (R)-9c



PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	13.977	303757	22525	1.245				
2	15.203	24103982	1603325	98.755				

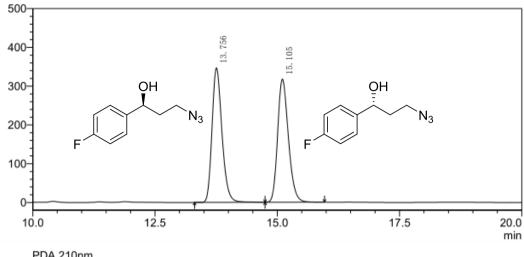
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 14.0$ min, $t_{(R)} = 15.2$ min.


Chemical synthesized (rac)-10c

mV

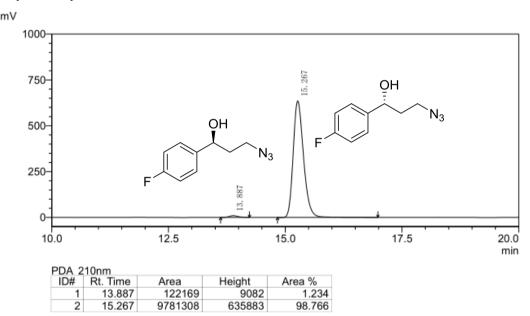
PDA 2	PDA 210nm								
ID#	Rt. Time	Area	Height	Area %					
1	27.318	3964716	143300	50.001					
2	29.400	3964626	132354	49.999					

Enzymatic synthesized (R)-10c



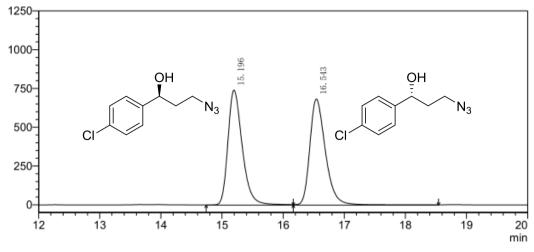
PDA 210nm							
ID# Rt. Time		Area	Height	Area %			
1	26.373	383770	13605	2.370			
2	28.329	15808227	508359	97.630			

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 26.4$ min, $t_{(R)} = 28.3$ min.

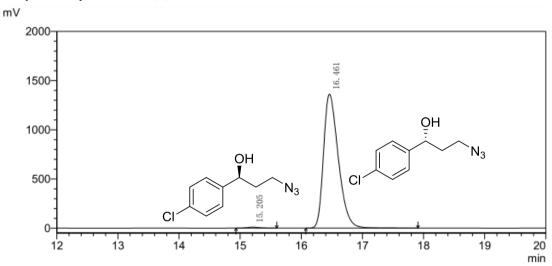

Chemical synthesized (rac)-11c

mV 500-T

PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	13.756	4907942	347039	50.139				
2	15.105	4880796	317530	49.861				

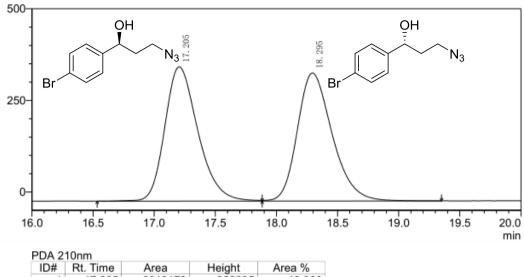

Enzymatic synthesized (R)-11c

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, λ = 210 nm, $t_{(S)}$ = 13.9 min, $t_{(R)}$ = 15.3 min.


Chemical synthesized (rac)-12c

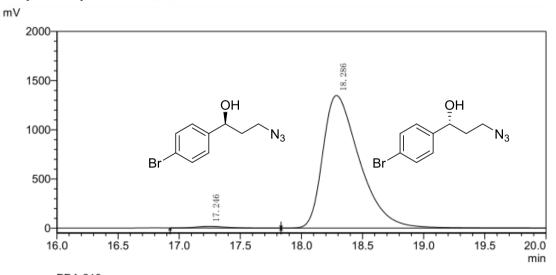
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	15.196	12146888	741169	49.820				
2	16.543	12234509	683865	50.180				

Enzymatic synthesized (R)-12c



PDA 210nm							
	ID#	Rt. Time	Area	Height	Area %		
	1	15.205	132884	9690	0.577		
	2	16.461	22885461	1362110	99.423		

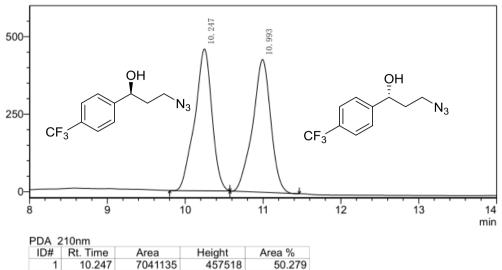
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 15.2$ min, $t_{(R)} = 16.5$ min


Chemical synthesized (rac)-13c

mV

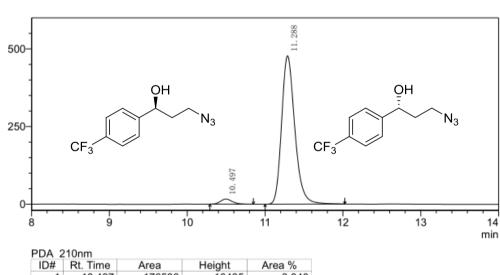
PDA 2	PDA 210nm							
ID#	Rt. Time	Area	Height	Area %				
1	17.205	6919173	366335	49.960				
2	18.295	6930194	349361	50.040				

Enzymatic synthesized (R)-13c

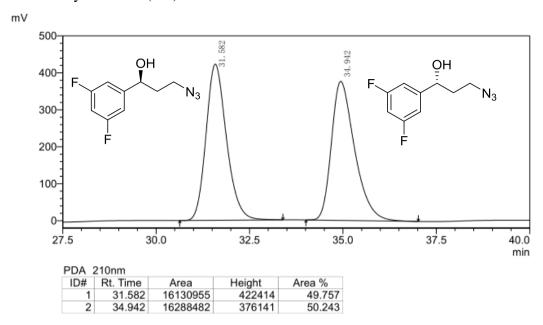


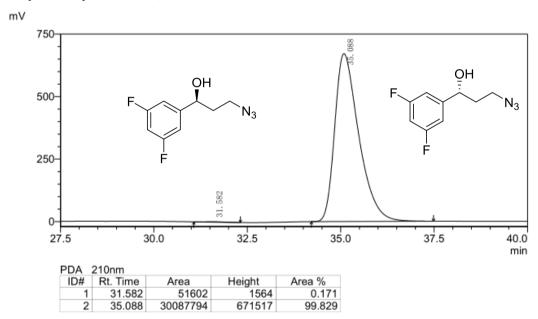
PDA 210nm								
ID#	Rt. Time	Area	Height	Area %				
1	17.246	272574	16226	0.954				
2	18.286	28286737	1348590	99.046				

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, λ = 210 nm, $t_{(S)}$ = 17.2 min, $t_{(R)}$ = 18.3 min.


Chemical synthesized (rac)-14c

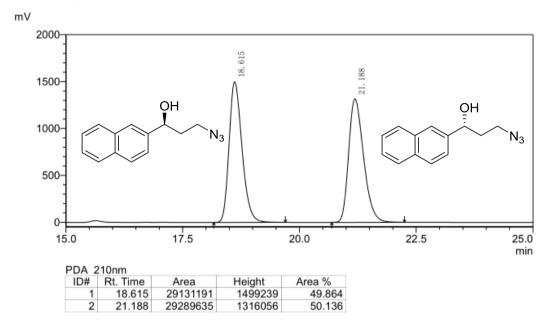
Height 457518 Area % 50.279 10.247 7041135 2 10.993 6963029 428514 49.721


Enzymatic synthesized (*R*)-14c

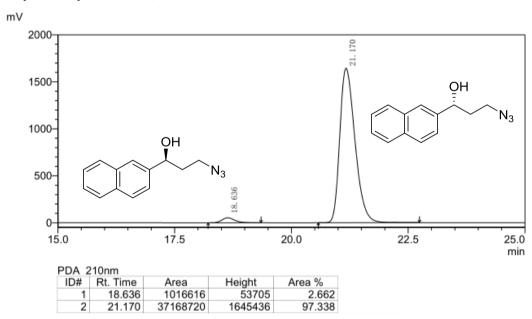

Area % 3.040 10.497 176586 16435 11.288 5631517 477758 96.960

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda=210$ nm, $t_{(S)}=10.5$ min, $t_{(R)}=11.3$ min.

Chemical synthesized (rac)-15c

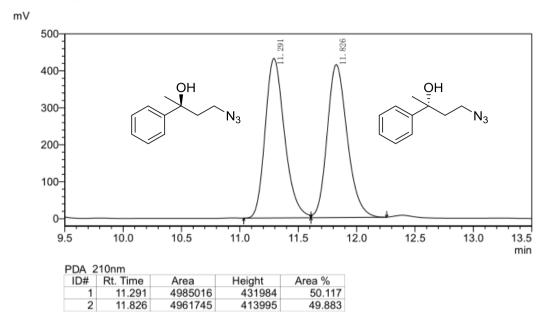


Enzymatic synthesized (*R*)-15c

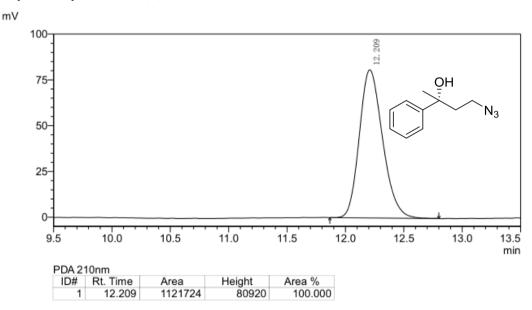


Chiral HPLC analysis: Diacel Chiralpak IC-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 31.6$ min, $t_{(R)} = 35.1$ min.

Chemical synthesized (rac)-16c

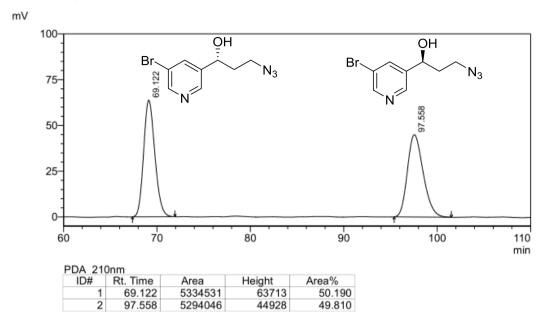


Enzymatic synthesized (*R*)-16c

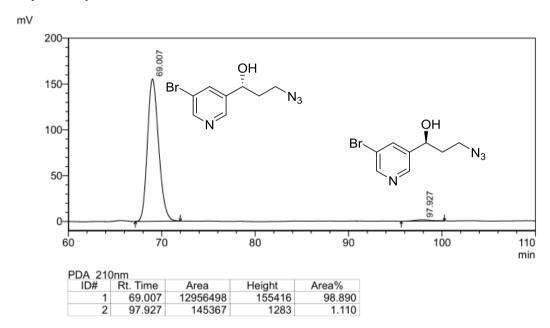


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 18.6$ min, $t_{(R)} = 21.2$ min.

Chemical synthesized (rac)-17c

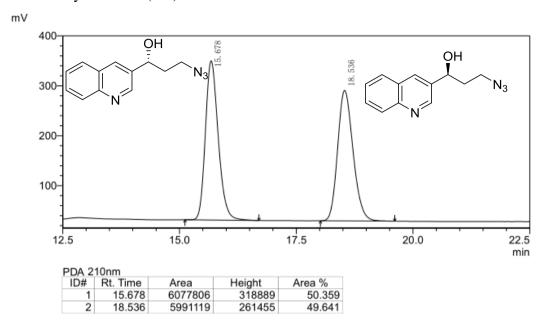


Enzymatic synthesized (*R*)-17c

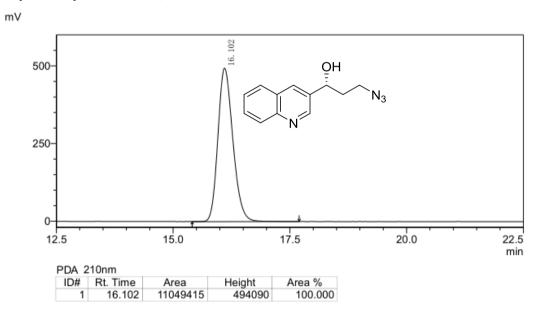


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 11.3$ min, $t_{(R)} = 11.8$ min.

Chemical synthesized (rac)-18c

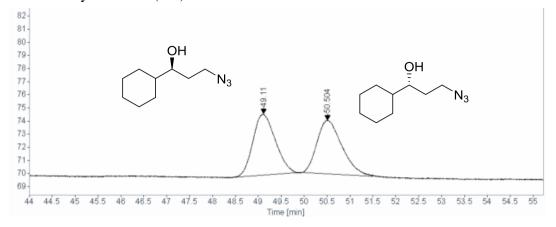


Enzymatic synthesized (*R*)-18c

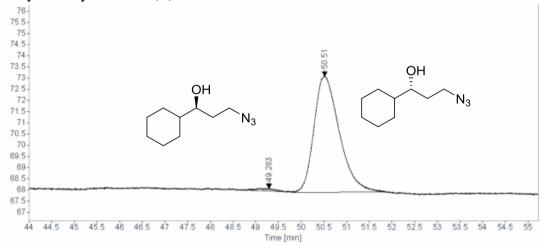


Chiral HPLC analysis: Diacel Chiralpak AD-H, n-hexane/i-PrOH = 97/3, flow rate 0.5 mL/min, λ = 210 nm, $t_{(R)}$ = 69.0 min, $t_{(S)}$ = 97.9 min.

Chemical synthesized (rac)-19c

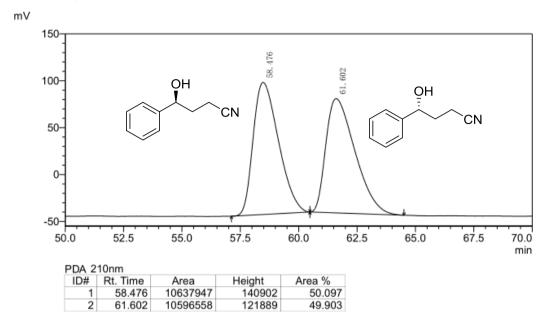


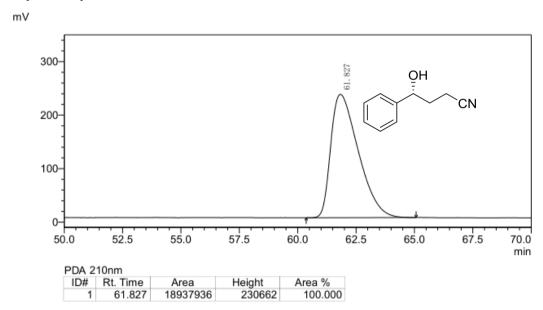
Enzymatic synthesized (*R*)-19c


Chiral HPLC analysis: Diacel Chiralpak OJ-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(R)} = 15.7$ min, $t_{(S)} = 18.6$ min.

Chemical synthesized (rac)-21c

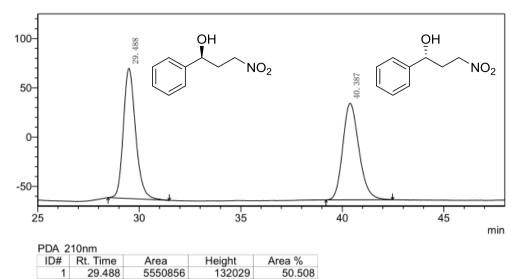
ID#	Ret. Time	Area	Height	Area%	Resolution
1	49.110	161.409	4.702	50.686	
1	50.504	157.040	4.116	49.314	1.453


Enzymatic synthesized (R)-21c


ID#	Ret. Time	Area	Height	Area%	Resolution
1	49.283	3.351	0.122	1.619	
1	50.510	203.651	5.209	98.381	2.011

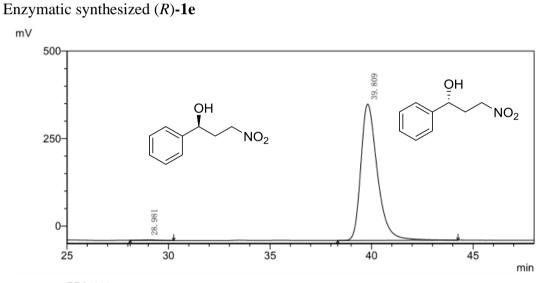
Chiral GC analysis: Rt-bDEXcst (RESTEK), 140° C for 60 min, $t_{(S)} = 49.3$ min, $t_{(R)} = 50.5$ min.

Chemical synthesized (rac)-1d


Enzymatic synthesized (R)-1d

Chiral HPLC analysis: Diacel Chiralpak IH, n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 58.5$ min, $t_{(R)} = 61.6$ min.

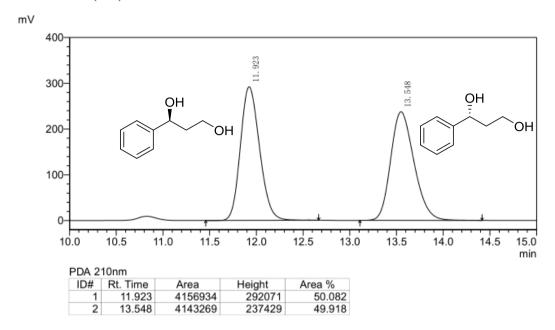
Chemical synthesized (rac)-1e

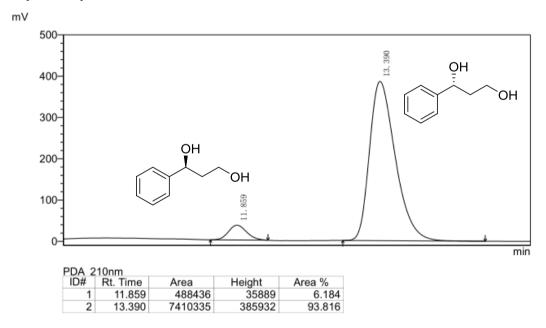

97871

49.492

40.387

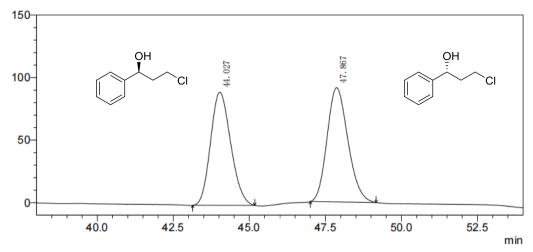
2


5439114

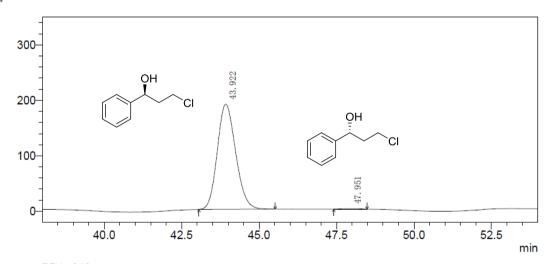

PDA 210nm				
ID#	Rt. Time	Area	Height	Area %
1	28.981	61374	1496	0.278
2	39.809	22040794	389193	99.722

Chiral HPLC analysis: Diacel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 29.0$ min, $t_{(R)} = 39.8$ min.

Commercial (rac)-1f

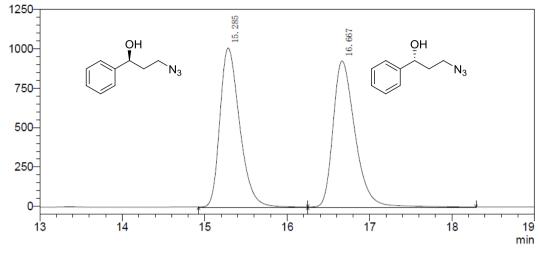

Enzymatic synthesized (R)-1f

Chiral HPLC analysis: Diacel Chiralpak IH, n-hexane/i-PrOH = 88/12, flow rate 0.8 mL/min, $\lambda = 210$ nm, $t_{(S)} = 11.9$ min, $t_{(R)} = 13.4$ min.


Chemical synthesized (rac)-1a

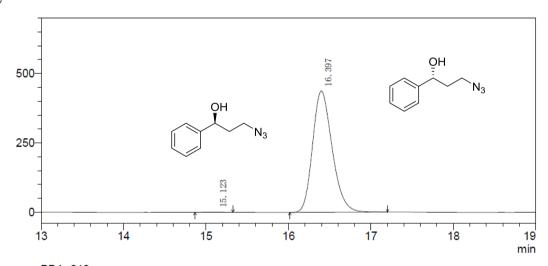
PDA 210nm						
	ID#	Rt. Time	Area	Height	Area %	
	1	44.027	4170848	90440	48.911	
	2	47.867	4356621	91297	51.089	

Enzymatic synthesized (S)-1a by biocatalytic cascade

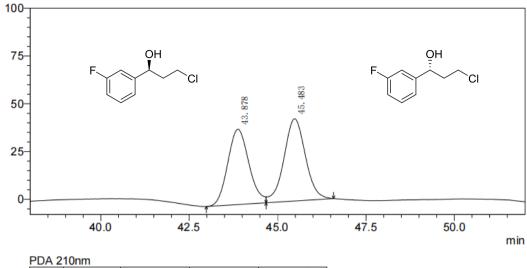


PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	43.922	7825443	189627	99.520		
2	47.951	37735	1033	0.480		

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 43.9$ min, $t_{(R)} = 48.0$ min.


Chemical synthesized (rac)-1c

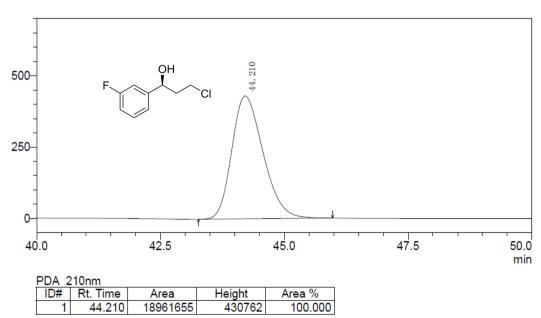
PDA 210nm					
	ID#	Rt. Time	Area	Height	Area %
	1	15.285	16871725	1011036	49.343
	2	16.667	17320955	929151	50.657


Enzymatic synthesized (R)-1c by biocatalytic cascade

PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	15.123	5265	342	0.073		
2	16.397	7235612	437411	99.927		

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 15.1$ min, $t_{(R)} = 16.4$ min.

Chemical synthesized (rac)-6a $^{\rm mV}$


 PDA 210nm

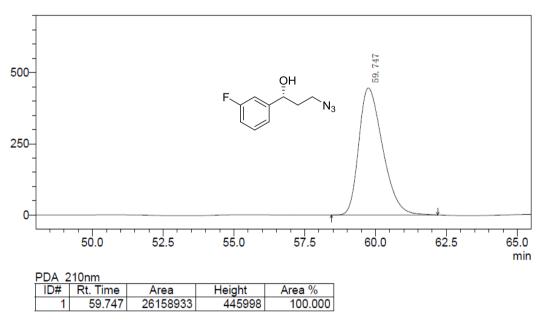
 ID#
 Rt. Time
 Area
 Height
 Area %

 1
 43.878
 1640174
 39450
 47.347

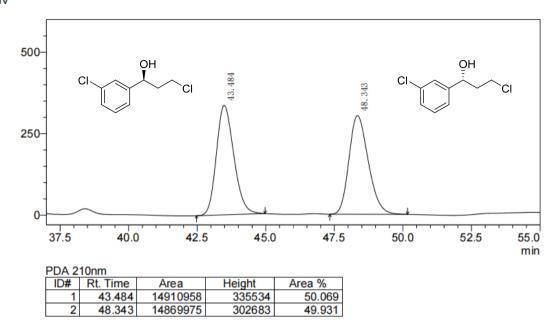
 2
 45.483
 1823950
 43025
 52.653


Enzymatic synthesized (S)-6a by biocatalytic cascade mV

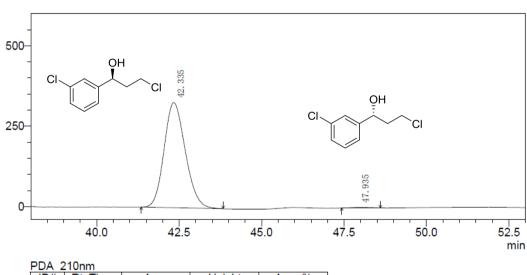
Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, λ = 210 nm, $t_{(S)}$ = 44.2 min.


Chemical synthesized (rac)-6c

m۷


	PDA 210nm					
	ID#	Rt. Time	Area	Height	Area %	
	1	51.917	21405810	403687	49.041	
ľ	2	58.385	22242570	385396	50.959	

Enzymatic synthesized (R)-6c by biocatalytic cascade mV



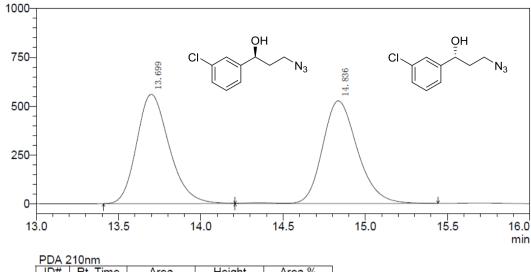
Chiral HPLC analysis: Diacel Chiralpak OX-3, *n*-hexane/*i*-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(R)} = 59.7$ min.

Chemical synthesized (rac)-7a mV

Enzymatic synthesized (S)-7a by biocatalytic cascade mV

 PDA 210nm

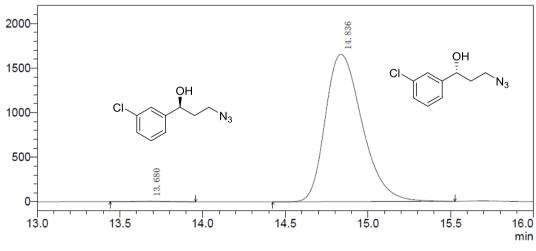
 ID#
 Rt. Time
 Area
 Height
 Area %


 1
 42.335
 14649208
 326818
 99.591

 2
 47.935
 60100
 1908
 0.409

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 210$ nm, $t_{(S)} = 42.3$ min, $t_{(R)} = 47.9$ min.

Chemical synthesized (rac)-7c

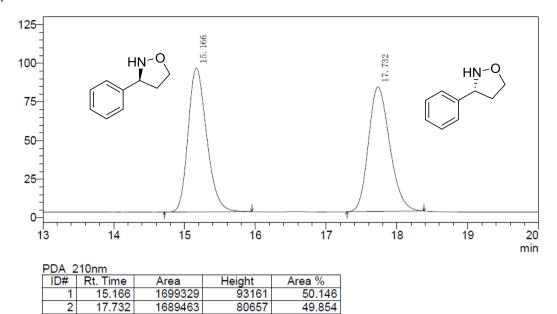

 PDA 210nm

 ID#
 Rt. Time
 Area
 Height
 Area %

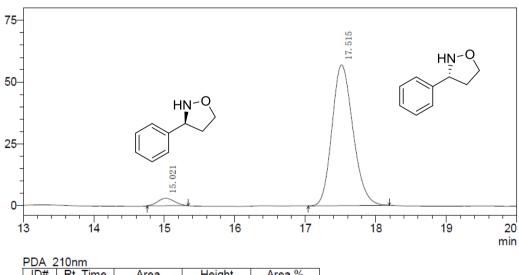
 1
 13.699
 7730658
 559909
 49.800

 2
 14.836
 7792621
 525288
 50.200

Enzymatic synthesized (R)-7c by biocatalytic cascade



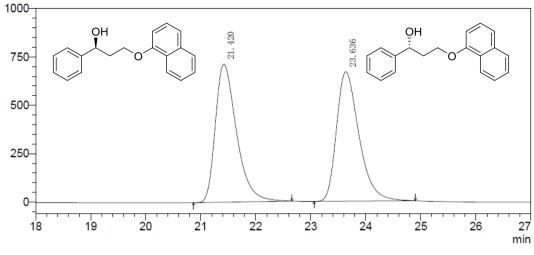
PDA 210nm						
	ID#	Rt. Time	Area	Height	Area %	
	1	13.680	53678	4685	0.209	
	2	14.836	25653639	1653177	99.791	


Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 13.7$ min, $t_{(R)} = 14.8$ min.

Chemical synthesized (rac)-1aa

m۷

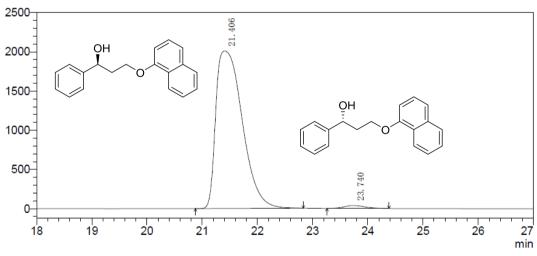
Enzymatic synthesized (R)-1aa



PDA 210nm					
	ID#	Rt. Time	Area	Height	Area %
	1	15.021	49883	3037	4.039
	2	17.515	1185229	57057	95.961

Chiral HPLC analysis: Diacel Chiralpak OJ-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 210 nm, $t_{(S)}$ = 15.0 min, $t_{(R)}$ = 17.5 min.

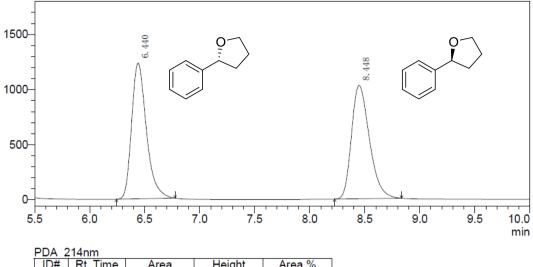
Chemical synthesized (rac)-1ab


m۷

PDA 210nm					
ID#	Rt. Time	Area	Height	Area %	
1	21.420	19097565	713506	50.117	
2	23.636	19008421	669229	49.883	

Enzymatic synthesized (S)-1ab

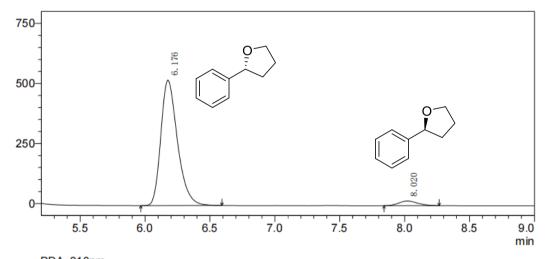
m۷



PDA 210nm					
ID#	Rt. Time	Area	Height	Area %	
1	21.406	66945044	2008535	98.544	
2	23.740	988981	37912	1.456	

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 21.4$ min, $t_{(R)} = 23.7$ min.

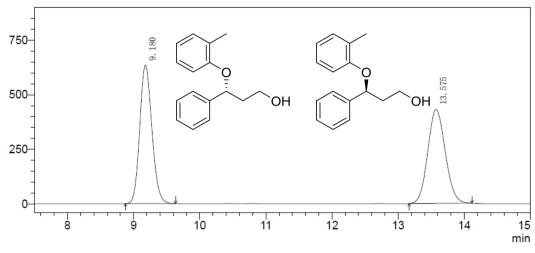
Chemical synthesized (rac)-1ba


m۷

	PDA 214nm						
	ID#	Rt. Time	Area	Height	Area %		
į	1	6.440	11512592	1232992	49.620		
	2	8.448	11689064	1030364	50.380		

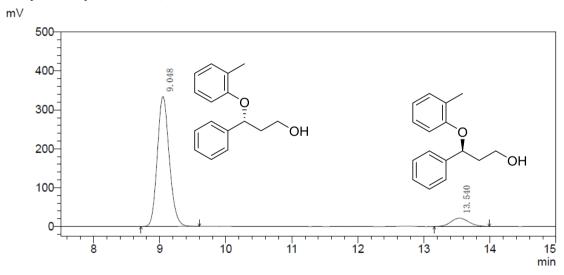
Enzymatic synthesized (R)-1ba

mV



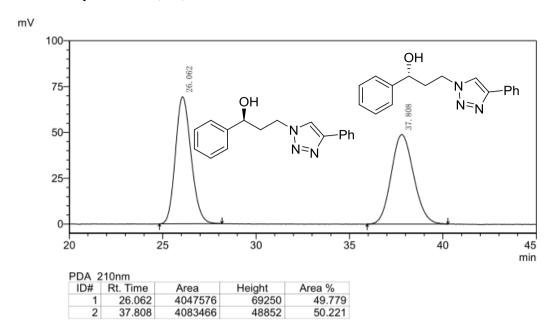
PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	6.176	4659847	522569	95.982		
2	8.020	195046	19283	4.018		

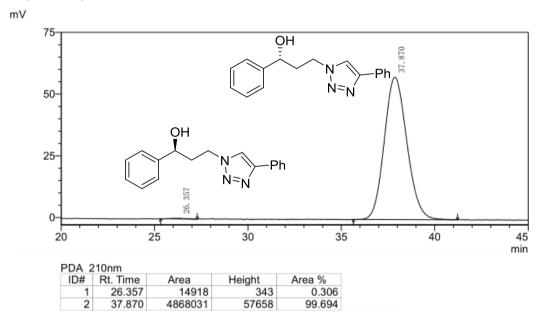
Chiral HPLC analysis: Diacel Chiralpak OD-H, n-hexane/i-PrOH = 92/8, flow rate 0.8 mL/min, $\lambda = 210$ nm, $t_{(R)} = 6.2$ min, $t_{(S)} = 8.0$ min.


Chemical synthesized (rac)-1bb

m۷

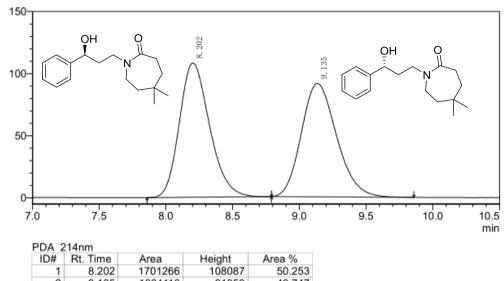
PDA 210nm					
ID#	Rt. Time	Area	Height	Area %	
1	9.180	8128125	634385	50.685	
2	13.575	7908465	430466	49.315	


Enzymatic synthesized (R)-1bb


PDA 210nm						
ID#	Rt. Time	Area	Height	Area %		
1	9.048	4224257	334366	91.236		
2	13.540	405753	21497	8.764		

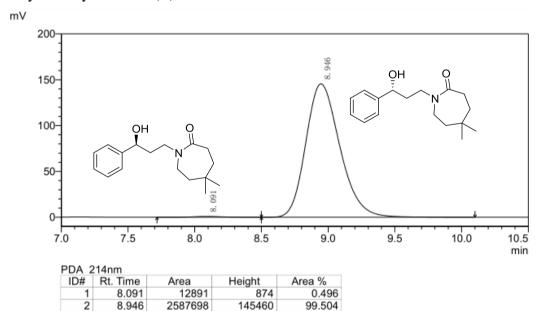
Chiral HPLC analysis: Diacel Chiralpak AD-H, n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(R)} = 9.0$ min, $t_{(S)} = 13.5$ min.

Chemical synthesized (rac)-1ca


Enzymatic synthesized (R)-1ca

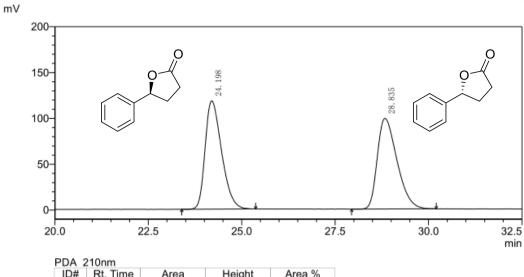
Chiral HPLC analysis: Diacel Chiralpak OD-H, n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 26.4$ min, $t_{(R)} = 37.9$ min.

Chemical synthesized (rac)-1cb

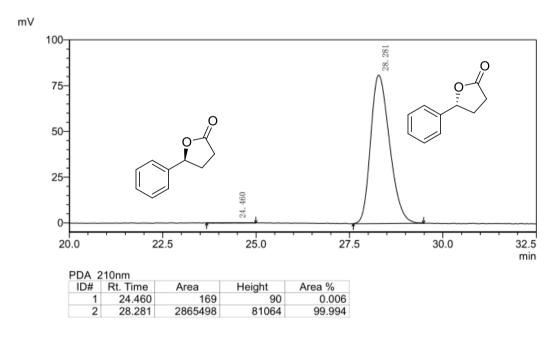

91359

49.747

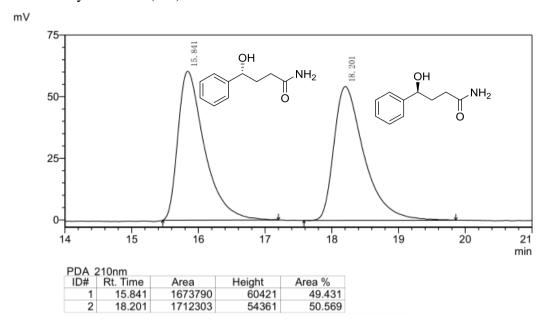
Enzymatic synthesized (R)-1cb


9.135

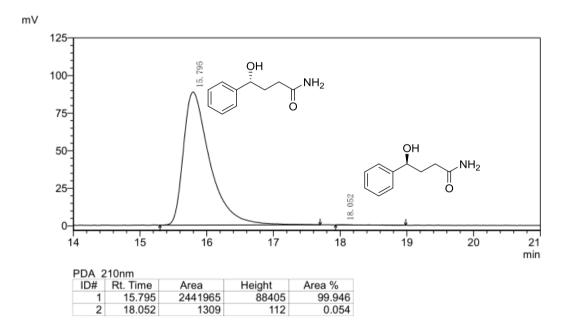
1684116


Chiral HPLC analysis: Diacel Chiralpak OJ-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 214$ nm, $t_{(S)} = 8.1$ min, $t_{(R)} = 8.9$ min.

Commercial (rac)-1da

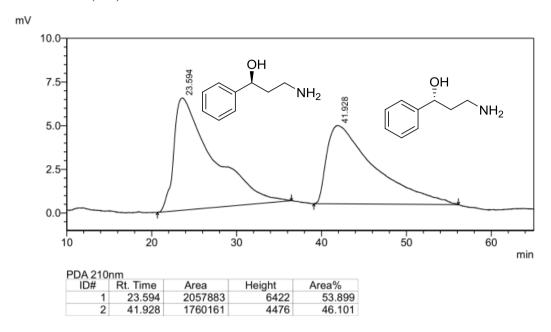

PDA 210nm ID# Rt. Time Area Height Area % 1 24.198 3620948 118225 49.986 2 28.835 3622928 98870 50.014

Enzymatic synthesized (R)-1da



Chiral HPLC analysis: Diacel Chiralpak IH, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 24.5$ min, $t_{(R)} = 28.3$ min.

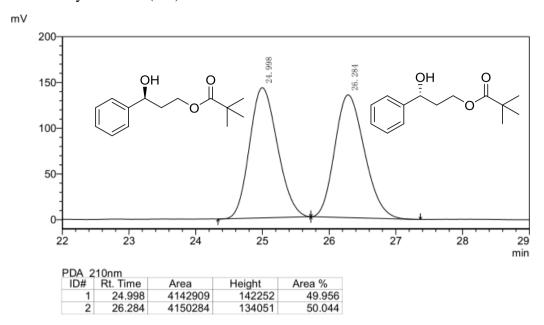
Chemical synthesized (rac)-1db



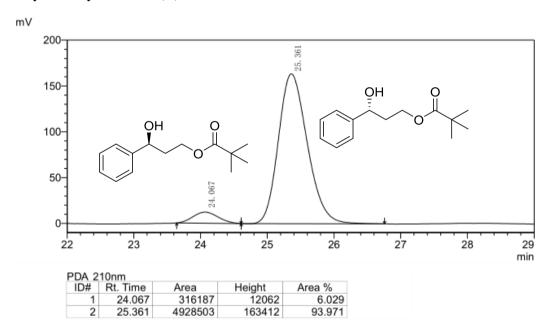
Enzymatic synthesized (R)-1db

Chiral HPLC analysis: Diacel Chiralpak OJ-H, n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(R)} = 15.8$ min, $t_{(S)} = 18.1$ min.

Commercial (rac)-1ea



Enzymatic synthesized (R)-1ea



Chiral HPLC analysis: Diacel Chiralpak OB-H, n-hexane/i-PrOH = 92/8, flow rate 1.0 mL/min, $\lambda = 210$ nm, $t_{(S)} = 23.6$ min, $t_{(R)} = 41.9$ min.

Chemical synthesized (rac)-1fa

Enzymatic synthesized (R)-1fa

Chiral HPLC analysis: Diacel Chiralpak OX-3, n-hexane/i-PrOH = 97/3, flow rate 0.7 mL/min, $\lambda = 210$ nm, $t_{(S)} = 24.1$ min, $t_{(R)} = 25.4$ min.

12. References

- Wan, N. *et al.* Regioselective Ring-Opening of Styrene Oxide Derivatives Using Halohydrin Dehalogenase for Synthesis of 4-Aryloxazolidinones. *Advanced Synthesis & Catalysis* **361**, 4651-4655, doi:https://doi.org/10.1002/adsc.201900786 (2019).
- Wan, N. *et al.* Synthesis of Chiral 5-Aryl-2-oxazolidinones via Halohydrin Dehalogenase-Catalyzed Enantio- and Regioselective Ring-Opening of Styrene Oxides. *Advanced Synthesis & Catalysis* **362**, 1201-1207, doi:https://doi.org/10.1002/adsc.201901412 (2020).
- Morris, G. M. *et al.* AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *Journal of Computational Chemistry* **30**, 2785-2791, doi:https://doi.org/10.1002/jcc.21256 (2009).
- DeLano, W. L. Pymol: An open-source molecular graphics tool. *CCP4 Newsl. Protein Crystallogr* **40**, 82-92 (2002).
- 5 Otwinowski, Z. & Minor, W. in *Methods in Enzymology* Vol. 276 307-326 (Academic Press, 1997).
- Yang, Z., Zeng, X., Zhao, Y. & Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. *Signal Transduction and Targeted Therapy* **8**, 115, doi:10.1038/s41392-023-01381-z (2023).
- Adams, P. D. *et al.* PHENIX: building new software for automated crystallographic structure determination. *Acta Crystallographica Section D: Biological Crystallography* **58**, 1948-1954 (2002).
- 8 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta crystallographica section D: biological crystallography* **60**, 2126-2132 (2004).
- 9 Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallographica Section D: Biological Crystallography* **53**, 240-255 (1997).
- Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. *Journal of applied crystallography* **26**, 283-291 (1993).
- DeLano, W. L. Pymol: An open-source molecular graphics tool. *CCP4 Newsletter on protein crystallography* **40**, 82-92 (2002).

- Vlieg, J. E. T. v. H. *et al.* Halohydrin Dehalogenases Are Structurally and Mechanistically Related to Short-Chain Dehydrogenases/Reductases. *Journal of Bacteriology* **183**, 5058-5066, doi:doi:10.1128/jb.183.17.5058-5066.2001 (2001).
- Schallmey, M. *et al.* Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining. *Applied and Environmental Microbiology* **80**, 7303-7315, doi:doi:10.1128/AEM.01985-14 (2014).
- Schallmey, A. & Schallmey, M. Recent advances on halohydrin dehalogenases—from enzyme identification to novel biocatalytic applications. *Applied Microbiology and Biotechnology* **100**, 7827-7839, doi:10.1007/s00253-016-7750-y (2016).
- Wang, H.-H. *et al.* Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo-, Regio- and Enantioselective Bio-Nitration of Epoxides. *Angewandte Chemie International Edition* **61**, e202205790, doi:https://doi.org/10.1002/anie.202205790 (2022).
- Ma, R. *et al.* Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. *Angewandte Chemie International Edition* **61**, e202212589, doi:https://doi.org/10.1002/anie.202212589 (2022).
- Jautze, S. & Peters, R. Enantioselective Bimetallic Catalysis of Michael Additions Forming Quaternary Stereocenters. *Angewandte Chemie International Edition* **47**, 9284-9288, doi:https://doi.org/10.1002/anie.200803539 (2008).
- Xie, Q. & Dong, G. Aza-Matteson Reactions via Controlled Mono- and Double-Methylene Insertions into Nitrogen–Boron Bonds. *Journal of the American Chemical Society* 143, 14422-14427, doi:10.1021/jacs.1c06186 (2021).
- 19 Claremon, D. A. *et al.* Preparation of 1,3-oxazinan-2-one derivatives as inhibitors of 11β-hydroxysteroid dehydrogenase type 1. WO2009017664 (2009).
- Zhou, J.-N. *et al.* Copper(ii)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine. *Organic & Biomolecular Chemistry* **12**, 1009-1017, doi:10.1039/C3OB42214C (2014).
- Coppi, D. I., Salomone, A., Perna, F. M. & Capriati, V. 2-Lithiated-2-phenyloxetane: a new attractive synthon for the preparation of oxetane derivatives. *Chemical Communications* **47**, 9918-9920, doi:10.1039/C1CC13670D (2011).

- Bellido, M., Riego-Mejías, C., Diaz-Moreno, A., Verdaguer, X. & Riera, A. Enantioselective Ir-Catalyzed Hydrogenation of Terminal Homoallyl Sulfones: Total Synthesis of (–)-Curcumene. *Organic Letters* **25**, 1453-1457, doi:10.1021/acs.orglett.3c00181 (2023).
- Ribelin, T. P. & Aubé, J. Synthesis of enantiomerically enriched (R)-5-tert-butylazepan-2-one using a hydroxyalkyl azide mediated ring-expansion reaction. *Nature Protocols* **3**, 137-143, doi:10.1038/nprot.2007.518 (2008).
- Cai, J. *et al.* Discovery of phenoxybutanoic acid derivatives as potent endothelin antagonists with antihypertensive activity. *Bioorganic & Medicinal Chemistry* **23**, 657-667, doi:https://doi.org/10.1016/j.bmc.2015.01.003 (2015).
- Reichle, A. *et al.* Copper(I) Photocatalyzed Bromonitroalkylation of Olefins: Evidence for Highly Efficient Inner-Sphere Pathways. *Angewandte Chemie International Edition* **62**, e202219086, doi:https://doi.org/10.1002/anie.202219086 (2023).