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12 Supplementary Fig. 1 Powder X-ray diffraction patterns of Al(fum).
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14 Supplementary Fig. 2 Powder X-ray diffraction patterns of Al(fum)@2%HPC.
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16 Supplementary Fig. 3 Powder X-ray diffraction patterns of Al(fum)@5%Kaolin.
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18 Supplementary Fig. 4 N, adsorption isotherm at 77 K of Al(fum).
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21 Supplementary Fig. 5 N, adsorption isotherm at 77 K of Al(fum)@2%HPC.
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23 Supplementary Fig. 6 N, adsorption isotherm at 77 K of Al(fum)@5%Kaolin.
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25 Supplementary Fig. 7 Simulated abrasion test of Al(fum)@2%HPC.
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27 Supplementary Fig. 8 Simulated abrasion test of Al(fum)@5%Kaolin.
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29  Supplementary Fig. 9 The SFs and N, isotherms on Al(fum) at 315 K.
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31 Supplementary Fig. 10 The SFs and N, isotherms on Al(fum)@2%HPC at 315 K.
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33 Supplementary Fig. 11 The SFs and N, isotherms on Al(fum)@5%Kaolin at 315 K and 323 K.
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35 Supplementary Fig. 12 The isosteric heat of adsorption determined from Virial equations of SFg

36 adsorption data for Al(fum).
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38 Supplementary Fig. 13 The isosteric heat of adsorption determined from Virial equations of SFg

39 adsorption data for Al(fum)@2%HPC.
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41 Supplementary Fig. 14 The isosteric heat of adsorption determined from Virial equations of SFg

42 adsorption data for Al(fum)@5%XKaolin.
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44 Supplementary Fig. 15 The isosteric heat of adsorption determined from Virial equations of N,

45 adsorption data for Al(fum).
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47 Supplementary Fig. 16 The isosteric heat of adsorption determined from Virial equations of N,
48  adsorption data for Al(fum)@2%HPC.
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50 Supplementary Fig. 17 The isosteric heat of adsorption determined from Virial equations of N,
51 adsorption data for Al(fum)@5%XKaolin.

O Exp-SF.-298 K
O Exp-SF-315K

—— Fitted-SF,-298 K
— Fitted-SF,-315 K

0 100 200 300 400 500 600
o Quantity adsorbed (mg g™)

53 Supplementary Fig. 18 The Virial fitting of SF¢ adsorption data for Al(fum).
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55 Supplementary Fig. 19 The Virial fitting of SF¢ adsorption data for Al(fum)@2%HPC.
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57 Supplementary Fig. 20 The Virial fitting of SF¢ adsorption data for Al(fum)@5%Kaolin.
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59 Supplementary Fig. 21 The Virial fitting of N> adsorption data for Al(fum).
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61  Supplementary Fig. 22 The Virial fitting of N, adsorption data for Al(fum)@2%HPC.
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63 Supplementary Fig. 23 The Virial fitting of N> adsorption data for Al(fum)@5%Kaolin.
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65 Supplementary Fig. 24 The IAST selectivities of SFe/N, mixture (10/90, v/v) for Al(fum) at 298 K up

66  tol bar.
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68 Supplementary Fig. 25 The IAST selectivities of SFs/N> (10/90, v/v) mixture for Al(fum)@2%HPC at

69 298 Kupto 1 bar.
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71 Supplementary Fig. 26 The [AST selectivities of SF¢/N» (10/90, v/v) mixture for Al(fum)@5%Kaolin

72 at298 K up to 1 bar.
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74 Supplementary Fig. 27 DSLF fitting of the SFs adsorption data at 298 K for Al(fum).
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76 Supplementary Fig. 28 DSLF fitting of the SF¢ adsorption data at 298 K for Al(fum)@2%HPC.
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78 Supplementary Fig. 29 DSLF fitting of the SFs adsorption data at 298 K for Al(fum)@5%XKaolin.
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80  Supplementary Fig. 30 DSLF fitting of the N, adsorption data at 298 K for Al(fum).
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82 Supplementary Fig. 31 DSLF fitting of the N, adsorption data at 298 K for Al(fum)@2%HPC.
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84  Supplementary Fig. 32 DSLF fitting of the N adsorption data at 298 K for Al(fum)@5%Kaolin.
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86 Supplementary Fig. 33 Cycling column breakthrough curves for SFs/N, mixture (10/90, v/v) for Al(fum)

87 at 298 K.
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89 Supplementary Fig. 34 Cycling column breakthrough curves for SFe¢/N> mixture (10/90, v/v) for

90  Al(fum)@2%HPC at 298 K.
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92 Supplementary Fig. 35 Bed pressure drop values of Al(fum) and Al(fum)@2%HPC.
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95 Supplementary Fig. 36 SFs breakthrough for 30 cycles at 303K (adsorption) and 333 K (desorption).
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97 Supplementary Fig. 37 Schematic model of single-stage VTSA process.
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99 Supplementary Fig. 38 Influence of single-stage VISA parameters on purity and recovery. (A, B),
100  Heating co-current blowdown temperature, Py=1.5 bar, Pi=0.1 bar, Ppp=0.8 bar, Ty=338 K. (C, D),
101  Heating co-current blowdown pressure, Py=1.5 bar, P;=0.1 bar, Ty=338 K, Trp=333 K. (E, F),
102 Desorption temperature, Py=1.5 bar, Ppp=0.8 bar, P1=0.1 bar, Ty=338 K. (G, H), Desorption pressure,

103 PH:1.5 bar, PPP:0.8 bar, TH:338 K, TPP:333 K.
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108 Supplementary Fig. 40 Influence of first-stage VTSA parameters on purity and recovery. (A, B),
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112 Supplementary Fig. 41 Influence of two-stage VTSA parameters on purity and recovery. (A, B),
113 Heating co-current temperature, Py=1.5 bar, P1=0.1 bar, Ppp=0.8 bar, Ty=333 K. (C, D), Heating co-
114 current pressure, Pu=1.5 bar, Pr=0.1 bar, Te=333 K, Tpp=328 K. (E, F), Desorption temperature, Py=1.5
115  bar, Ppp=0.8 bar, P.=0.1 bar, Tpp=333 K. (G, H), Desorption pressure, Py=1.5 bar, Ppp=0.8 bar, Ty=333
]. ].6 K, TPP=328 K.
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Supplementary Table 1. DSLF fitting parameters for SFs and N, in Al(fum) at 298 K.

(B, sat

mmol/g

Gas QA sat
mmol/g

SFs 1.92453

N 0.00341

0.18170  0.54749

2.45960

0.82352

Supplementary Table 2. DSLF fitting parameters for SFs and N, in Al(fum)@2%HPC at 298 K.

qB,sat

mmol/g

0.24634  0.60875

2.17274

0.84424

125
Gas qasat
mmol/g
SFs 1.55684
N 0.00228
126

Supplementary Table 3. DSLF fitting parameters for SFs and N, in Al(fum)@5%XKaolin at 298 K.

qB,sat

mmol/g

Gas qA sat
mmol/g

SFs 2.09380

N 0.00200

0.06819 0.50870

2.56050

0.80035

127

1.29267 0.99999

1.09730  0.99991

1.29147  0.99999

1.07682  0.99991

1.20607  0.99999



128 Supplementary Table 4. Isotherm parameters for SF¢ and N, on Al(fum)@5%Kaolin by regression.

Al(fum)@5%Kaolin
Parameter
N, SFs
IP;/ kmol/(kg bar) 3.79%107 1.81x 1013
1P/ K 566 8260
IP;/ bar’! 8.56x107 1.46x1071°
P4/ K 2112 7961
R? 0.999 0.995
129  Supplementary Table 5. The adsorption bed parameters of single-stage VTSA.
Parameter Description Value
Wi/ m Wall thickness used of bed 0.0005
Hy/m Height of adsorbent layer 0.45
Dy/m Internal diameter of adsorbent layer 0.15
E;/ m*/m3 Inter-particle voidage 0.4
E, / m*/m? Intra-particle voidage 0.205
RHO, / m*/m? Bulk solid density of adsorbent 405
R,/ mm Adsorbent particle radius 1.5
SFac Adsorbent shape factor 0.78
MTC (N>)/s™ Constant mass transfer coefficients 0.0232
MTC (SFs)/s™! Constant mass transfer coefficients 0.00288
Cps / MT /(kg K) Adsorbent specific heat capacity 0.00119
DH(N>) / MJ/kmol Constant for heat of adsorption -8.7
DH(SFs) / MJ/kmol Constant for heat of adsorption -37.5
HTC/ MW/(m? K) Constant for the heat transfer coefficient 0.76
Constant for the gas phase heat
Ky / MW/(m? K) 2.35%107
conductivity
K,/ MW/(m? K) Adsorbent thermal conductivity 1x10°




130 Supplementary Table 6. The adsorption bed parameters of two-stage VTSA.

Value
Parameter Description
first-stage VTSA second-stage VTSA
Hy,/m Height of adsorbent layer 0.60 0.50
Dy/m Internal diameter of adsorbent layer 0.15 0.15

131 Supplementary Table 7. Optimized parameter of Single stage and Two stage VTSA.

Single stage VTSA Two stage VTSA
first-stage second-stage
VTSA VTSA
Heating co-current pressure/ bar 0.8 - 0.8
Heating co-current temperature/ K 333 - 328
Desorption pressure/ bar 0.1 0.1 0.1
Desorption temperature/ K 338 333 333
Purge to feed ratio (P/F ratio) - 0.02 -

132



133 Supplementary Table 8. The optimized parameters of cryogenic distillation simulation.

Top of Bottom of
Feedstock distillation distillation
column column
Mass flow rate /kg/h 3.084 1.953 1.131
Mole flow rate /kmol/h 0.077 0.070 0.007
Temperature /K 93 104 264
pressure /bar 10 10 10
Component mass flow rate /kg/h
SFe 1.95 0 1.13
N 1.13 1.95 0
Component mole flowrate /kmol/h
SFs 0.008 0 0.008
N2 0.070 0.070 0
Component mole fraction
SFe 0.1 0 0.999
N 0.9 1 0.001
Overall energy consumption heat 1.64 0.36 0.53
/ MJ/kg SFs pump 0.75 - -
1.76

SF¢ energy consumption / MJ/kg SFs

134



135  Supplementary Table 9. Comparison of the SFs uptake at 10 kPa, IAST predicted SF¢/N> (10/90)
136 selectivities, the adsorption isosteric heat values (Qs;) of SFs and N> and Qg ratio of SFe/N, among
137 different MOFs.

SF¢ uptake IAST O« / kJ/mol

Adsorbents - .. Ref
mmol/g selectivity SFs N, Ratio
Al(fum) 3.00 50139 35.9 75 479
Al(fum)@2%HPC 2.79 28978 35.0 74 473 v{(‘)‘r‘;
Al(fum)@5%Kaolin 2.80 34409 37.5 87 433
Ni(ade)(dabco)o.s 223 948 476 194 245 1
Ni(NDC)(TED)o s 2.78 750 341 131 260 2
Ni(ina), 2.39 375.1 334 161 207 3
SBMOF-1 0.89 325 32.5 15 217 4
Cu-MOF-NH, 3.39 266.2 552 191 289 5
C-PVDC-800 2.15 244.8 369 148 249 6
Ui0-66-Br; 0.75 220 443 - - 7
Ni(pba)s 1.7 200.6 24 167 144 3
Ui0-66 0.82 127.8 32.1 - ; 7
PhsM,Cs 2.69 76.1 23 - - 8
HKUST-1c 1.37 50.1 9.5 - - 9
Zeolite-13X 0.99 56.5 23 18 128 10
MOF-74(Zn) 1.35 46 25 ; ; 1
MOF-74(Co) 2.06 34.6 40 - - 1
MOF-74(Mg) 2.1 19 32 ; - 1
CC3 0.88 74 40 ; ; 12
CAU-17* 1.15 31 - - - 13
MIL-100(Fe) 0.25 24.4 20.5 17 121 14
Zn(TMBDC)(DABCO)o 5 2.48 239 452 246 184 15
HBU-21 0.4 184 245 - - 16
CAU-10-Py 1.13 203.6 326 175 186 17
3D-TMTAPB-COF 223 335 335 148 226 18
ACK1 1.80 684 306 215 14219
YTU-30 0.85 325 27 138 196 20
SNNU-204 0.61 49 21 164 128 21
PC-750 232 437 329 172 191 22
Ni(3-mpba), 1.79 221 32 13 246 23

138  2This data was obtained at 273 K.
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