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Supplemental Fig. 1 | Atherosclerotic plaque pathology analysis and quality control analysis. a,
Quantification of plaque size presented by sex and condition (ND, HFD, and HFD + ABT-737). b,
Quantification of necrotic core area presented by sex and condition (ND, HFD, and HFD + ABT-737). ¢,
Quantification by plaque fibrous cap thickness presented by sex and condition (ND, HFD, and HFD +
ABT-737). d, Representative H&E staining of aortic roots from ND, HFD, and HFD + ABT-737. The
scale bar is 200 ym. e, Quantification of collagen fibers (Aniline blue) area / area of aortic root
presented by sex and condition (ND, HFD, and HFD + ABT-737). f, Pulse wave velocity (PWV)
measurements presented by sex and condition (ND, HFD, and HFD + ABT-737). g, Quality control table
of the scRNA-seq samples including estimated number of cells, fraction reads in cells, mean reads per
cell, median UMI counts per cell, median genes per cell, and total genes detected. h, Heatmap of
normalized expression levels of classical senescence associated mRNAs either enriched in HFD and
reduced by ABT-737 treatment, or conversely, reduced by HFD and increased by ABT-737 treatment in
mice (Lmnb1 and Lbr). Significance was established using Two-Way ANOVA with multiple
comparisons. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
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Supplemental Fig. 2 | scRNA-seq analysis of senescence gene expression. a, UMAPs of p16-tdTomato mRNA expression in ND,
HFD, and HFD + ABT-737 treated mice. b, UMAP plot of Cdkn2a mRNA expression across all clusters and conditions (/eft). Violin plot of
Cdkn2a mRNA expression across all clusters (right). ¢, UMAP plot of Cdkn1a mRNA expression across all clusters and conditions (/eft).
Violin plot of Cdkn1a mRNA expression across all clusters (right). d, GSEA SenMayo plots comparing HFD vs ND and HFD + ABT-737
vs HFD for Clusters 15,20, 21, 3, 16, and 27. e, GSEA CellAge plots comparing HFD vs ND and HFD + ABT-737 vs HFD for Clusters 6,

17,7, and 11.
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Supplemental Fig. 3 | VSMC phenotype analysis. a, Dot plot representation of the gene

expression profile for VSMC phenotype mRNA markers for Cluster 0 subclustered VSMCs. b, Dot

plot representation of the gene expression profile for VSMC phenotype mRNA markers for Cluster

12 subclustered VSMCs.
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Supplemental Fig. 4 | Analysis of mitochondrial and ribosomal gene expression in cell clusters with senescence features. a,
UMAPs of scRNA-seq mitochondrial gene expression across Cluster 0 subclustered VSMCs in ND, HFD, and HFD + ABT-737
treated mice. b, UMAPs of scRNA-seq ribosomal gene expression across Cluster 0 subclustered VSMCs in ND, HFD, and HFD +
ABT-737 treated mice. ¢, UMAPs of scRNA-seq mitochondrial gene expression across Cluster 12 subclustered VSMCs in ND, HFD,
and HFD + ABT-737 treated mice. d, UMAPs of scRNA-seq ribosomal gene expression across Cluster 12 subclustered VSMCs in
ND, HFD, and HFD + ABT-737 treated mice. e, UMAPs of scRNA-seq mitochondrial gene expression across Cluster 2 subclustered
fibroblasts in ND, HFD, and HFD + ABT-737 treated mice. f, UMAPs of scRNA-seq ribosomal gene expression across Cluster 2
subclustered fibroblasts in ND, HFD, and HFD + ABT-737 treated mice. g, UMAPs of scRNA-seq mitochondrial gene expression
across Cluster 9 subclustered T-cells in ND, HFD, and HFD + ABT-737 treated mice. h, UMAPs of scRNA-seq ribosomal gene
expression across Cluster 0 subclustered T-cells in ND, HFD, and HFD + ABT-737 treated mice.
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Supplemental Fig. 5 | Sex differences in unbiased subclustering of senescent clusters. a, UMAPs of Cluster O subclustering
across the ND, HFD, and HFD + ABT-737 groups for male (leftf) and female (right) mice. b, UMAPs of Cluster 12 subclustering
across ND, HFD, and HFD + ABT-737 for male (left) and female (right) mice. ¢, UMAPs of Cluster 2 subclustering across ND, HFD,
and HFD + ABT-737 for male (left) and female (right) mice. d, UMAPs of Cluster 9 subclustering across the ND, HFD, and HFD +
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Supplemental Fig. 6 | Vascular senescent score on individual cell clusters. a,
UMAPs of vascular-senescence scoring across Cluster 0 VSMCs in ND, HFD, and
HFD + ABT-737. b, UMAPs of vascular-senescence scoring across Cluster 12
VSMCs in ND, HFD, and HFD + ABT-737. ¢, UMAPs of vascular-senescence
scoring across Cluster 2 fibroblasts in ND, HFD, and HFD + ABT-737. d, UMAPs of
vascular-senescence scoring across Cluster 9 T-cells in ND, HFD, and HFD + ABT-
737.
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Supplemental Fig. 7 | Human VSMC senescence validation. a, Phase contrast micrographs of SA-Bgal activity (blue) staining in
proliferating (P), replicative senescence (RS), doxo-treated, IR-treated, oxLDL-treated, and CoCl,-treated human VSMCs for 7-10
days. b, RT-gPCR analysis of the levels of CDKN2A and /L8 mRNAs in human VSMCs treated as described in (a). ¢, RT-gPCR
analysis of the levels of MMP3, CTSS, and LCP1 mRNAs in human VSMCs treated as described in (a). d, Table of human scRNA-
seq metadata analysis from atherosclerotic tissue. Each column represents a VSMC phenotype identified in the metadata analysis,
and each column includes the vascular senescent scoring genes that were expressed in the indicated VSMC phenotype. In b and c,
data represent the means +SD from n=3 biological replicates. Significance was established using Shapiro-Wilk test first, followed by
Welch's t-test. *, p<0.05; **, p<0.01; ***, p<0.001; **** p<0.0001.
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Supplemental Fig. 8 | Human WI-38 fibroblast senescence validation. a, Phase contrast micrographs of
SA-Bgal activity (blue) staining in human WI-38 fibroblasts that were either proliferating (P), rendered
senescent by replicative senescence (RS), or by treatment with Doxo, IR and additional culture for 7-10
days. b, RT-qPCR analysis of the levels of CODKN2A, CDKN1A, GDF15, LMNB1 and /L8 mRNAs in WI-38
fibroblasts treated as described in (a). c-f, RT-gPCR analysis of the levels of SPP1, SERPINE2, CTSB,
TNFRSF11B, PRG4, LTPBP2, FTH1, MGP, LUM, CD9, APOE, LGALS3, CST3, SPARC, THBS1, MMP3,
CTSS, and LCP1 mRNAs in human WI-38 fibroblasts treated as described in (a). In b-f, data represent the

means +SD from n=3 biological replicates.
multiple comparisons. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.

Significance was established using One-Way Anova with



b
LdIr- + GCV LdIr3MR + Vehicle LdIr-3MR + GCV
S s e Wk %7
x e 2 3 \ c
- & - s | g & °
< '\" — I ‘§§_2- o o ©
2 2 :&’_ ole °
£ g = .
© L[]
2 981 L % .
w 3 ®© °
3 8
T o
X 0
+ -+
- N o
L
: G
2 RN ' 3
[0} ) e &7
£ ! Z 3}
9 s
k) 1
» ; o
= )
(o] /e
(723 Y
(%]
©
=
f
Ldir"- + GCV Ldir"-;3MR + Vehicle Ldir;3MR + GCV
— 8 =
©
5o | °
TE 6
g3 s
2 R .
S SRS ¢ ** =
© C ° .
2] I 9 2 L]
w S -
S g" -
T | o
O -
+ -+
1 @
L
G
X
3
) ~
£
[*]
=
o
P
c
(o]
(723
0
©
=
Reactome Reactome
Cap vs Normal wall — upregulated in cap Normal wall vs Cap — upregulated in normal wall
Degradation of the extracellular matrix Smooth muscle contraction
Trafficking and processing of endosomal TLR Muscle contraction
Neutrophil degranulation Striated muscle contraction
Regulation of genes linked to cholesterol transport and efflux Complement activation, classical pathway
Assembly of collagen fibrils and other multimeric structures Vascular smooth muscle contraction
Collagen degradation Myometrial relaxation and contraction pathways
NR1H2 and NR1H3-mediated signaling Ghrelin-mediated regulation of energy homeostasis
Endosomal/\acuolar pathway ATM-mediated phosphorylation of repair proteins
Extracellular matrix organization FGFR1b ligand binding and activation
Collagen formation Complement cascade regulation
| 1 1 || || || 1
0 2 4 6 0 2 4 6 8

-Logq (p value)

-Logq (p value)

GCV

(1]

Fibrous cap thickness (um)

«

Fibrous cap thickness (um)

Mazan-Mamczarz et al, Fig. S9

d
20 = 50 =
(]
. <
- ]
15 = * co " 5
$3 4
° 88 -
10 = R 55
b ° £8 204 *
0®0g © o e o :
ch <% 404
® o|*
3 o
0 0
+ - + GCV + - GCV
1 x 1 @
S <
3 3 3 3
L X
S 3
~ ~
h
*
*
20 = 50 = *
*%k ©
o oy
15 = o, o404, 3
) oo g g‘ 30 L4 °
=g -
10 88, * s B .
Qo
v = g 20 = gle oo
- < o«
5 O 10 =
x
0= 0=
+ - + GCV + - + GCV
1 x 1 x
S <
3 3 3 3
L <
3 3
~ ~
Reactome
Core vs Normal wall — upregulated in core
Lysosome
Toll-like receptor endosomal trafficking and processing
Extracellular matrix organization
Adipogenesis
Complement activation, classical pathway
Small leucine-rich proteoglycan (SLRP) molecules
Collagen biosynthesis and modifying enzymes
Interleukin-1 regulation of extracellular matrix
Termination of O-glycan biosynthesis
Phagosome
|| || 1
0 4 6

-Log (p value)

Supplemental Fig. 9 | Analysis for spatial transcriptomic profiling of arterial segments. a, H&E staining (top) and Masson’s
trichrome staining (bottom) of brachiocephalic arterial sections from Ldlr’- + GCV, LdIr”;3MR + Vehicle, and LdIr’*;3MR + GCV
treated mice. The scale bar is 100 um. b, Plague cross sectional area, ¢, plaque fibrous cap thickness measurements and d,
Masson’s trichrome analysis of Aniline blue-positive area over total plaque area in brachiocephalic arterial sections from Ldlr” + GCV,
LdIr*;3MR + Vehicle, and Ldlr’”;3MR + GCV treated mice. e, H&E staining (top) and Masson’s trichrome staining (bottom) of the
descending aortic sections from Ldlr” + GCV, LdIr";3MR + Vehicle, and LdIr’;3MR + GCV treated mice. The scale bar is 50 um. f,
Plaque cross sectional area, g, plaque fibrous cap thickness measurements (cap is underlined with yellow dashed line), and h,
Masson’s trichrome analysis of Aniline blue-positive area over total plaque area in sections of the descending aorta from Ldir” +
GCV, LdIr;3MR + Vehicle, and LdIr’;3MR + GCV treated mice. Inset image scale bar is 5 um. i, Reactome pathway analysis of
genes upregulated in cap compared to normal wall across all conditions (/eft) and of genes upregulated in the normal wall compared
to the cap (right). j, Reactome pathway analysis of genes upregulated in the core compared to the normal wall across all conditions.
Significance was established using One-Way Anova with multiple comparisons. *, p<0.05; **, p<0.01; *** p<0.001; ****, p<0.0001.
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