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Supplementary Texts 

This paper carries out a theoretical analysis and builds a theoretical system based on Hypothesis 

1-3. The Hypotheses used as the basis only need to be reasonable and applicable and do not 

necessarily need to be proved. However, the whole mathematical calculus process can deepen the 

understanding of the relationship and meaning of each hypothesis.  

Hypothesis 1 

Hypothesis 1: For a multi-input-single-output (MISO) function with continuous derivatives 

(smooth) 

𝑓: 𝑥 ↦ 𝑦 = 𝑓(𝑥), 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑃], 

(a) (Existentiality): For any certain data point (𝑥0, 𝑦0), the function has the local linearization: 

𝑦0 = 𝑓(𝑥0) = 𝐶0 + 𝐶𝑥0
𝑇, where C = [C1, … , CP]. 

(b) (Uniqueness): If Cp is the corresponding partial derivative of the output y0 to the input 𝑥0
𝑝
, 

then C is unique. 

(c) (Approximation): In the sufficiently small neighbor of any certain data point (𝑥0, 𝑦0), any 

point (𝑥, 𝑦) can be approximated as: 

𝑦 = 𝑓(𝑥) ≈ 𝐶0 + 𝐶𝑥
𝑇, 

where C  and C0  is determined by (𝑥0, 𝑦0)  (that is 𝑦0 = 𝑓(𝑥0) = 𝐶0 + 𝐶𝑥0
𝑇  in Hypothesis 

1(a)(b)). 

(d) (Continuity): C and C0 are also the continuous function of input 𝑥. 

 

Proof： 

(a)-(b) (Existentiality and Uniqueness): 

For a multi-input-single-output (MISO) function  

𝑓: 𝑥 ↦ 𝑦 = 𝑓(𝑥), 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑃], 

with continuous derivatives is a continuous and derivable function. 

If the mapping function is continuous and derivable, then 
𝜕𝑦

𝜕𝑥𝑝
 is existent and unique. 

For any certain data point (𝑥0, 𝑦0), define 



𝐶𝑝 ≜
𝜕𝑦

𝜕𝑥𝑝
|𝑥=𝑥0 

and 

𝐶0 = 𝑦0 −∑𝐶𝑝𝑥0
𝑝

P

𝑝=1

 

So 

𝑦0 = 𝑓(𝑥0) = 𝐶0 +∑𝐶𝑝𝑥0
𝑝

P

𝑝=1

= 𝐶0 + 𝐶𝑥0
𝑇 

where, 𝐶 = [𝐶1, … , 𝐶P]. 

According to the existence and uniqueness of 𝐶𝑝, Hypothesis 1(a) and (b) can be proved. 

 

(c) (Approximation):  

The proof of Hypothesis 1(c) is obviously easy to be accepted because of continuity and 

“substituting curve with straight”. 

According to the “substituting curve with straight”, for a smooth “curve”, we can approximate it 

with “straight”. For any data point (𝑥, 𝑦) in the sufficiently small neighbor of a certain data point 

(𝑥0, 𝑦0), that is  

𝑦 = 𝑓(𝑥) ≈ 𝐶0
′ + 𝐶′𝑥𝑇. 

In the neighbor area of (𝑥0, 𝑦0), all the data satisfy it, including(𝑥0, 𝑦0). And   

𝑦0 = 𝑓(𝑥0) = 𝐶0 + 𝐶𝑥0
𝑇, 

by Hypothesis 1(a). 

So 𝐶0
′ = 𝐶0, 𝐶′ =  𝐶 is a reasonable solution (The derivation cannot guarantee the uniqueness 

of the solution). 

According to the continuity of 𝑓(𝑥) and 𝑔(𝑥) = 𝐶0 + 𝐶𝑥
𝑇,  

lim
𝑥→𝑥0

𝑓(𝑥) − 𝑔(𝑥)= 𝑓(𝑥0) − 𝑔(𝑥0)=0. 

Then, for a sufficiently small 𝜀 > 0 𝑎𝑛𝑑 𝜀 → 0,  

∃𝛿 > 0 , when |𝑥 − 𝑥0| < 𝛿 then |𝑓(𝑥) − 𝑔(𝑥)| < 𝜀, 



So 

𝑦 = 𝑓(𝑥) ≈ 𝑔(𝑥) = 𝐶0 + 𝐶𝑥
𝑇. 

 

(d) (Continuity):  

(1) 𝐶  and 𝐶0 , as observable properties variables, are the function of input 𝑥 , according to 

Causality and Determinism of Hypothesis 2. 

(2) According to the continuity of derivatives (The premise of Hypothesis 1), 𝐶 (Hypothesis 

1(b), Uniqueness, Cp is the corresponding partial derivative) is the continuous function of input 

𝑥.  

Because  

𝐶0 = 𝑦 −∑𝐶𝑝𝑥
𝑝

P

𝑝=1

 

and the continuity of the function and 𝐶, 𝐶0 is also the continuous function of input 𝑥.  

Proven. 

  



Extension of Hypothesis 1(d): 

First, try to explain that  𝐶 and 𝐶0, as observable properties variables, are the function of input 

𝑥. It is obvious because only the input can change other variables when the function is fixed, 

according to Causality and Determinism of Hypothesis 2. If not, in this situation, then 𝐶 and 𝐶0 

are constant, and 𝑦 = 𝐶0 + 𝐶𝑥
𝑇 just a linear function, which does not conform to the premise of 

any function. Thus, 𝐶 and 𝐶0 are the function of input 𝑥. The case of constant (linear function) 

can be regarded as a special case. 

Secondly, for any data point (𝑥′, 𝑦′) in the sufficiently small neighbor of a certain data point 

(𝑥, 𝑦), and 

{
𝑦 = 𝑓(𝑥) = 𝐶0 + 𝐶𝑥

𝑇 = 𝐶𝑠[1; 𝑥
𝑇] = 𝐶𝑠𝑋

𝑦′ = 𝑓(𝑥′) = 𝐶0
′ + 𝐶′𝑥′

𝑇
= 𝐶𝑠

′[1; 𝑥′
𝑇
] = 𝐶𝑠

′𝑋′
 

where X = [1; 𝑥], X′ = [1; 𝑥′
𝑇
], 𝐶𝑠 = [𝐶0, 𝐶], 𝐶𝑠

′ = [𝐶0
′ , 𝐶′] 

{
𝐶𝑠 = 𝑋

†𝑦

𝐶𝑠
′ = 𝑋′†𝑦′

 

then according to the continuity of function 𝑓, it can be seen that 

lim
𝑥′→𝑥

𝑦′ = 𝑦, lim
𝑥′→𝑥

𝑋′ = 𝑋 

According to the continuity of the generalized inverse matrix (Ref. 29, 30), it can be obtained 

that: 

rank(𝑋′) = rank(𝑋) = 1, 

then 

lim
𝑥′→𝑥

𝑋′† = 𝑋†. 

Thus 

lim
𝑥′→𝑥

𝐶𝑠
′ = 𝐶𝑠 

It indicates continuity. 

At the same time, for sufficiently small ∆x = 𝑥′ − 𝑥, 𝐶𝑠
′ ≈ 𝐶𝑠, same as Hypothesis 3(b). 

  



Hypothesis 2 

Hypothesis 2 as follows is based on “causality and determinism” in the classical scientific view. 

Stable means that the output is fixed in the same case. Independence is to simplify the follow-up 

analysis. 

Hypothesis 2: For a stable parametric system,  

(a) (Causality and Determinism): Any output and observable properties (or characters) of any 

system are determined stably by the (i) input, (ii) system parameters (weights), and (iii) system 

structure (the sum of covert parameters, hidden variables, topology, and other influencing factors).  

(b) (Independence and Causal Decoupling): The effect of (i) input, (ii) parameters, and (iii) 

structure could be considered independent of each other. 

“Causality and Determinism” in Hypothesis 2 is a classical scientific view, not suitable for all 

systems like chaotic systems in an engineering sense. Similarly, independence is a simplified and 

idealized treatment. 

By Hypothesis 2, the matrix ℂ𝑿 = ℵ(𝑿,𝑾, 𝑺𝑺) = ℵ𝑿(𝑺𝑺,𝑾) = ℵ𝑿,𝑾(𝑺𝑺) = ℵ𝑿,𝑺𝑺(𝑾) . Thus 

ℂ𝑿  could be an observable window to analyze the system structure and parameters, and a 

representative of the system. This is the ideological basis on ℂ𝑿 of system design in the next 

section.  

 

Hypothesis 3 

Hypothesis 3: For two stable parametric systems processed by LL 

{
𝒀 = ℍ(𝑾) = ℂ𝑿𝑾

𝒀′ = ℍ′(𝑾′) = ℂ𝑿
′𝑾′

 

(a) (Invariability): The systems with the same structure and parameters (𝑾 = 𝑾′), for the same 

input vector 𝑿 of the dataset, have the same output vector (𝒀 = 𝒀′) and the same constant 

matrix (ℂ𝑿 = ℂ𝑿
′ ). 

(b) (Comparability): The systems with the same structure and comparable parameter (𝑾 ≈ 𝑾′), 

for the same input vector 𝑿 of the dataset, have the comparable constant matrix (ℂ𝑿 ≈ ℂ𝑿
′ ), and 

𝑙𝑖𝑚
𝑾′→𝑾

ℂ𝑿
′ = ℂ𝑿 . 

Proof： 

(a) (Invariability): 



Suppose a dataset contains 𝑁𝑑 data {(x𝑖 , y𝑖)| 𝑖 = 1,… ,𝑁𝑑}, where output 𝑦 = [ 𝑦1, 𝑦2, … , 𝑦𝑄], 

input 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑃 ], and let 𝒀 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇
(𝑁𝑑×𝑄)×1

, X= [x1, x2, … , x𝑁𝑑]
𝑇
𝑁𝑑×1

, 

ℂ𝑋 = [𝐶𝑥1
(1); 𝐶𝑥1

(2); … ; 𝐶𝑥1
(𝑄); 𝐶𝑥2

(1); … ; 𝐶𝑥𝑁𝑑
(1) ; 𝐶𝑥𝑁𝑑

(2) ; … ; 𝐶𝑥𝑁𝑑
(𝑄) ](𝑁𝑑×𝑄)×(𝑆+1), 𝐖 = [1,𝑊]𝑇

(𝑆+1)×1
. 

Because the systems with the same structure and parameters (weights) W, for the same input 𝑥 

of the dataset, have the same mapping function and output (by Hypothesis 2), that is, 

𝑦 = 𝐹(𝑥,𝑊) = 𝐻(𝑊) 

So, the systems have the same output vector 𝒀 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇
(𝑁𝑑×𝑄)×1

. 

For any data (𝑥, 𝑦) in {(x𝑖 , y𝑖)}, according to the existence and uniqueness of C (by 

Hypothesis 1), the existence and uniqueness of 

[𝐶𝑥
(1); 𝐶𝑥

(2); … ; 𝐶𝑥
(𝑄)]𝑄×(𝑆+1) 

is correct, and  

𝑦 = 𝐻(𝑊) = C𝑥𝑾 

Make further efforts, for all the data in the dataset {(x𝑖 , y𝑖)}, the existence and uniqueness of 

ℂ𝑿 = [𝐶𝑥1
(1); 𝐶𝑥1

(2); … ; 𝐶𝑥1
(𝑄); 𝐶𝑥2

(1); … ; 𝐶𝑥𝑁𝑑
(1) ; 𝐶𝑥𝑁𝑑

(2) ; … ; 𝐶𝑥𝑁𝑑
(𝑄) ](𝑁𝑑×𝑄)×(𝑆+1) 

is correct. Thus the systems with the same structure and parameter (weights) 𝑾, for the same 

input vector 𝑿 of the dataset, have the same constant matrix ℂ𝑿. 

(b) (Comparability): The systems with the same structure and comparable parameter (𝑾 ≈ 𝑾′), 

for the same input vector 𝑿 of the dataset, have the comparable constant matrix (ℂ𝑿 ≈ ℂ𝑿
′ ), and 

𝑙𝑖𝑚
𝑾′→𝑾

ℂ𝑿
′ = ℂ𝑿 . 

Define: |𝒗| ≜ |𝑣1| + |𝑣2| + ⋯+ |𝑣𝑁|, 𝒗 = [𝑣1, 𝑣2, … , 𝑣𝑁]. 

The weights can be considered to be the input of the current system, for the same 𝑿 of the dataset. 

Continuity (“continuous derivable” of Hypothesis 1) is the important prerequisite for all 

discussions in this paper. According to the Hypothesis 3(a) and the Hypothesis 1(d),  

lim
𝑾′→𝑾

𝒀′ = 𝒀, lim
𝑾′→𝑾

ℂ𝑋
′ = ℂ𝑿. 

Thus, for sufficiently small |∆𝑾| = |𝑾 −𝑾′|, ℂ𝑋
′ ≈ ℂ𝑋.  Proven. 



 

Extension of Hypothesis 3(b) 

Hypothesis 3(b) is obviously easy to accept because of continuity. 

Define: |𝒗| ≜ |𝑣1| + |𝑣2| + ⋯+ |𝑣𝑁|, 𝒗 = [𝑣1, 𝑣2, … , 𝑣𝑁]. 

If |𝑾 −𝑾′| = |∆𝑾| = 𝜀 > 0, 𝜀 is sufficiently small. 

then |𝒀 − 𝒀′| = |∆𝒀| = 𝛿, |ℂ𝑿 − ℂ𝑋
′ | = 𝜃 and 𝑙𝑖𝑚

𝜀→0
𝛿 = 0, 𝑙𝑖𝑚

ε→0
θ = 0. 

So, 

|∆𝒀| = |𝒀 − 𝒀′| = |ℂ𝑿𝑾− ℂ𝑋
′𝑾′| = |ℂ𝑿𝑾− ℂ𝑋

′𝑾′| = |ℂ𝑿𝑾− ℂ𝑿𝑾′ + ℂ𝑿𝑾′ − ℂ𝑋
′𝑾′|

≤ |ℂ𝑿||∆𝑾| + |ℂ𝑿 − ℂ𝑋
′ ||𝑾′| 

⟹ |ℂ𝑿 − ℂ𝑋
′ | ≥

|∆𝒀| − |ℂ𝑿||∆𝑾|

|𝑾′|
 

The above inequality gives the lower limit of error |ℂ𝑿 − ℂ𝑋
′ |. Two phenomena were 

observed at the same time. 

1) because 𝑙𝑖𝑚
𝑾′→𝑾

𝒀′ = 𝒀, and 𝑙𝑖𝑚
|∆𝑾|→𝟎

|∆𝒀| = 𝟎 (Hypothesis 3(a)) 

𝑙𝑖𝑚
𝑾′→𝑾
|∆𝑾|→𝟎

|∆𝒀| − |ℂ𝑿||∆𝑾|

|𝑾′|
= 𝟎 

Therefore, ∆𝑾 needs to be small enough in engineering implementation. 

2) The smaller |𝑾′| is, the larger the lower limit of error |ℂ𝑿 − ℂ𝑋
′ | is. 

So the system weight should not be too small. 

End  



System Matrixization 

For a high-dimensional parameterized system with multi-input-multi-output (MIMO) mapping 

function, any output 𝑦 or observable properties (P or characters C ) is the function of the input 𝑥, 

the system parameter (weights) 𝑊 and system structure (SS) in Hypothesis 2, labeled as 𝑦 =

ℵ(𝑥,𝑊, 𝑆𝑆) or 𝑃 = ℵ(𝑥,𝑊, 𝑆𝑆). ℵ means a high-dimensional complex mapping space. 

For a high-dimensional parameterized system with multi-input-multi-output (MIMO) mapping 

function, any output 𝑦 is the function of the input 𝑥 and the system parameter (weights) 𝑊, in 

Hypothesis 2, that is 

𝑦 = 𝐹(𝑥,𝑊) = [𝑓1(𝑥,𝑊), 𝑓2(𝑥,𝑊),… , 𝑓𝑄(𝑥,𝑊)] 

where  

output 𝑦 = [ 𝑦1, 𝑦2, … , 𝑦𝑄],  

input 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑃],  

weights W = [𝑤1, 𝑤2, … , 𝑤𝑆],  

P, Q, and S are the dimensions of input, output, and weights, respectively,  

and 𝑓𝛼 = 𝜋𝛼 ∘ 𝐹 is the αth component function of 𝐹. 

According to the function linearization LL discussed in Hypothesis 1, 

𝑓𝛼(𝑥,𝑊) = 𝐶0
𝛼 + 𝐶𝛼[𝑥,𝑊]𝑇 = 𝐶(𝛼)[1, 𝑥,𝑊]𝑇, 

then 

𝑦𝑇 = 𝐶𝑆[1, 𝑥,𝑊]
𝑇, 

where 𝐶𝑆 = [𝐶
(1); 𝐶(2); … ; 𝐶(𝑄)].  

Obviously, in the case of 𝑥 and 𝑊 fixed, 𝐶𝑆 is only related to the structure of the system. This 

processing also means a new approximate description method of complex mapping space’s local 

characteristics by a hyperplane (determined by 𝐶𝑆). On the other hand, 𝐶𝑆 varies with 𝑥 and 𝑊. 

Therefore, 𝐶𝑆 can only describe the local system characteristics of current 𝑥 and 𝑊. In order to 

describe the global characteristics of the system more comprehensively, more different 𝑥 and 𝑊 

need to be added. In engineering applications, 𝑥 and 𝑊 usually do not seek to change at the 

same time, so the changes of 𝑥 and 𝑊 are discussed respectively. 

If the input of the system remains fixed, the output can be changed into a function of the system 

parameters: 

 𝑦 = 𝐻(𝑊) = [ℎ1(𝑊), ℎ2(𝑊),… , ℎ𝑄(𝑊)] = 𝐶𝑥[1,W]
𝑇 



where 𝐶𝑥 = [𝐶𝑥
(1), 𝐶𝑥

(2), … , 𝐶𝑥
(𝑄)] . The linearization of the function ℎ𝛼  is realized in the 

neighborhood of 𝑊 for the data point (𝑥, 𝑦𝛼), 𝑦𝛼 = 𝐶𝑥
(𝛼)
[1,𝑊]𝑇. If 𝐶𝑥 can be obtained, the 

local spatial distribution characteristics for the current 𝑊 in (𝑥, y) can be obtained, as shown in 

Hypothesis 1(c). Of course, only one data point is considered, which obviously cannot describe 

the whole plant space globally, so more data points need to be added.  

Suppose a dataset  (𝑋, 𝑌) = {(𝑥𝑖 , 𝑦𝑖)| 𝑖 = 1,… , 𝑁𝑑} contains 𝑁𝑑 data, and let  

𝒀 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇
(𝑁𝑑×𝑄)×1

, 

X= [x1, x2, … , x𝑁𝑑]
𝑇
𝑁𝑑×1

, 

ℂ𝑋 = [𝐶𝑥1
(1); 𝐶𝑥1

(2); … ; 𝐶𝑥1
(𝑄); 𝐶𝑥2

(1); … ; 𝐶𝑥𝑁𝑑
(1) ; 𝐶𝑥𝑁𝑑

(2) ; … ; 𝐶𝑥𝑁𝑑
(𝑄) ](𝑁𝑑×𝑄)×(𝑆+1), 

𝑾 = [1,𝑊]𝑇, 

then  

𝒀 = ℍ(𝑾) = ℂ𝑋𝑾. 

ℂ𝑋  (Constant matrix or Character matrix) is a character variables matrix of function, remains 

constant for the fixed 𝑿. On the contrary, it will change with the change of 𝑿. ℂ has a clear 

mathematical meaning, and each element is a corresponding partial derivative of the output to the 

input, as shown in Hypothesis 1(b). The global characteristics of the function are obtained by all 

local characteristics of the fitted hyperplanes for all the data of the dataset, when the dataset is 

large enough, due to Hypothesis 1(c). Thus, the effect, accuracy, or granularity described by the 

constant matrix is related to the size and distribution of the dataset. Constant matrix, as a novel 

type of function description method, is different from the traditional mathematical analytic formula, 

drawing, modeling, or black box method.  

Similarly obtains  

𝑦 = ℵ(𝑥,𝑊, 𝑆𝑆) = ℵ𝑆𝑆(𝑥,𝑊) = ℵ𝑊,𝑆𝑆(𝑥), 

𝑃 = ℵ(𝑥,𝑊, 𝑆𝑆) = ℵ𝑥(𝑆𝑆,𝑊) = ℵ𝑥,𝑊(𝑆𝑆), 

or other functions and their corresponding matrix form, respectively, like 

𝒀 = 𝔾(𝑿) = ℂ𝑊𝑿,  

or 𝐘 = 𝔽(𝑾,𝑿) ≈ ℂ𝑆[𝑾;𝑿], 



which have obviously different physical meanings and application prospects. In spite of these, they 

have the same mathematical form. Hence ℂ𝑋, ℂ𝑆 or ℂ𝑊 are collectively labeled by ℂ (constant  

matrix), and the corresponding functional relationship are collectively labeled by 

𝒀 = 𝔽(𝑿) = ℂ𝑿. 

In the paper, 𝒀 = ℍ(𝑾) = ℂ𝑋𝑾  is taken into consideration to illustrate the solution and 

application method of the constant matrix. 

As a result of local linearization processing, for a function 𝑦 = 𝑓(𝑥), 𝒀 = 𝔽(𝑿) = ℂ𝑿 in the 

case of a given sampling dataset (𝑿, 𝒀). When input matrix 𝑿 is a serial fixed sampling data, the 

constant matrix ℂ only related to the function 𝑓, realizes (i) numerization of the function and (ii) 

local decoupling of multivariate, by linearization processing, as shown in Hypothesis 1(a). 

Therefore, the processing method has four characteristics: (i) linearization, (ii) matrixization, (iii) 

numerization, and (iv) decoupling. 

  



Geometric Understanding 

Using the classical concepts of linearization and isomorphism, and three proposed hypotheses, LL-

IC system theory is constructed, which is further explained as follows. 

System matrixization and system feature matrix ℂ𝑋 is obtained by the LL process. Local linearity 

is used to describe the global nonlinearity, which reflects the dialectical unity relations between 

the whole and the part, linearity and nonlinearity. Visualized understanding of LL is that at each 

sampling data point, the local linear hyperplane is used to expand its surrounding areas, and the 

approximate description of the global space is completed like a tent or membrane structure building 

(e.g. Olympiastadion München and The Shed in NewYork), as shown in Fig. S10b-d. System 

matrixization has characteristics of linearization, matrixization, quantification, and decoupling. 

IC stemming from causal determinism solves the solution of ℂ𝑋 and W. The core of IC is to 

ensure that all influences are kept fixed except for the changes(like weights) we care about. The 

isomorphic system spaces constructed by different parameters W can be transformed by the 

continuous change of W, which could be imagined as the continuous stretching and torsion of the 

system space, see Fig. S10e,f. In the process of stretching and torsion, the change of gradient is 

often limited. This is also the reason of reuse and why ℂ𝑋 is effective.    

S1-S6 are algorithms constructed directly from the concepts of LL and IC, and the geometric 

understanding can be found in Fig. S10. In contrast, S7 no longer requires complex matrices, is 

simpler, less computation and resourse requirement. Convergence is achieved by repeated 

iterations according to ∆𝑾 = 𝑘𝑾𝒓.  

The geometric understanding of LIFT S7 is presented in Fig.1 e-f. 𝑾  is the current 

parameters; 𝑾∗ is the expected parameters; the black dashed lines  𝑾𝑾∗represent the ideal 

tuning direction; the red solid lines represent the weight-adjusted trajectory ∆𝑾. ∆𝑾 = 𝑘𝑾𝒓, the 

direction of adjustment is determined by randomly generated 𝑾𝒓, which has an obvious error with 

the ideal gradient direction 𝑾𝑾∗ . While the systematic error will decrease, and the active 

ingredient is extracted by scalar product calculation. 

  



Convergence analysis 

Obviously, in Fig.1 e-f, the LIFT S7 convergence condition can be obtained as:  

𝑙𝑟𝑘‖𝑾𝒓‖ < ‖𝑾𝑾′‖ and < 𝑬′, 𝑬 >≠ 𝟎.   

where  

 𝑘 = (𝒀′′ − 𝒀′)†(𝒀 − 𝒀′) =
<𝑬′,𝑬>

<𝑬,𝑬>
 

𝑙𝑟 is the learning rate, 𝑾𝑾∗ is the ideal gradient direction, 𝑾𝑾′ has the same direction with 

∆𝑾, and ∆𝑾∗𝑾𝑾′  is a isosceles triangle (Idealized abstraction, due to the complex spatial 

distribution of the system, this abstract result does not necessarily hold.). 

According to the geometry understanding, the weight adjustment 𝑙𝑟∆𝑾 should be in the range of 

𝑾𝑾′, that is 𝑙𝑟𝑘‖𝑾𝒓‖ < ‖𝑾𝑾
′‖. 

Additional Notes:  

(1) If < 𝑬′, 𝑬 >= 𝟎 , ∆𝑾 = 𝟎 , no adjustment for current 𝑾  and training ineffective. The 

probability of orthogonality of two vectors in a multidimensional space is very low, thus ensuring 

the success of the algorithm, which converges in the overall process. 

(2) Due to 𝑙𝑟𝑘‖𝑾𝒓‖ < ‖𝑾𝑾′‖, Although ‖𝑾𝑾′‖ is difficult to obtain in practical engineering, 

it does give us some hints, such as: ‖𝑾𝒓‖ and the learning rate 𝑙𝑟 should be appropriately small. 

 

System analysis 

System matrixization is a geometric algebraization method, has characteristics of linearization, 

matrixization, quantification, and decoupling, and enables two-dimensionalized representation of 

high-dimensional systems. To some extent, ℂ𝑿 can be used as a tool for systems analysis, like 

system function. 

Here's a list of some pre-thinking. 

(1) Similarity 

According to the Hypothesis 3: For two stable parametric systems processed by LL. (a) 

(Invariability): The systems with the same structure and parameters (𝑾 = 𝑾′), for the same input 

vector 𝑿 of the dataset, have the same output vector (𝒀 = 𝒀′) and the same constant matrix 

(ℂ𝑿 = ℂ𝑿
′ ).(b) (Comparability): The systems with the same structure and comparable parameter 

(𝑾 ≈ 𝑾′), for the same input vector 𝑿 of the dataset, have the comparable constant matrix 

(ℂ𝑿 ≈ ℂ𝑿
′ ), and 𝑙𝑖𝑚

𝑾′→𝑾
ℂ𝑿
′ = ℂ𝑿 . 



Si = ‖ℂ𝑿 − ℂ𝑿
′ ‖ 

Si measures the direct similarity between the two systems. The smaller the Si, the higher the 

similarity. 

(2) Sensitivity 

With the change of parameters(𝑾 →𝑾′), the system will change(ℂ𝑿 → ℂ𝑿
′ ). Se is calculated by 

the following formula to show the sensitivity of the system to parameter changes. 

Se = ‖ℂ𝑿 − ℂ𝑿
′ ‖ 

𝐖 = [𝑤1, 𝑤2, … , 𝑤𝑆], for different parameter components 𝑤𝑠 , the sensitivity of the system to 

different parameters can be measured by Se𝑠. 

Se𝑠 = ‖ℂ𝑿 − ℂ𝑿
′ ‖|∆𝑤𝑠 

Solving max {Se𝑠}, the maximum corresponds to the most sensitive parameter 𝑤𝑠 of the current 

system.  

(3) smoothability 

ℂ𝑿 has a clear mathematical meaning, and each element is a corresponding partial derivative of 

the output to the input, as shown in Hypothesis 1(b). 

Sm = ‖ℂ𝑿‖ 

The smaller the Sm, the smoother the system space. 

Solving max {ℂ𝑿}, the maximum maybe correspond to the most steepest place of the current 

system.  

 

Notes: 

(1) The distribution of (𝐗, 𝐘) is known. 

(2) Only considering the local space, we can get local similarity, sensitivity and smoothability. 

 

 

  



Supplementary Methods 

Method S1 

Direct Method: 

Two completely isomorphic systems with different parameters, which are stable and smooth 

parametric systems, satisfy  

{
𝒀 = ℍ(𝑾) = ℂ𝑿𝑾

𝒀′ = ℍ′(𝑾′) = ℂ𝑋
′𝑾′

. 

respectively according to Hypothesis 1, and 

ℂ𝑋
′ ≈ ℂ𝑋 

by Hypothesis 3. Then,  

ℂ𝑋
′ ≈ ℂ𝑋 = 𝒀𝑾

†, 

where 𝑾† is the Moore-Penrose generalized inverse of 𝑾. 

The performance of the known system is used to directly solve the feature matrix of the unknown 

system. 

 

Method S2 

Difference Method:  

Two completely isomorphic systems with different parameters, which are stable and smooth 

parametric systems, satisfy  

{
𝒀 = ℍ(𝑾) = ℂ𝑿𝑾

𝒀′ = ℍ′(𝑾′) = ℂ𝑋
′𝑾′

. 

respectively according to Hypothesis 1, and 

ℂ𝑋
′ ≈ ℂ𝑋 

by Hypothesis 3. Then,  

ℂ𝑋
′ ≈ ℂ𝑋 ≈ (𝒀 − 𝒀

′)(𝑾 −𝑾′)† = ∆𝒀∆𝑾†, 

where 

{
∆𝒀 = 𝒀 − 𝒀′

∆𝑾 = 𝑾−𝑾′  , 



and ∆𝑾† is the Moore-Penrose generalized inverse of ∆𝑾. 

Solve for the feature matrix of the unknown system using the difference in performance between 

the known and unknown systems. 

 

Method S3 

Direct Method: 

For a stable and smooth parametric system with training data (𝑿, 𝒀) and current weights 𝑾′, 

its current output vector 

𝒀′ = ℍ(𝑾′) = ℂ𝑋𝑾′. 

So the system feature matrix 

ℂ𝑋 = 𝒀′𝑾
′† 

And the object output and weights are  

𝒀 = ℍ(𝑾) = ℂ𝑋𝑾. 

Then update the weights by 

𝑾 = ℂ𝑿
†𝒀 = (𝒀′𝑾′†)†𝒀 = 𝑾′𝒀′†𝒀 

Let 

𝑘 = 𝒀′†𝒀 

Then 

𝑾 = 𝑾′𝑘 

Thus it can be seen that 𝑘 is the scale coefficient of 𝑾′. 

  

Method S4 

For a stable and smooth parametric system with training data (𝑿, 𝒀) and current weights 𝑾′, 

its current output vector 

𝒀′ = ℍ(𝑾′) = ℂ𝑋𝑾′. 

And the object output and weights are  

𝒀 = ℍ(𝑾) = ℂ𝑋𝑾. 



Then  

∆𝑾 = 𝑾−𝑾′ = ℂ𝑿
†(𝒀 − 𝒀′) = ℂ𝑿

†𝑬, 

where 𝑬 = 𝒀 − 𝒀′. 

Because the gap between 𝑾 and 𝑾′ is always too large to obtain a sufficiently accurate ℂ𝑿
†

. So 

we need to reduce this gap to a sufficiently small one. Given a little disturbance parameter 𝑾𝒓, 

and the output changes to 

𝒀′′ = ℍ(𝑾′ +𝑾𝒓) = ℂ𝑋(𝑾
′ +𝑾𝒓). 

So the system feature matrix 

ℂ𝑋 = (𝒀′′ − 𝒀
′)(𝑾′ +𝑾𝒓 −𝑾

′)† = (𝒀′′ − 𝒀′)𝑾𝒓
†
 

Then update the weights by 

{
𝑾 = 𝑾′ + 𝑙𝑟∆𝑾

∆𝑾 = ℂ𝑿
†𝑬 = ((𝒀′′ − 𝒀′)𝑾𝒓

†)†(𝒀 − 𝒀′) = 𝑾𝒓(𝒀
′′ − 𝒀′)†(𝒀 − 𝒀′)

   . 

where, 𝑙𝑟 is the learning rate, 𝑬′ = 𝒀′′ − 𝒀′. 

Let 

𝑘 = (𝒀′′ − 𝒀′)†(𝒀 − 𝒀′) =
< 𝑬′, 𝑬 >

< 𝑬, 𝑬 >
 

Then 

{
𝑾 = 𝑾′ + 𝑙𝑟∆𝑾
∆𝑾 = 𝑘𝑾𝒓

 

It is an iterative training method and trains all training data synchronously in an iteration. 

  



Algorithm S1 

 

Algorithm S1  Direct method 

Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,… ,𝑁𝑑;  

System structure and forward mapping 𝑦 = F(𝑥,𝑊). 

1 𝑊′ with random initialization; 

2 𝑦𝑖
′ = F(𝑥𝑖 ,𝑊′); 

3 Y′ = [𝑦′1, 𝑦′2, … , 𝑦′𝑁𝑑]
𝑇; 

4 𝐶𝑋 ≈ 𝐶𝑋
′ = 𝑌′𝑊′†; 

5 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇; 

6 𝑊 = 𝐶𝑥
†𝑌. 

Output: 𝑊. 

 

 

  



 

Algorithm S2 

Algorithm S2  Difference method 

Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,… ,𝑁𝑑; 𝑟 and 𝑙𝑟; 

System structure and forward mapping 𝑦 = F(𝑥,𝑊). 

1 𝑊 with random initialization in [-1, 1]; 

2 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇; 

3 for 𝑖 = 1 to  𝑁𝑑 do 

4 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

5 end for 

6 𝑌(1) = [𝑦1
(1)
, 𝑦2

(1)
, … , 𝑦𝑁𝑑

(1)
]𝑇; 

7 E = 𝑌 − 𝑌(1); 

8 while (𝑒𝑝𝑜𝑐ℎ < 𝑀𝑎𝑥 and 𝑀𝑆𝐸(𝐸) > 𝜀)  

9 𝑊𝑟 with random initialization in [-r, r]; 

10 for 𝑖 = 1 to  𝑁𝑑 do 

11 𝑦𝑖
(2)
= F(𝑥𝑖 ,𝑊 +𝑊𝑟);   

12 end for 

13 𝑌(2) = [𝑦1
(2)
, 𝑦2

(2)
, … , 𝑦𝑁𝑑

(2)
]𝑇; 

14 𝐶𝑋 ≈ 𝐶𝑋
′ = (𝑌(2) − 𝑌(1))𝑊𝑟

†; 

15 ∆𝑊 = 𝐶𝑥
†𝐸; 

16 𝑊 = 𝑊 + 𝑙𝑟∆𝑊； 

17 for 𝑖 = 1 to  𝑁𝑑 do 

18 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

19 end for 

20 𝑌(1) = [𝑦1
(1)
, 𝑦2

(1)
, … , 𝑦𝑁𝑑

(1)
]𝑇; 

21 E = 𝑌 − 𝑌(1); 

22 𝑒𝑝𝑜𝑐ℎ + +; 

23 end while 

Output: 𝑊. 

 

  



Algorithm S3 

Algorithm S2  Difference method with reuse of 𝐶𝑥
†
. 

Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,… ,𝑁𝑑; 𝑟 and 𝑙𝑟; 

System structure and forward mapping 𝑦 = F(𝑥,𝑊). 

1 𝑊 with random initialization in [-1, 1]; 

2 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇; 

3 for 𝑖 = 1 to  𝑁𝑑 do 

4 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

5 end for 

6 𝑌(1) = [𝑦1
(1)
, 𝑦2

(1)
, … , 𝑦𝑁𝑑

(1)
]𝑇; 

7 E = 𝑌 − 𝑌(1); 

8 while (𝑒𝑝𝑜𝑐ℎ < 𝑀𝑎𝑥 and 𝑀𝑆𝐸(𝐸) > 𝜀)  

9 𝑊𝑟 with random initialization in [-r, r]; 

10 for 𝑖 = 1 to  𝑁𝑑 do 

11 𝑦𝑖
(2)
= F(𝑥𝑖 ,𝑊 +𝑊𝑟);   

12 end for 

13 𝑌(2) = [𝑦1
(2)
, 𝑦2

(2)
, … , 𝑦𝑁𝑑

(2)
]𝑇; 

14 𝐶𝑋 ≈ 𝐶𝑋
′ = (𝑌(2) − 𝑌(1))𝑊𝑟

†; 

15 while 𝑀𝑆𝐸(𝐸) decreasing 

16 ∆𝑊 = 𝐶𝑥
†𝐸; 

17 𝑊 = 𝑊 + 𝑙𝑟∆𝑊； 

18 for 𝑖 = 1 to  𝑁𝑑 do 

19 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

20 end for 

21 𝑌(1) = [𝑦1
(1)
, 𝑦2

(1)
, … , 𝑦𝑁𝑑

(1)
]𝑇; 

22 E = 𝑌 − 𝑌(1); 

23 end while 

24 𝑒𝑝𝑜𝑐ℎ + +; 

25 end while 

Output: 𝑊. 

 

  



Algorithm S4 

Algorithm S4  Difference method with batch process of training 

data 

Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,… ,𝑁𝑑; 𝑟, 𝑙𝑟, and 𝑀𝑏; 

System structure and forward mapping 𝑦 = F(𝑥,𝑊). 

1 𝑊 with random initialization in [-1, 1]; 

2 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇; 

3 while (iteration < 𝑀𝑎𝑥 and 𝑀𝑆𝐸(𝐸) > 𝜀) 

4 for 𝑘 = 0 to (𝑁𝑑/𝑀𝑏 − 1) do 

5 𝑌 = [𝑦𝑘+1, 𝑦𝑘+2, … , 𝑦𝑘+𝑀𝑏
]𝑇; 

6 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

7 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

8 end for 

9 𝑌(1) = [𝑦𝑘+1
(1)
, 𝑦𝑘+2

(1)
, … , 𝑦𝑘+𝑀𝑏

(1)
]𝑇; 

10 E = 𝑌 − 𝑌(1); 

11 𝑊𝑟 with random initialization in [-r, r]; 

12 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

13 𝑦𝑖
(2)
= F(𝑥𝑖 ,𝑊 +𝑊𝑟);   

14 end for 

15 𝑌(2) = [𝑦𝑘+1
(2)
, 𝑦𝑘+2

(2)
, … , 𝑦𝑘+𝑀𝑏

(2)
]𝑇; 

16 𝐶𝑋 ≈ 𝐶𝑋
′ = (𝑌(2) − 𝑌(1))𝑊𝑟

†; 

17 ∆𝑊 = 𝐶𝑥
†𝐸; 

18 𝑊 = 𝑊 + 𝑙𝑟∆𝑊； 

19 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

20 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

21 end for 

22 𝑌(1) = [𝑦𝑘+1
(1)
, 𝑦𝑘+2

(1)
, … , 𝑦𝑘+𝑀𝑏

(1)
]𝑇; 

23 E = 𝑌 − 𝑌(1); 

24 end for 

25 iteration + +; 

26 end while 

Output: 𝑊. 

  



Algorithm S5 

 

Algorithm S5  Difference method with batch process of training 

data and weights. 

Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,… ,𝑁𝑑; 𝑟, 𝑙𝑟, 𝑀𝑏 and 𝑁𝑏; 

System structure and forward mapping 𝑦 = F(𝑥,𝑊). 

1 𝑊 with random initialization in [-1, 1]; 

2 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇; 

3 while (iteration < 𝑀𝑎𝑥 and 𝑀𝑆𝐸(𝐸) > 𝜀) 

4 for 𝑘 = 0  to  (𝑁𝑑/𝑀𝑏 − 1) do 

5 𝑌 = [𝑦𝑘+1, 𝑦𝑘+2, … , 𝑦𝑘+𝑀𝑏
]𝑇; 

6 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

7 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊); 

8 end for 

9 𝑌(1) = [𝑦𝑘+1
(1)
, 𝑦𝑘+2

(1)
, … , 𝑦𝑘+𝑀𝑏

(1)
]𝑇; 

10 E = 𝑌 − 𝑌(1); 

11 for 𝑝 = 0  to (𝑆/𝑁𝑏 − 1) do 

12 𝑊𝑏 = [𝑊𝑝+1,𝑊𝑝+2, … ,𝑊𝑝+𝑁𝑏]; 

13 𝑊𝑟 with random initialization in [-r, r]; 

14 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

15 𝑦𝑖
(2)
= F(𝑥𝑖 ,𝑊𝑏 +𝑊𝑟); 

16 end for 

17 𝑌(2) = [𝑦𝑘+1
(2)
, 𝑦𝑘+2

(2)
, … , 𝑦𝑘+𝑀𝑏

(2)
]𝑇; 

18 𝐶𝑝 ≈ 𝐶𝑋,𝑊𝑡
′ = (𝑌(2) − 𝑌(1))𝑊𝑟

†; 

19 end for 

20 𝐶𝑥
† = [𝐶1

†; 𝐶2
†; … ; 𝐶𝑆/𝑁𝑏−1

† ]; 

21 ∆𝑊 = 𝐶𝑥
†𝐸; 

22 𝑊 = 𝑊 + 𝑙𝑟∆𝑊； 

23 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

24 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

25 end for 



26 𝑌(1) = [𝑦𝑘+1
(1)
, 𝑦𝑘+2

(1)
, … , 𝑦𝑘+𝑀𝑏

(1)
]𝑇; 

27 E = 𝑌 − 𝑌(1); 

28 end for 

29 iteration + +; 

30 end while 

Output: 𝑊. 

 

  



Algorithm S6 

 

Algorithm S6  Difference method with batch process of training 

data and weights and reuse of 𝐶𝑥
†
. 

Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,… ,𝑁𝑑; 𝑟, 𝑙𝑟, 𝑀𝑏 and 𝑁𝑏; 

System structure and forward mapping 𝑦 = F(𝑥,𝑊). 

1 𝑊 with random initialization in [-1, 1]; 

2 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇; 

3 for 𝑘 = 0  to (𝑁𝑑/𝑀𝑏 − 1) do 

4 𝑌 = [𝑦𝑘+1, 𝑦𝑘+2, … , 𝑦𝑘+𝑀𝑏
]𝑇; 

5 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

6 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

7 end for 

8 𝑌(1) = [𝑦𝑘+1
(1)
, 𝑦𝑘+2

(1)
, … , 𝑦𝑘+𝑀𝑏

(1)
]𝑇; 

9 E = 𝑌 − 𝑌(1); 

10 while (iteration < 𝑀𝑎𝑥 and 𝑀𝑆𝐸(𝐸) > 𝜀)  

11 𝑊 random reordering 

12 for 𝑝 = 0  to (𝑆/𝑁𝑏 − 1) do 

13 𝑊𝑏 = [𝑊𝑝+1,𝑊𝑝+2, … ,𝑊𝑝+𝑁𝑏]; 

14 𝑊𝑟 with random initialization in [-r, r]; 

15 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 

16 𝑦𝑖
(2)
= F(𝑥𝑖 ,𝑊𝑏 +𝑊𝑟);   

17 end for 

18 𝑌(2) = [𝑦𝑘+1
(2)
, 𝑦𝑘+2

(2)
, … , 𝑦𝑘+𝑀𝑏

(2)
]𝑇; 

19 𝐶𝑝 ≈ 𝐶𝑋,𝑊𝑡
′ = (𝑌(2) − 𝑌(1))𝑊𝑟

†; 

20 end for 

21 𝐶𝑥
† = [𝐶1

†; 𝐶2
†; … ; 𝐶𝑆/𝑁𝑏−1

† ]; 

22 while 𝑀𝑆𝐸(𝐸) decreasing 

23 ∆𝑊 = 𝐶𝑥
†𝐸; 

24 𝑊 = 𝑊 + 𝑙𝑟∆𝑊； 

25 for 𝑖 = (𝑘 + 1)  to  (𝑘 + 𝑀𝑏) do 



26 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

27 end for 

28 𝑌(1) = [𝑦𝑘+1
(1)
, 𝑦𝑘+2

(1)
, … , 𝑦𝑘+𝑀𝑏

(1)
]𝑇; 

29 E = 𝑌 − 𝑌(1); 

30 end while 

31 end for 

32 iteration + +; 

33 end while 

Output: 𝑊. 

  



Algorithm S7 

Algorithm S7  Improved LIFT without matrix. 

Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, 𝑖 = 1,… ,𝑁𝑑; 𝑟 and 𝑙𝑟; 

System structure and forward mapping 𝑦 = F(𝑥,𝑊). 

1 𝑊 with random initialization in [-1, 1]; 

2 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑁𝑑]
𝑇; 

3 for 𝑖 = 1 to  𝑁𝑑 do 

4 𝑦𝑖
(1)
= F(𝑥𝑖 ,𝑊);  

5 end for 

6 𝑌(1) = [𝑦1
(1)
, 𝑦2

(1)
, … , 𝑦𝑁𝑑

(1)
]𝑇; 

7 E = 𝑌 − 𝑌(1); 

8 while (𝑒𝑝𝑜𝑐ℎ < 𝑀𝑎𝑥 and 𝑀𝑆𝐸(𝐸) > 𝜀)  

9 𝑊𝑟 with random initialization in [-r, r]; 

10 for 𝑖 = 1 to  𝑁𝑑 do 

11 𝑦𝑖
(2)
= F(𝑥𝑖 ,𝑊 +𝑊𝑟);   

12 end for 

13 𝑌(2) = [𝑦1
(2)
, 𝑦2

(2)
, … , 𝑦𝑁𝑑

(2)
]𝑇; 

14 E′ = 𝑌(2) − 𝑌(1); 

15 𝑘 =
<𝑬′,𝑬>

<𝑬,𝑬>
  

16 ∆𝑊 = 𝑘𝑊𝑟; 

17 𝑊 = 𝑊 + 𝑙𝑟∆𝑊； 

18 end while 

Output: 𝑊. 

 

 

  



 

Supplementary Experiments 

Experiment S1: IIR 

The Nth-order IIR(Infinite Impulse Response) Filter has a system function: 
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where |𝐻(𝑒𝑗𝜔)| is amplitude-frequency characteristic, and β(𝑗𝜔) is phase-frequency 

characteristic. 

For this IIR filter system, input is angular frequency ω = 𝑘2𝜋/1000, 𝑘 = 0,1, … ,500, 

corresponding output is the amplitude-frequency characteristic |𝐻(𝑒𝑗𝜔)|, that is  
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And the system parameter  𝑊 = [𝑎1, 𝑎2, … , 𝑎𝑁, 𝑏0, 𝑏1, … , 𝑏𝑁]. It is a single-input-single-output 

(SISO) system. The IIR filter system is designed by the solution of {𝑎𝑘} and {𝑏𝑘}. 

The difference equation corresponding to the IIR system is 
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It means that there is feedback between the input and output of the IIR system. 

Experiment 1: Design a 100-order IIR filter so that its amplitude-frequency characteristics meet 

specific requirements (WL-type filter). 

Specific model parameters are given in Table S1.  

 

Experiment S2: DNN 

Neural networks can be used for classification and regression prediction and are a fundamental 

element of modern AI solutions. Classical Multi-Layer Feedforward Networks (MLFNs) consist 

of an input layer, multiple hidden layers, and an output layer. Suppose the classical structure is P-



L-Q, and the specific parameters are shown in Table S2. The neural network adopts a fully 

connected structure. The feedforward neural networks perform forward computation by iterating 

layer by layer: 
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Experiment 2: Design a fully-connected DNN with 40 hidden layers, to fit a two-input-two-

output nonlinear system (two mixed benchmark functions: Ackley and Adjiman). 

Specific model parameters are given in Table S2.  

 

Experiment S3: SaNN 

To verify the adaptability of nonclassical nonlinear components in ANN, this section selects the 

MIMO Sampling Neural Network (SaNN). MIMO SaNN uses single-input-single-output (SISO) 

Sampling neural network (SaNN) as the neuron activation function and accomplishes neural 

network learning by neuron activation functions training. The feedforward neural networks 

perform forward computation by iterating layer by layer: 
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where the neurons' input and output satisfy the following formula: 
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The main differences between SaNN and traditional multi-layer neural networks are i)The 

connection weights between hidden layers do not need to be trained. The inter-layer link weights 

were randomly initialized with 0 or ±1, and then remained fixed, in Experiment 3. ii) The number 

of training weights for each layer in SaNN is 𝑀𝑙 × 𝑁𝑠, rather than 𝑀𝑙 ×𝑀𝑙 in MLFNs. Since 

usually 𝑁𝑠 < 𝑀𝑙, it is beneficial to reduce the network size. iii) The activation function of each 

neuron is completely independent and trainable, while the traditional network uses a pre-set and 

fixed activation function, like sigmoid, tanh, ReLU, ELU, and so on. 

Experiment 3: Design a SaNN with 10 hidden layers, to fit a two-input-two-output nonlinear 

system (two mixed benchmark functions: Ackley and Adjiman). 



Specific model parameters are given in Table S3.  

 

Experiment S4: SaKAN 

KAN(Kolmogorov-Arnold Network) is a novel and hot network architecture based on 

Kolmogorov-Arnold Representation Theorem, that has emerged in nearly a month. It improves the 

network performance and interpretability by replacing the weight parameters with learnable 

univariate functions, and has the potential to become an important direction for driving the 

development of deep learning models. Its main features are that the learnable activation and B-

spline function replacing the traditional linear weights. 

As a new type of network architecture, there are still many areas to be improved, such as the 

difficulty of network training. To further verify the universality of the LIFT algorithm, we 

constructed a SaKAN (KAN with SaNN) network that replaced the B-spline function with the 

SaNN. The basic structure of SaKAN is as follows: 

{
  
 

  
 𝑊𝑖,𝑗

(𝑙) = 𝜑𝑆𝑎𝑁𝑁(𝑥𝑖
(𝑙))

𝑦𝑗
(𝑙) =∑𝑊𝑖,𝑗

(𝑙)

𝑖

𝑥𝑗
(𝑙) = 𝑆𝑜𝑓𝑡𝑠𝑖𝑔𝑛(𝑦𝑗

(𝑙+1)) =
𝑦𝑗
(𝑙+1)

|𝑦𝑗
(𝑙+1)| + 1

 

where the function 𝜑𝑆𝑎𝑁𝑁 is the learnable input-output relationship of SaNN, which weights are 

the system parameters to be sought.  

Experiment 4: Design a SaKAN with 1 hidden layers, to fit a two-input-two-output nonlinear 

system (two mixed benchmark functions: Ackley and Adjiman). 

Specific model parameters are given in Table S4.  

 

Experiment S5: RAN 

 

RAN: Neural Network with Randomly selected Activation functions. 

Here employed is still the MLP(Multilayer Perceptron) or MLFNs (Multi-Layer Feedforward 

Networks), classical neural network structure. The neural networks perform forward computation 

by iterating layer by layer: 
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Where the activation functions (.)  are no longer a fixed function, but the specific functions 

randomly selected at initialization from 10 functions. Details in Table S6. These functions 

include traditional activation functions, non-continuous segmented functions, and non-derivative 

functions. 

Experiment 5: Design a RAN with 3 hidden layers, to fit a two-input-two-output nonlinear system 

(two mixed benchmark functions: Ackley and Adjiman). 

Specific model parameters are given in Table S5.  

 

 

Experiment S6: MLP 

 

MLP(Multilayer Perceptron) or MLFNs (Multi-Layer Feedforward Networks) is a classical 

neural network structure. DNN in Experiment S2 is also a MLP with more hidden layers. 

In order to compare LIFT with BP, a three-layer network structure is selected. Because basic BP 

is not suitable for deep networks. 

The neural networks perform forward computation by iterating layer by layer: 
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Experiment 6: Design a MLP with 3 hidden layers, to fit a two-input-two-output nonlinear system 

(two mixed benchmark functions: Ackley and Adjiman). 

Specific model parameters are given in Table S6.  

  



Supplementary Tables 

 

Table S1. 

Some parameters of Experiment 1 for IIR design. 

 

Items Descriptions or Parameters 

Input P 1 

Output Q 1 

Weights S 

201 

where 100 for {𝑎𝑛}, n=1,…, 100,  

and 101 for {𝑏𝑛}, n=0,1,…, 100. 

Object 
WL-type filter, the object as shown in 

Fig. 2, S1 and Data S1. 

Input ω ∈ (0,2π)  

Output |𝐻(𝑒𝑖𝜔)|  

Nth-order 100 

𝑁𝑑  500 

𝑊 initialization random in [-1, 1] 

Pre-training Yes, Algorithm S1 

Iterative training algorithm Algorithm S3 

Learn rate 𝑙 {
0.1, epoch < 500000

0.01, others
  

𝑊𝑟  Random in [-0.01, 0.01] 

Epoch Max 100 Million 

Training upper limit per Epoch 100 

 

  



Table S2. 

Some parameters of Experiment 2 of DNN: 

Items Descriptions or Parameters 

Input 𝐗 = [𝑥1, 𝑥2, … , 𝑥𝑃]1×𝑃  

Output 𝐘 = [𝑦1, 𝑦2, … , 𝑦𝑄]1×𝑄  

The weights matrix between layer l-1 and 

layer l 
𝐖(𝒍)  

The bias of neurons in layer 𝑙 𝐛(𝒍)  

Input dimension, P 2 

Output dimension, Q 2 

The number of hidden layers, L 40 

Weights dimension, S 15680 

The number of neurons in layer 𝑙, Ml Ml=20 for all layers 

Activation function 

‘tanh’ for all neurons: 

𝑎𝑖
(𝑙) = ∅𝑖

(𝑙)(𝑧𝑖
(𝑙)) =

𝑒𝑧𝑖
(𝑙)

− 𝑒−𝑧𝑖
(𝑙)

𝑒𝑧𝑖
(𝑙)

+ 𝑒−𝑧𝑖
(𝑙)

 

Object function 

Benchmark functions: Normalized 

Ackley and Adjiman
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See Fig. S3. 

Training data set 𝑁𝑑 10000 

Test data set 𝑁𝑡 10000 

Batch process of weights 𝑀𝑏 98 

Batch process of training data 𝑁𝑏 98 

𝑊 initialization random in [-1, 1] 

Pre-training No 

Iterative training algorithm Algorithm S6 

Learning rate 𝑙𝑟 0.005 

𝑊𝑟  Random in [-0.01, 0.01] 

Update batch of training data 
Randomly selected (shuffling) every 25 

iterations (Batch) 

Iteration maximum 10000 

Training upper limit per iteration (reuse) 10000 



Table S3. 

Some parameters of Experiment 3 of SaNN. 

Items Parameters 

Input dimension, P 2 

Output dimension, Q 2 

The number of hidden layers, L 10 

Weights dimension, S 2000 

The number of neurons in layer 𝑙, 𝑀𝑙 𝑀𝑙=20 for all layers 

Activation function SISO SaNN neurons (details in Experiment S3). 

The number of weights of a single 

SISO SaNN neuron, 𝑁𝑠 
10 

Object function 

Benchmark functions: Normalized Ackley and Adjiman
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See Fig. S5. 

Training data set 𝑁𝑑 10000 

Test data set 𝑁𝑡 

A total of 10000. 

In Fig. S4, test 100 data after each iteration. 

In Fig. S5, test the whole 10000 data. 

Batch process of weights 𝑀𝑏 100 

Batch process of training data 𝑁𝑏 100 

𝑊 initialization of SISO SaNN for all 

neurons 
Random in [-1, 1] 

Inter-layer link weights 𝑊 

initialization 

Randomly initialized with 0 or ±1.  

As shown in Fig. S4h, a total of 3680, initialized as “0” 

has 1802(48.97%), “1” has 905(24.59%), and “-1” has 

973 (26.44%). 

Pre-training Yes, Algorithm S1 by randomly selected 100 train data. 

Iterated operation Algorithm S6 

Learn rate 𝑙𝑟 0.01 

𝑊𝑟  Random in [-0.01, 0.01] 

Update batch of training data 
Randomly selected (shuffling) every 25 iterations 

(Batch) 

Iteration maximum 50000 

Training upper limit per iteration 

(reuse) 
10000 



Table S4. 

Some parameters of Experiment 4 of SaKAN. 

Items Parameters 

Input dimension, P 2 

Output dimension, Q 2 

The number of hidden layers, L 1 

Weights dimension, S 400 

The number of neurons in layer 𝑙, 𝑀𝑙 𝑀𝑙=10 for all layers 

Activation function SISO SaNN neurons (details in Experiment S4). 

The number of weights of a single 

SISO SaNN neuron, 𝑁𝑠 
10 

Object function 

Benchmark functions: Normalized Ackley and Adjiman
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Training data set 𝑁𝑑 10000 

Test data set 𝑁𝑡 A total of 10000. 

Batch process of weights 𝑀𝑏 400 (No batch process) 

Batch process of training data 𝑁𝑏 1000 

𝑊 initialization of SISO SaNN for all 

neurons 
Zeros 

Pre-training None 

Iterated operation Algorithm S7 

Learn rate 𝑙𝑟 1 

𝑊𝑟  Random in [-0.01, 0.01] 

Update batch of training data 
Randomly selected (shuffling) every 25 iterations 

(Batch) 

Iteration maximum 50000 

Training upper limit per iteration 

(reuse) 
1 

 

  



Table S5. 

Some parameters of Experiment 5 of RAN. 

Items Parameters 

Input dimension, P 2 

Output dimension, Q 2 

The number of hidden layers, L 3 

Weights dimension, S 5200 

The number of neurons in layer 𝑙, 𝑀𝑙 𝑀𝑙=50 for all layers 

Activation functions 

Randomly selected in 10 functions. 

No. Functions Description 

1 
∅(x) =

1

1 + 𝑒−𝑥
 sigmoid 

2 
∅(x) = tanh (x) =

𝑒2𝑥 − 1

𝑒2𝑥 + 1
 tanh 

3 
∅(x) = tanh (x/2) =

𝑒𝑥 − 1

𝑒𝑥 + 1
 tanh (x/2) 

4 
∅(x) = {

𝑥2, −1 < 𝑥 < 1
𝑥, others

 
𝑥2  

(Discontinuity)  

5 
∅(x) = ln (1 + |x|) 

ln 

(Non derivable) 

6 
∅(x) = max(0, x) = {

0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 
ReLU 

(Non derivable) 

7 ∅(x) = sin (0.4𝑥) sin 

8 ∅(x) = atan (𝑥) arctan 

9 
∅(x) =

𝑥

1 + |𝑥|
 softsign 

10 

∅(x) =

{
 
 

 
 

𝑥

1 + 𝑥
, 𝑥 > 4

0.2𝑥,−4 ≤ 𝑥 ≤ 4
𝑥

1 − 𝑥
, 𝑥 < −4

 

Piecewise 

function 

(Non derivable) 

Object function 

Benchmark functions: Normalized Ackley and Adjiman
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Training data set 𝑁𝑑 10000 

Test data set 𝑁𝑡 A total of 10000. 



Batch process of weights 𝑀𝑏 5200 (No batch process) 

Batch process of training data 𝑁𝑏 100 

𝑊 initialization  Random 

Pre-training None 

Iterated operation Algorithm S7 

Learn rate 𝑙𝑟 1 

𝑊𝑟  Random in [-0.001, 0.001] 

Update batch of training data Randomly selected (shuffling) every 25 iterations (Batch) 

Iteration maximum 2,000,000 

Training upper limit per iteration 

(reuse) 
1 

 

  



Table S6. 

Some parameters of Experiment 6 of MLP. 

Items Parameters 

Input dimension, P 2 

Output dimension, Q 2 

The number of hidden layers, L 3 

Weights dimension, S 5200 

The number of neurons in layer 𝑙, 𝑀𝑙 𝑀𝑙=50 for all layers 

Activation functions tanh functions:∅(x) = tanh (x) =
𝑒2𝑥−1

𝑒2𝑥+1
 

Object function 

Benchmark functions: Normalized Ackley and Adjiman
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Training data set 𝑁𝑑 10000 

Test data set 𝑁𝑡 A total of 10000. 

Batch process of weights 𝑀𝑏 5200 (No batch process) 

Batch process of training data 𝑁𝑏 100 

𝑊 initialization  Random 

Pre-training None 

Iterated operation 
BP 

Algorithm S7 

Learn rate 𝑙𝑟 

1 for S7 

0.001 for BP(The learning rate is too large, the network is 

not easy to converge.) 

𝑊𝑟  Random in [-0.001, 0.001] 

Update batch of training data Randomly selected (shuffling) every 25 iterations (Batch) 

Iteration maximum 2,000,000 

Training upper limit per iteration 

(reuse) 
1 

 

 

  



Supplementary Figures 

 



Fig. S1. The results of Experiment 1 on IIR design. Stage I is pre-training in Algorithm S1; 

Stage II is the iterative training in epoch 500,000, learn rate 0.1, in Algorithm S3; Stage III is the 

iterative training in epoch 1000,000, learn rate 0.01, in Algorithm S3. a, The system structure of 

classical direct-type Nth-order IIR Filter, input 𝑥(𝑛)  and output 𝑦(𝑛) . b, The convergence 

results of Experiment 1 on IIR design. c, Randomly initialized system parameters {𝑎𝑘} and {𝑏𝑘}. 

d, Amplitude-frequency characteristic curve |𝐻(𝑒𝑗𝜔)| of randomly initialized system. e, Bode 

plot for the magnitude of the frequency response (20lg|𝐻(𝑒𝑗𝜔)|) of randomly initialized system. 

f, System parameters after pre-training (Stage I). g, |𝐻(𝑒𝑗𝜔)| after Stage I. h, 20lg|𝐻(𝑒𝑗𝜔)| after 

Stage I. i, System parameters after Stage II. j, Adjusted value of system parameters in epoch 

500,000. k, |𝐻(𝑒𝑗𝜔)| after Stage II. l, 20lg|𝐻(𝑒𝑗𝜔)| after Stage II. m, System parameters after 

Stage III. n, the Adjusted value of system parameters in epoch 1000,000. o, |𝐻(𝑒𝑗𝜔)| after Stage 

III. p, 20lg|𝐻(𝑒𝑗𝜔)| after Stage III. 

  



 



Fig. S2. The results of Experiment 2 on DNN design, in 10,000 iterations, learning rate 0.005, 

and Algorithm S6. a, The structure of DNN. b, The network weighs in 10,000 iterations. c, The 

adjusted value of network weights in 10,000 iterations. d, The activation function of neurons is 

tanh. e, Two benchmark function output convergence in MSE of the test. f, Training MSE. MSE 

continuously reduced for each update training data batch per 25 iterations. g, The success ratio 

with iteration. The ratio is calculated once per 100 iterations. The whole average success ratio is 

88.2% as shown in the blue line. h, The reuse situation of ℂ𝑋. “0” means the current ℂ𝑋 is fail to 

train. “10000 times” is the preset up-limit of reuse. 

  



 

Fig. S3. The results of Experiment 2 on DNN design (The supplement of Fig.S2.). a, The 

benchmark function: Ackley. b, The benchmark function: Adjiman. c, Initialized network output 



of Ackley with the MSE 0.4536. d, Initialized network output of Adjiman with the MSE 0.2399. 

e, Network output of Ackley with the MSE 0.1906 in iteration 10. f, Network output of Adjiman 

with the MSE 0.0503 in iteration 10. g, Network output of Ackley with the MSE 0.0922 in 1000 

iterations. h, Network output of Adjiman with the MSE 0.0305 in 1000 iterations. i, Network 

output of Ackley with the MSE 0.0323 in 10000 iterations. j, Network output of Adjiman with the 

MSE 0.0130 in 10000 iterations. 

  



 

Fig. S4. The results of Experiment 3 on SaNN design, in iteration 50,000, learning rate 0.01, 

Algorithm S1, and Algorithm S6. a, benchmark function output convergence in MSE of the test. 

b, MSE of training. Update training data batch per 25 iterations. c, The structure of SISO SaNN. 

d, The success ratio with iteration. The ratio is calculated once per 100 iterations. The whole 

average success ratio is 88.2% as shown in the blue line. e, The reuse situation of ℂ𝑋. “0” means 

the failure calculation of the current ℂ𝑋. “10000 times” is the preset up limit of reuse. f, The 

network weights in iteration 10,000. g, The adjusted value of network weights in 10,000 iterations. 

h, Inter-layer link weights between different layers. A total of 3680, initialized as “0” has 

1802(48.97%), “1” has 905(24.59%), and “-1” has 973 (26.44%).  



 

Fig. S5. The results of Experiment 3 on SaNN design (The supplement of Fig.S4.). Test the 

whole 10000 test dataset, different from the test in Fig.3 just 100 randomly selected test data. a, 



The benchmark function: Ackley. b, The benchmark function: Adjiman. c, Initialized network 

output of Ackley with the MSE 0.7417. d, Initialized network output of Adjiman with the MSE 

0.7154. e, Network output of Ackley with the MSE 0.1844 by pre-train in Algorithm S1. f, 

Network output of Adjiman with the MSE 0.1380 by pre-train in Algorithm S1. f, Network output 

of Ackley with the MSE 0.0696 in 10000 iterations in Algorithm S6. h, Network output of Adjiman 

with the MSE 0.0467 in 10000 iterations in Algorithm S6. i, Network output of Ackley with the 

MSE 0.0499 in 50000 iterations in Algorithm S6. j, Network output of Adjiman with the MSE 

0.0410 in 50000 iterations in Algorithm S6.  



 

Fig. S6. The results of Experiment 4 on SaKAN design. a, The structure of SaKAN. b, The 

structure of SISO SaNN. c, MSE of training. d, MSE of testing. e, Network output of Ackley 

with the MSE 0.0155 in 50000 iterations in Algorithm S7. f, Network output of Adjiman with 

the MSE 0.0142 in 50000 iterations in Algorithm S7. 

  



 

Fig. S7. The results of Experiment 5 on RAN design. a, The structure of RAN. The solid circle 

represents neurons with randomly selected activation functions. b, MSE of training. c, MSE of 

testing. d, Network output of Ackley with the MSE 0.0324 in 2,000,000 iterations in Algorithm 

S7. e, Network output of Adjiman with the MSE 0.0265 in 2,000,000 iterations in Algorithm S7. 

  



 



Fig. S8. The results of Experiment 6 on MLP design. a, The structure of MLP with activation 

functions tanh . b, MSE of training. c, MSE of testing in BP. d, MSE of testing in LIFT. e, Network 

output of Ackley with the MSE 0.0239 in 2,000,000 iterations in BP. f, Network output of Ackley 

with the MSE 0.0391 in 2,000,000 iterations in LIFT S7. g, Network output of Adjiman with the 

MSE 0.0181 in 2,000,000 iterations in BP.h, Network output of Adjiman with the MSE 0.0256 in 

2,000,000 iterations in LIFT S7. 

 

 

  



 

Fig. S9. Diagrammatic sketch. a, The structure diagram of parametric system indicated by 𝑯. b, 

The sub-region structure with batch processes(𝑾𝒃𝟏 to 𝑾𝒃𝟗). c, The hierarchical structure with 

batch processes(𝑾𝒃𝟏 to 𝑾𝒃𝟒). d, The parallel structure with batch processes(𝑾𝒃𝟏 to 𝑾𝒃𝟒). e, 

The parallel training diagram with batch processes(𝑾𝒃𝟏 to 𝑾𝒃𝟒). 𝑯′ is the copy(reuse module) 

of 𝑯. See Algorithm S5, S6. f, Sketch of LIFT method. 𝑾 is the current parameters; 𝑾∗ is the 

expected parameters; the red solid lines represent the weight-adjusted trajectory ∆𝑾; the black 

dashed lines represent the ideal tuning direction. 

  



 

 

 

 

Fig. S10. The diagrammatic sketch of visualized understanding of LL-IC. a, System space. 

b-d, System approximation by local linearization. e-f, The diagrammatic sketch of isomorphism 

comparability. System approximation after stretching caused by weight adjustment. In the 

process of stretching and torsion, the change of gradient is often limited. This is also the reason 

why ℂ𝑿 is effective. It’s also the reason of its reuse. 


