SUPPLEMENTARY INFORMATION FOR:

Universal Forward Training and Structure-free Learning

This PDF file includes:

1. Supplementary Texts
Hypothesis 1-3
System Matrixization
Geometric Understanding
Convergence analysis
System analysis

2. Supplementary Methods
Method S1-S4
Algorithm S1-S7

3. Supplementary Experiments S1-S6

4. Supplementary Tables S1-S6

5. Supplementary Figures S1-S10

Supplementary Texts

This paper carries out a theoretical analysis and builds a theoretical system based on Hypothesis
1-3. The Hypotheses used as the basis only need to be reasonable and applicable and do not
necessarily need to be proved. However, the whole mathematical calculus process can deepen the
understanding of the relationship and meaning of each hypothesis.

Hypothesis 1

Hypothesis 1: For a multi-input-single-output (MISO) function with continuous derivatives
(smooth)

fixoy=f(x),x=[x}x?..,x"],
(a) (Existentiality): For any certain data point (x,, y,), the function has the local linearization:

Yo = f(x9) = Co + Cx}, where C = [Cy, ..., Cp].

(b) (Uniqueness): If C, is the corresponding partial derivative of the output y, to the input x5,
then C is unique.

(c) (Approximation): In the sufficiently small neighbor of any certain data point (x,,y,), any
point (x,y) can be approximated as:

y:f(x)zCO-i_CxT!

where C and C, is determined by (xq,y,) (that is v, = f(xo) = Cy + CxI in Hypothesis
1(a)(b)).

(d) (Continuity): C and C, are also the continuous function of input x.

Proof:

(a)-(b) (Existentiality and Uniqueness):

For a multi-input-single-output (MI1SO) function
fixoy=f(x),x=[x}x?..,x"],

with continuous derivatives is a continuous and derivable function.

If the mapping function is continuous and derivable, then a% is existent and unique.

For any certain data point (x,, y,), define

ay

Cp = m |x=x0
and
P
Co=Yo0— Z Cpxop
p=1
So

P
Yo = f(x9) = Co + Z Cpxo? = Co + Cxg
p=1

where, C = [Cy, ..., Cp].

According to the existence and uniqueness of C,,, Hypothesis 1(a) and (b) can be proved.

(c) (Approximation):

The proof of Hypothesis 1(c) is obviously easy to be accepted because of continuity and
“substituting curve with straight”.

According to the “substituting curve with straight”, for a smooth “curve”, we can approximate it
with “straight”. For any data point (x,y) in the sufficiently small neighbor of a certain data point
(%0, Vo), that is

y=fx)~Ci+C'xT.

In the neighbor area of (x,, y,), all the data satisfy it, including(x,, y,). And
Yo = f(x0) = Co + Cxg,

by Hypothesis 1(a).

So Cy = C,, C' = C isareasonable solution (The derivation cannot guarantee the uniqueness
of the solution).

According to the continuity of f(x) and g(x) = C, + CxT,
Jim £G0) = g@)= fx) — 90x)=0.

Then, for a sufficiently small € > 0 and € — 0,

36 >0 ,when |x —xy| <6 then |f(x) —gx)| <e¢,

So

y=f0) =g =Co+Cx.

(d) (Continuity):

(1) € and C,, as observable properties variables, are the function of input x, according to
Causality and Determinism of Hypothesis 2.

(2) According to the continuity of derivatives (The premise of Hypothesis 1), € (Hypothesis
1(b), Uniqueness, C, is the corresponding partial derivative) is the continuous function of input
X.

Because

P
Co=y— Z C,x?
p=1

and the continuity of the function and C, C, is also the continuous function of input x.

Proven.

Extension of Hypothesis 1(d):

First, try to explain that C and C,, as observable properties variables, are the function of input
x. It is obvious because only the input can change other variables when the function is fixed,
according to Causality and Determinism of Hypothesis 2. If not, in this situation, then C and C,
are constant, and y = C, + CxT just a linear function, which does not conform to the premise of
any function. Thus, € and C, are the function of input x. The case of constant (linear function)
can be regarded as a special case.

Secondly, for any data point (x',y") in the sufficiently small neighbor of a certain data point

(x,y), and

y=fx) = Co+CxT = C[1;x7] = C,X
Yy =f(x)=Ci+C'x" =CiLx"] = cix’

where X = [1;x], X' = [1;x"T], C; =[Co,C, €& =[C4,C
Cs = X-I_y
C: =Xty

then according to the continuity of function f, it can be seen that

According to the continuity of the generalized inverse matrix (Ref. 29, 30), it can be obtained
that:

rank(X') = rank(X) =1,

then
lim X'T = XxT.
X =X
Thus
lim C: = C;
X =X

It indicates continuity.

At the same time, for sufficiently small Ax = x" — x, C; = C,, same as Hypothesis 3(b).

Hypothesis 2

Hypothesis 2 as follows is based on “causality and determinism” in the classical scientific view.
Stable means that the output is fixed in the same case. Independence is to simplify the follow-up
analysis.

Hypothesis 2: For a stable parametric system,

(a) (Causality and Determinism): Any output and observable properties (or characters) of any
system are determined stably by the (i) input, (ii) system parameters (weights), and (iii) system
structure (the sum of covert parameters, hidden variables, topology, and other influencing factors).

(b) (Independence and Causal Decoupling): The effect of (i) input, (ii) parameters, and (iii)
structure could be considered independent of each other.

“Causality and Determinism” in Hypothesis 2 is a classical scientific view, not suitable for all
systems like chaotic systems in an engineering sense. Similarly, independence is a simplified and
idealized treatment.

By Hypothesis 2, the matrix Cxy = RX(X,W,SS) = RXx(SS, W) = Ry (SS) = Ry ss(W). Thus
Cx could be an observable window to analyze the system structure and parameters, and a
representative of the system. This is the ideological basis on Cy of system design in the next
section.

Hypothesis 3
Hypothesis 3: For two stable parametric systems processed by LL

{ Y = H(W) = CxW
Y =H' W) = CyW’

(@) (Invariability): The systems with the same structure and parameters (W = W'), for the same
input vector X of the dataset, have the same output vector (¥ =Y’) and the same constant
matrix (Cx = Cy).

(b) (Comparability): The systems with the same structure and comparable parameter (W ~ W'),
for the same input vector X of the dataset, have the comparable constant matrix (Cx = Cy), and

lim Cy = Cy .
wom Sx X

Proof:

(@) (Invariability):

Suppose a dataset contains N; data {(x;,y;)| i =1,..., Nz}, where output y = [y1,v2, ...,y?],

input x = [x',x%,...,x"], and let ¥ = [y, y,, ..., yn,] X = [X1, X, e, Xy,]"

T
(NgxQ)x1’ Ngx1'

—_1rW, ~@, | A@, 1, | ~O, ~2, | ~@ — T
Cx =[Gy, 5 Cx 5 5 G, 5 Gy 5 e Cde,Cde, ---»Cde](Nde)X(S+1)r W =[1,W] (S+1)x1"
Because the systems with the same structure and parameters (weights) W, for the same input x

of the dataset, have the same mapping function and output (by Hypothesis 2), that is,
y=F@xW)=HW)

So, the systems have the same output vector Y = [y;,y,, ""yNd]T(NdXQ)Xl'

For any data (x,y) in {(x;,y;)}, according to the existence and uniqueness of C (by
Hypothesis 1), the existence and uniqueness of

1 2
[CJE)F C)E)i ---;CJEQ)]QX(S+1)

is correct, and
y = H(W) = CxW

Make further efforts, for all the data in the dataset {(x;,y;)}, the existence and uniqueness of

N C RN N () JON ¢ M B) A C)
Cx = [Cxy 5 Gy 5 s G Gy s g3 G 5 o Jvgx@)x(s41)

XNd’
is correct. Thus the systems with the same structure and parameter (weights) W, for the same

input vector X of the dataset, have the same constant matrix Cy.

(b) (Comparability): The systems with the same structure and comparable parameter (W ~ W),
for the same input vector X of the dataset, have the comparable constant matrix (Cx = Cy), and

lim Cy =Cyx .
wi, x = Lx

Define: |v| 2 |vy| + |vo| + - + |vyl, ¥ = [Vy, Vg, ..., Uy].

The weights can be considered to be the input of the current system, for the same X of the dataset.
Continuity (“continuous derivable” of Hypothesis 1) is the important prerequisite for all
discussions in this paper. According to the Hypothesis 3(a) and the Hypothesis 1(d),

l- Y’ = Y l ! = .
wiow A

Thus, for sufficiently small |AW| = |W — W'|, Cx = Cx. Proven.

Extension of Hypothesis 3(b)
Hypothesis 3(b) is obviously easy to accept because of continuity.
Define: |v| 2 |vy| + |vo| + -+ |vyl, ¥ = [Vy, Vg, ..., Uy].

If |W—-W'|=|AW]|=2¢>0, ¢ issufficiently small.

then |[Y —Y'| = |[AY| =6, |Cx—Cyl =6 and lim6 =0, lim6 = 0.

-0 £-0

So,

IAY| = Y — Y'| = |CxW — C,W'| = |CxW — CLW'| = |CxW — CxW' + CxW' — C,W'|
< |Cx[|AW] + |Cx — Cx[[W'|
|AY| — |Cx||AW|

W'

= |Cx — Cx| =

The above inequality gives the lower limit of error |Cx — Cx|. Two phenomena were
observed at the same time.

1) because M;ILLnWY =Y, and |All/lVr|71>0|AY| = 0 (Hypothesis 3(a))

|AY| — |Cx[|AW] _

im
w'>w 4
|AW|-0

Therefore, AW needs to be small enough in engineering implementation.
2) The smaller |W’| is, the larger the lower limit of error |Cx — Cj| is.
So the system weight should not be too small.

End

System Matrixization

For a high-dimensional parameterized system with multi-input-multi-output (MIMO) mapping
function, any output y or observable properties (P or characters C) is the function of the input x,
the system parameter (weights) W and system structure (SS) in Hypothesis 2, labeled as y =
R(x,W,SS) or P=RX(x,W,SS). X means a high-dimensional complex mapping space.

For a high-dimensional parameterized system with multi-input-multi-output (MIMO) mapping
function, any output y is the function of the input x and the system parameter (weights) W, in
Hypothesis 2, that is

y=F@W)=[f'0,W),f2(x,W),..., f2(x,W)]
where
output y = [y%,v2, ...,y9],
input x = [x1,x2, ..., xP],
weights W = [wy, wy, ..., wg],
P, Q, and S are the dimensions of input, output, and weights, respectively,
and f* =n%oF isthe ath component function of F.
According to the function linearization LL discussed in Hypothesis 1,

fex, W) = C& + C*[x, W]T = C®[1,x, W],
then
yT = Cs[1,x, W]T,

where Cg = [C(l); c@; ... C(Q)].

Obviously, in the case of x and W fixed, Cs is only related to the structure of the system. This
processing also means a new approximate description method of complex mapping space’s local
characteristics by a hyperplane (determined by Cs). Onthe other hand, Cs varieswith x and W.
Therefore, Cs can only describe the local system characteristics of current x and W. In order to
describe the global characteristics of the system more comprehensively, more different x and W
need to be added. In engineering applications, x and W usually do not seek to change at the
same time, so the changes of x and W are discussed respectively.

If the input of the system remains fixed, the output can be changed into a function of the system
parameters:

y =HW) = [A*(W), h2(W), ..., R (W)] = C,[1,W]T

where C, = [cV,¢?,...,c!P]. The linearization of the function h* is realized in the

neighborhood of W for the data point (x,y%), y* = C,E“)[l, W1]T. If C, can be obtained, the

local spatial distribution characteristics for the current W in (x,y) can be obtained, as shown in
Hypothesis 1(c). Of course, only one data point is considered, which obviously cannot describe
the whole plant space globally, so more data points need to be added.

Suppose a dataset (X,Y) = {(x;,¥;)| i =1, ..., Ny} contains N, data, and let
— T
Y - [3’1»3’2'---'}’Nd] (NdXQ)Xl'

T

X= [Xl' X0, ""XNd] Ngx1’

1 2 1 1 2
Cx =[G 5 G5 s 625655 s s i) s e Tvgxayxcsey:

de’ de’

W =11, W]T,
then
Y = H(W) = C,W.

Cx (Constant matrix or Character matrix) is a character variables matrix of function, remains
constant for the fixed X. On the contrary, it will change with the change of X. C has a clear
mathematical meaning, and each element is a corresponding partial derivative of the output to the
input, as shown in Hypothesis 1(b). The global characteristics of the function are obtained by all
local characteristics of the fitted hyperplanes for all the data of the dataset, when the dataset is
large enough, due to Hypothesis 1(c). Thus, the effect, accuracy, or granularity described by the
constant matrix is related to the size and distribution of the dataset. Constant matrix, as a novel
type of function description method, is different from the traditional mathematical analytic formula,
drawing, modeling, or black box method.

Similarly obtains
y = R(x, W,SS) = Rgs(x, W) = Ry 55(x),
P = R(x, W,S5S) = R, (SS, W) = R, (5S),
or other functions and their corresponding matrix form, respectively, like
Y = G(X) = Cy X,

or Y =FW,X) ~ C[W; X],

which have obviously different physical meanings and application prospects. In spite of these, they
have the same mathematical form. Hence Cy, Cs or C,, are collectively labeled by C (constant
matrix), and the corresponding functional relationship are collectively labeled by

Y = F(X) = CX.

In the paper, Y = H(W) = CxW is taken into consideration to illustrate the solution and
application method of the constant matrix.

As a result of local linearization processing, for a function y = f(x), ¥ = F(X) = CX in the
case of a given sampling dataset (X,Y). When input matrix X is a serial fixed sampling data, the
constant matrix C only related to the function f, realizes (i) numerization of the function and (ii)
local decoupling of multivariate, by linearization processing, as shown in Hypothesis 1(a).
Therefore, the processing method has four characteristics: (i) linearization, (ii) matrixization, (iii)
numerization, and (iv) decoupling.

Geometric Understanding

Using the classical concepts of linearization and isomorphism, and three proposed hypotheses, LL-
IC system theory is constructed, which is further explained as follows.

System matrixization and system feature matrix Cy is obtained by the LL process. Local linearity
is used to describe the global nonlinearity, which reflects the dialectical unity relations between
the whole and the part, linearity and nonlinearity. Visualized understanding of LL is that at each
sampling data point, the local linear hyperplane is used to expand its surrounding areas, and the
approximate description of the global space is completed like a tent or membrane structure building
(e.g. Olympiastadion Mtnchen and The Shed in NewYork), as shown in Fig. S10b-d. System
matrixization has characteristics of linearization, matrixization, quantification, and decoupling.

IC stemming from causal determinism solves the solution of Cx and W. The core of IC is to
ensure that all influences are kept fixed except for the changes(like weights) we care about. The
isomorphic system spaces constructed by different parameters W can be transformed by the
continuous change of W, which could be imagined as the continuous stretching and torsion of the
system space, see Fig. S10e,f. In the process of stretching and torsion, the change of gradient is
often limited. This is also the reason of reuse and why Cjy is effective.—

S1-S6 are algorithms constructed directly from the concepts of LL and IC, and the geometric
understanding can be found in Fig. S10. In contrast, S7 no longer requires complex matrices, is
simpler, less computation and resourse requirement. Convergence is achieved by repeated
iterations according to AW = kW,..

The geometric understanding of LIFT S7 is presented in Fig.1 e-f. W is the current
parameters; W™ is the expected parameters; the black dashed lines WW™represent the ideal
tuning direction; the red solid lines represent the weight-adjusted trajectory AW. AW = kW,., the
direction of adjustment is determined by randomly generated W,., which has an obvious error with
the ideal gradient direction WW™. While the systematic error will decrease, and the active
ingredient is extracted by scalar product calculation.

Convergence analysis
Obviously, in Fig.1 e-f, the LIFT S7 convergence condition can be obtained as:
LW, <||WW'| and < E',E >+ 0.

where

<E' E>

k="'-Y)YI(y-v)= TS

[, is the learning rate, WW™ is the ideal gradient direction, WW' has the same direction with
AW, and AW*WW' is a isosceles triangle (Idealized abstraction, due to the complex spatial
distribution of the system, this abstract result does not necessarily hold.).

According to the geometry understanding, the weight adjustment [,,AW should be in the range of
WW' thatis L.k||W,| < ||[WW'|.

Additional Notes:

(1) If <E'E>=0, AW =0, no adjustment for current W and training ineffective. The
probability of orthogonality of two vectors in a multidimensional space is very low, thus ensuring
the success of the algorithm, which converges in the overall process.

(2) Dueto L.k||W,| < |[WW’||, Although |[WW’|| isdifficult to obtain in practical engineering,
it does give us some hints, such as: [|W,.|| and the learning rate [, should be appropriately small.

System analysis

System matrixization is a geometric algebraization method, has characteristics of linearization,
matrixization, quantification, and decoupling, and enables two-dimensionalized representation of
high-dimensional systems. To some extent, Cyx can be used as a tool for systems analysis, like
system function.

Here's a list of some pre-thinking.
(1) Similarity

According to the Hypothesis 3: For two stable parametric systems processed by LL. ()
(Invariability): The systems with the same structure and parameters (W = W'), for the same input
vector X of the dataset, have the same output vector (Y =Y’) and the same constant matrix
(Cx = Cx).(b) (Comparability): The systems with the same structure and comparable parameter
(W =~ W'), for the same input vector X of the dataset, have the comparable constant matrix

((CX =~ CX), and M;!—TW (CX = (CX .

Si = ||Cx — Cxll

Si measures the direct similarity between the two systems. The smaller the Si, the higher the
similarity.

(2) Sensitivity

With the change of parameters(W — W'), the system will change(Cx — CY%). Se is calculated by
the following formula to show the sensitivity of the system to parameter changes.

Se = [|Cx — Cxll

W = [w;, w,, ..., ws], for different parameter components wy, the sensitivity of the system to
different parameters can be measured by Se;.

Se; = ”(CX - (C:X”|Aws

Solving max {Se,}, the maximum corresponds to the most sensitive parameter w, of the current
system.

(3) smoothability

Cx has a clear mathematical meaning, and each element is a corresponding partial derivative of
the output to the input, as shown in Hypothesis 1(b).

Sm = [|Cx|]
The smaller the Sm, the smoother the system space.

Solving max {Cx}, the maximum maybe correspond to the most steepest place of the current
system.

Notes:
(1) The distribution of (X,Y) is known.

(2) Only considering the local space, we can get local similarity, sensitivity and smoothability.

Supplementary Methods
Method S1
Direct Method:

Two completely isomorphic systems with different parameters, which are stable and smooth
parametric systems, satisfy

{ Y = HW) = CxW
Y = HW') = Cw"

respectively according to Hypothesis 1, and
Cy =~ Cy
by Hypothesis 3. Then,
Cy =~ Cy = YWT,
where WT is the Moore-Penrose generalized inverse of W.

The performance of the known system is used to directly solve the feature matrix of the unknown
system.

Method S2
Difference Method:

Two completely isomorphic systems with different parameters, which are stable and smooth
parametric systems, satisfy

{ Y = H(W) = CxW
Y =H' W) =CyWw”

respectively according to Hypothesis 1, and

by Hypothesis 3. Then,
Cy=Cy =~ (Y -Y)W-W)HT=AYAWT,
where

{AY=Y—Y’
AW =W-W' '

and AWT is the Moore-Penrose generalized inverse of AW.

Solve for the feature matrix of the unknown system using the difference in performance between
the known and unknown systems.

Method S3
Direct Method:

For a stable and smooth parametric system with training data (X,Y) and current weights W',
its current output vector

Y =HW') = CxW'.
So the system feature matrix
Cy=YWT
And the object output and weights are
Y = H(W) = C,W.

Then update the weights by
w=cly = ywhty = wy'ty

Let

k=y'ty
Then

w=Ww'k

Thus it can be seen that k is the scale coefficient of W'.

Method S4

For a stable and smooth parametric system with training data (X,Y) and current weights W,
its current output vector

Y =HW) =CyW".
And the object output and weights are

Y = H(W) = C,W.

Then
AW =W —-W' =ChL(Y —Y") = C}E,
where E=Y -Y'.

Because the gap between W and W' is always too large to obtain a sufficiently accurate (C}. So

we need to reduce this gap to a sufficiently small one. Given a little disturbance parameter W,.,
and the output changes to

Y'=HW +W,) =Cy(W +W,).
So the system feature matrix
Cx="=YYW +W,—-W)t =" -y)W]
Then update the weights by

W=W +1AW
AW = CLE = (" =Y YWD (Y —Y) =w,(¥" —Y) (¥ -Y)

where, [, isthe learningrate, E' =YY" —Y’.
Let

<EE>

— 1 __ ynt —vV =
k=" -Y)Y(¥-Y) <EE>
Then

{W = W'+ [,AW
AW = kW,

It is an iterative training method and trains all training data synchronously in an iteration.

Algorithm S1

Algorithm S1 Direct method

Input: Training data {(x;, ¥,)}, i =1,...,Ng;
System structure and forward mapping y = F(x, W).

W' with random initialization;
yi = F(x, W,

Y =[y1y'5 "'!y,Nd]T;
Cy =~ Cy =Y'W'T;

Y =1[y1,¥2 ---»YNd]T;
6 w=cly.

g B~ W N -

Output: W.

Algorithm S2

Algorithm S2 Difference method

Input: Training data {(x;,y;)}, i =1,...,Ng; r and [,;
System structure and forward mapping y = F(x, W).

W with random initialization in [-1, 1];

Y = [y, ¥2 ""YNd]T;
fori=1to Ny do

end for

® (DAT.

1
2
3
4 J’i(l) = F(x;, W);
5
6 YO = [yl(l),y2 PR Y/val

7 E=Y-YW®;
8 while (epoch < Max and MSE(E) > ¢€)
9 W, with random initialization in [-r, r];

10 fori=1to Ny do

11 yi(Z) =FQ, W+ W,);

12 end for

13 Y® = [y, y?, Ly
14 Cy ~ Cx = (Y@ —yOm,T;
15 AW = ClE;

16 W=WwW+L.AW;

17 fori=1to Ny do

18 yi(l) = F(x;, W);

19 end for

20 YO =Py, Ly
21 E=Y-YW;

22 epoch + +;

23 end while

Output: W.

Algorithm S3

Algorithm S2 Difference method with reuse of C;r .

Input: Training data {(x;,y;)}, i =1,...,Ng4; r and L,;
System structure and forward mapping y = F(x, W).

W with random initialization in [-1, 1];

Y = [y, Y2 00 Yngl s
fori=1to Ny do

1

2

3

4 J’i(l) = F(x;, W);
5 end for

6

1 1 1 .
YO = 2,057, g 1T

7 E=Y-YW,
8 while (epoch < Max and MSE(E) > ¢€)
9 W, with random initialization in [-r, r];

10 fori=1to Ny do
11 v = F, W+ W,);
12 end for

— 1, (2 @)qr.
13 Y& = [y, 5,7, oy 15
14 Cym Gy =D -yOmT
15 while MSE(E) decreasing
16 AW = ClE;
17 W=W+LAW;
18 fori=1to N, do
19 yi(l) = F(x;, W);
20 end for
21 YO = [y, yV, Ly T
22 E=Y-YW;
23 end while
24 epoch + +;
25 end while

Output: W.

Algorithm S4

Algorithm S4 Difference method with batch process of training
data

Input: Training data {(x;,y,)}, i =1,...,Ng; 7, L., and My;
System structure and forward mapping y = F(x, W).

1 W with random initialization in [-1, 1];
2 Y = [y1,¥2 ---JYNd]T;
3 while (iteration < Max and MSE(E) > ¢)
4 for k=0 to (N;/M, —1) do
S Y = [YVi+1 Yir2 ---:}’k+Mb]T;
6 fori=(k+1) to (k+ M,) do
7 yi(l) = F(x;, W);
8 end for

1 1 1 .
9 Y® = [ylg+)1'ylg+)2' e I£+)Mb]T’
10 E=Y-YW;
11 W, with random initialization in [-r, r];
12 fori=(k+1) to (k+ My) do
13 v = F(x, W + W),
14 end for

—r.,@ (2 (2) .

15 Y(z) - [yk+1'yk+2' ""yk+Mb]T’
16 Cy ~Cy= (Y@ —yOw,T
17 AW = ClE;
18 W=W+LAW;
19 fori=(k+1) to (k+ M,) do
20 yi(l) = F(Xl', W);
21 end for

1 1 1 .
2 O = B e)
23 E=Y-YW;
24 end for
25 iteration + +;
26 end while

Output: /.

Algorithm S5

Algorithm S5 Difference method with batch process of training
data and weights.

Input: Training data {(x;,¥,)}, i =1,..,Ng; 7, ., M, and N;
System structure and forward mapping y = F(x, W).

1 W with random initialization in [-1, 1];
2 Y = [y, 2 0 Vgl
3 while (iteration < Max and MSE(E) > ¢)
4 for k=0 to (Ny/M,—1) do
S Y = [Vis1 Yir2s ---:yk+Mb]T;
6 fori=(k+1) to (k+ M,) do
7 yi(l) = F(x;, W);
8 end for

1 1 1 .
TR G
10 E=Y-Y®;
11 for p=0 to (S§/N,—1) do
12 Wy, = [Wp+1r Wp+2r Ly Wp+Nb];
13 W,. with random initialization in [-r, r];
14 fori=(k+1) to (k+ M,) do
15 & = B, Wy + W,);
16 end for

2 2 2 .

17 Y@ = [y15+)1'y1£+)2r ""yIE+)Mb]T’
18 Cp ~ C),(,Wt = (Y(Z) — y(l))WrT;
19 end for
20 cl=1chclicdy, il
21 AW = CJE;
22 W=W+I[.AW;
23 fori=(k+1) to (k+ M,) do
24 D = Fx, W);

25 end for

1 1 1 .
26 YW = [yl£+)1'yl£+)2' ""yl§+)Mb]T’

27 E=Y-YW,
28 end for
29 iteration + +;
30 end while

Output: .

Algorithm S6

Algorithm S6 Difference method with batch process of training
data and weights and reuse of CJ .

Input: Training data {(x;,¥,)}, i =1,..,Ng; 7, ., M, and N;

System structure and forward mapping y = F(x, W).

1
2
3
4
5
6

7
8

9
10
11
12
13
14
15

16
17
18

19
20
21

22
23
24
25

W with random initialization in [-1, 1];
T.

Y =[y1,¥2 ---'J’Nd] ,
for k=0 to (Ny/M,—1) do
Y = [YVi+1 Vs -"ryk+Mb]T;
fori=(k+1) to (k+ M,) do

yi(l) = F(x;, W);

end for

—r,O @ 1) .
YD = [y Vi ""yk+Mb]T1

E=Y-Y®;
while (iteration < Max and MSE(E) > ¢)
W random reordering
for p=0 to (S§/N,—1) do
Wy, = [Wp+1r Wp+2r Ly Wp+Nb];
W,. with random initialization in [-r, r];
fori=(k+1) to (k+ M,) do

¥ = F(x, Wy + W,);

end for

@ L@ @ qr.
Y® = [Vies1 Yiex2r ""ykJrMb]T’

Cp ~ C)I(’Wt = (Y(Z) — Y(l))]/yr'l';
end for
Ci=[ccfs s Cln,al;
while MSE(E) decreasing

AW = CJE;

W=W+LAW;
fori=(k+1) to (k+ M,) do

26 yi(l) = F(x;, W);

27 end for

28 YD = (33 Ve
29 E=Y-Y®:

30 end while

31 end for

32 iteration + +;

33 end while

D
s Vi,

Output: /.

Algorithm S7

Algorithm S7 Improved LIFT without matrix.

Input: Training data {(x;,y;)}, i =1,...,Ng4; r and L,;
System structure and forward mapping y = F(x, W).

W with random initialization in [-1, 1];

Y = [y, Y2 00 Yngl s
fori=1to Ny do

1

2

3

4 J’i(l) = F(x;, W);
5 end for

6

1 1 1 .
YO = 2,057, g 1T

7 E=Y-YW,
8 while (epoch < Max and MSE(E) > ¢€)
9 W, with random initialization in [-r, r];

10 fori=1to Ny do
11 ¥ = F(x, W + W,);
12 end for
13 Y® = [y®,y?, Ly
14 E=y® -yQ:;
<E' E>
15 k= <EE>
16 AW = kW,;
17 W =W +LAW;
18 end while

Output: W.

Supplementary Experiments

Experiment S1: IR

The Nth-order IIR(Infinite Impulse Response) Filter has a system function:

k=0

- =k ,
X(2) 1->az*
k=1

ibkz’k

and
HE")=H@)|_.= H(Ee") e,

where |H(ef‘“)| is amplitude-frequency characteristic, and B(jw) is phase-frequency
characteristic.

For this IIR filter system, input is angular frequency w = k27 /1000, k = 0,1, ...,500,
corresponding output is the amplitude-frequency characteristic |H (efw)|, that is

N N
IHE) = f (@) =D bz 1a-Yaz™
k=0 k=1

N N
= ‘z be /A=Y ae)
= k=1

And the system parameter W = [ay, ay, ..., ay, by, by, ..., by]. 1t is a single-input-single-output
(SISO) system. The IIR filter system is designed by the solution of {a,} and {b,}.

The difference equation corresponding to the IIR system is
¥ = 3 Bx(k) + 3,y (k)

It means that there is feedback between the input and output of the IIR system.

Experiment 1: Design a 100-order 1IR filter so that its amplitude-frequency characteristics meet
specific requirements (WL-type filter).

Specific model parameters are given in Table S1.

Experiment S2: DNN

Neural networks can be used for classification and regression prediction and are a fundamental
element of modern Al solutions. Classical Multi-Layer Feedforward Networks (MLFNSs) consist
of an input layer, multiple hidden layers, and an output layer. Suppose the classical structure is P-

L-Q, and the specific parameters are shown in Table S2. The neural network adopts a fully
connected structure. The feedforward neural networks perform forward computation by iterating
layer by layer:

{z“) — WhaD 4 p®
1) — |

Experiment 2: Design a fully-connected DNN with 40 hidden layers, to fit a two-input-two-
output nonlinear system (two mixed benchmark functions: Ackley and Adjiman).

Specific model parameters are given in Table S2.

Experiment S3: SaNN

To verify the adaptability of nonclassical nonlinear components in ANN, this section selects the
MIMO Sampling Neural Network (SaNN). MIMO SaNN uses single-input-single-output (SISO)
Sampling neural network (SaNN) as the neuron activation function and accomplishes neural
network learning by neuron activation functions training. The feedforward neural networks
perform forward computation by iterating layer by layer:

{Z(l) =wW0gtd + p®
N — I
al) = ¢(Z())

where the neurons' input and output satisfy the following formula:

O}
LA

Ns .
t =— (Softsign(z") +1) =
p Softsign(zT)+1) =" 1+]20 |

Ns Vi
a =>"W,Sa [? (t—nT)}
n=1

The main differences between SaNN and traditional multi-layer neural networks are i)The
connection weights between hidden layers do not need to be trained. The inter-layer link weights
were randomly initialized with 0 or +1, and then remained fixed, in Experiment 3. ii) The number
of training weights for each layer in SaNN is M; X N, rather than M; x M; in MLFNs. Since
usually N, < M, it is beneficial to reduce the network size. iii) The activation function of each
neuron is completely independent and trainable, while the traditional network uses a pre-set and
fixed activation function, like sigmoid, tanh, ReLU, ELU, and so on.

Experiment 3: Design a SaNN with 10 hidden layers, to fit a two-input-two-output nonlinear
system (two mixed benchmark functions: Ackley and Adjiman).

Specific model parameters are given in Table S3.

Experiment S4: SaKAN

KAN(Kolmogorov-Arnold Network) is a novel and hot network architecture based on
Kolmogorov-Arnold Representation Theorem, that has emerged in nearly a month. It improves the
network performance and interpretability by replacing the weight parameters with learnable
univariate functions, and has the potential to become an important direction for driving the
development of deep learning models. Its main features are that the learnable activation and B-
spline function replacing the traditional linear weights.

As a new type of network architecture, there are still many areas to be improved, such as the
difficulty of network training. To further verify the universality of the LIFT algorithm, we
constructed a SaKAN (KAN with SaNN) network that replaced the B-spline function with the
SaNN. The basic structure of SaKAN is as follows:

l l
(Wl(]) = ‘PSaNN(xi())
o _ O]
) yj© = z Ly
i
y(l+1)
) . (1+1) J
X = SoftSlgn(y-) = ——
j J l
\ |yj(+1)| +1

where the function @g,yy IS the learnable input-output relationship of SaNN, which weights are
the system parameters to be sought.

Experiment 4: Design a SaKAN with 1 hidden layers, to fit a two-input-two-output nonlinear
system (two mixed benchmark functions: Ackley and Adjiman).

Specific model parameters are given in Table S4.

Experiment S5: RAN

RAN: Neural Network with Randomly selected Activation functions.

Here employed is still the MLP(Multilayer Perceptron) or MLFNs (Multi-Layer Feedforward
Networks), classical neural network structure. The neural networks perform forward computation
by iterating layer by layer:

{Z(I) =W®halD 4 p"
1) — |

Where the activation functions 4, are no longer a fixed function, but the specific functions
randomly selected at initialization from 10 functions. Details in Table S6. These functions
include traditional activation functions, non-continuous segmented functions, and non-derivative
functions.

Experiment 5: Design a RAN with 3 hidden layers, to fit a two-input-two-output nonlinear system
(two mixed benchmark functions: Ackley and Adjiman).

Specific model parameters are given in Table S5.

Experiment S6: MLP

MLP(Multilayer Perceptron) or MLFNs (Multi-Layer Feedforward Networks) is a classical
neural network structure. DNN in Experiment S2 is also a MLP with more hidden layers.

In order to compare LIFT with BP, a three-layer network structure is selected. Because basic BP
IS not suitable for deep networks.

The neural networks perform forward computation by iterating layer by layer:

{Z(I) =W®halD 4 p"
1) — |

Experiment 6: Design a MLP with 3 hidden layers, to fit a two-input-two-output nonlinear system
(two mixed benchmark functions: Ackley and Adjiman).

Specific model parameters are given in Table S6.

Supplementary Tables

Table S1.

Some parameters of Experiment 1 for IIR design.

Items Descriptions or Parameters
Input P 1
Output Q 1

201
Weights S where 100 for {a,}, n=1,..., 100,

and 101 for {b,}, n=0,1,..., 100.

. WL-type filter, the object as shown in
Object Fig. 2, S1 and Data SL.
Input w € (0,2m)
Output |H(e')|
Nth-order 100
Ny 500
W initialization random in [-1, 1]
Pre-training Yes, Algorithm S1
Iterative training algorithm Algorithm S3
0.1,epoch < 500000

Learn rate [{ 8.0 1 others
W, Random in [-0.01, 0.01]
Epoch Max 100 Million
Training upper limit per Epoch | 100

Table S2.

Some parameters of Experiment 2 of DNN:

Items Descriptions or Parameters
Input X = [xq1,%X3, ., Xp1xp
Output Y = [y, Y2, -, Yolixe

The weights matrix between layer I-1 and WO

layer |

The bias of neurons in layer [p®

Input dimension, P 2

Output dimension, Q 2

The number of hidden layers, L 40

Weights dimension, S 15680

The number of neurons in layer [, Ml

MI=20 for all layers

Activation function

‘tanh’ for all neurons:

®

z(l) -z;

Object function

1 D, (e’ —e
o’ =0 z") = ——
efi +e %
Benchmark functions: Normalized

Ackley and Adjiman

y, = F(x, %)= e’“,/xf + X2 +3c0s2X, +5sin 2X,

X
X2 +1

Y, = f (X:l’ Xz) = COS(X1)Sin(X2) -

x, €[0,10], x, €[0,10]

See Fig. S3.
Training data set N, 10000
Test data set N, 10000
Batch process of weights M, 98
Batch process of training data N, 98
W initialization random in [-1, 1]
Pre-training No
Iterative training algorithm Algorithm S6
Learning rate Ir 0.005

Wy

Random in [-0.01, 0.01]

Update batch of training data

Randomly selected (shuffling) every 25
iterations (Batch)

Iteration maximum

10000

Training upper limit per iteration (reuse)

10000

Table S3.

Some parameters of Experiment 3 of SaNN.

Items Parameters
Input dimension, P 2

Output dimension, Q 2

The number of hidden layers, L 10

Weights dimension, S 2000

The number of neurons in layer [, M,

M,;=20 for all layers

Activation function

SISO SaNN neurons (details in Experiment S3).

The number of weights of a single
SISO SaNN neuron, Ng

10

Obiject function

Benchmark functions: Normalized Ackley and Adjiman

Y, = T (X, %) :e’o'z,/xf +x2 +3c0s 2%, +5in 2x,

Y, = f (Xll Xz) = cos(xl)sin(xz) - Xzzxi-l

¥, €[0,10], x, €[0,10]
See Fig. S5.

Training data set Ny

10000

Test data set N,

A total of 10000.
In Fig. S4, test 100 data after each iteration.
In Fig. S5, test the whole 10000 data.

Batch process of weights M,

100

Batch process of training data N,

100

W initialization of SISO SaNN for all
neurons

Random in [-1, 1]

Randomly initialized with O or +1.

Inter-layer link weights W | As shown in Fig. S4h, a total of 3680, initialized as “0”
initialization has 1802(48.97%), “1” has 905(24.59%), and “-1” has
973 (26.44%).

Pre-training Yes, Algorithm S1 by randomly selected 100 train data.
Iterated operation Algorithm S6

Learn rate Ir 0.01

W;

Random in [-0.01, 0.01]

Update batch of training data

Randomly selected (shuffling) every 25 iterations

(Batch)
Iteration maximum 50000
Training upper limit per iteration 10000

(reuse)

Table S4.

Some parameters of Experiment 4 of SakK AN.

Items Parameters
Input dimension, P 2

Output dimension, Q 2

The number of hidden layers, L 1

Weights dimension, S 400

The number of neurons in layer [, M,

M,;=10 for all layers

Activation function

SISO SaNN neurons (details in Experiment S4).

The number of weights of a single
SISO SaNN neuron, Ng

10

Obiject function

Benchmark functions: Normalized Ackley and Adjiman

y, = (X, %)= e""z,/x12 + X2 +3C08 2X, +Sin 2x,

Y, = f (Xll Xz) = cos(xl)sin(xz) - Xzzxi-l

x, €[0,10], x, €[0,10]

Training data set N,

10000

Test data set N,

A total of 10000.

Batch process of weights M,

400 (No batch process)

Batch process of training data N, 1000
W initialization of SISO SaNN for all

Zeros
neurons
Pre-training None
Iterated operation Algorithm S7
Learn rate Ir 1

A

Random in [-0.01, 0.01]

Update batch of training data

Randomly selected (shuffling) every 25 iterations

(Batch)
Iteration maximum 50000
Training upper limit per iteration 1

(reuse)

Table S5.

Some parameters of Experiment 5 of RAN.

Items Parameters
Input dimension, P 2

Output dimension, Q 2

The number of hidden layers, L 3

Weights dimension, S 5200

The number of neurons in layer [, M,

M,;=50 for all layers

Randomly selected in 10 functions.

No. | Functions Description
1 (x) = 1T e sigmoid
e?* —1
) @(x) = tanh (x) = ——— | tan
D00 = tanh (x/2) = -+ | tanh (x/2)
3 X) = tan (X/)_ex+1
2 _ 2
@(X):{x, 1<x<1 x* o
4 x, others (Discontinuity)
Activation functions —In(1 In
5 06 =In (1 +xD (Non derivable)
0,x <0 |[ReLU
= 0, = ’ .
6 00 = max(0,%) {x,x = 0 | (Non derivable)
7 @(x) = sin (0.4x) sin
8 @(x) = atan (x) arctan
x -
9 P =7 P softsign
(T X4 Piecewise
P(x) = 4 02x,-4<x<4 function
x -
10 l — x’x < —4 (Non derivable)

Object function

Benchmark functions: Normalized Ackley and Adjiman

X
x5 +1

{yl = f(x,%,) :e‘“,%xf + X5 +3c0s2X, +5sin 2x,

Y, = f(Xi, Xz) = COS(Xl)Sin(Xz) -

x, €[0,10], x, €[0,10]

Training data set N,

10000

Test data set N,

A total of 10000.

Batch process of weights M,

5200 (No batch process)

Batch process of training data N, 100

W initialization Random
Pre-training None

Iterated operation Algorithm S7
Learn rate Ir 1

Wy

Random in [-0.001, 0.001]

Update batch of training data

Randomly selected (shuffling) every 25 iterations (Batch)

Iteration maximum

2,000,000

Training upper limit per iteration
(reuse)

1

Table S6.

Some parameters of Experiment 6 of MLP.

Items Parameters

Input dimension, P 2

Output dimension, Q 2

The number of hidden layers, L 3

Weights dimension, S 5200

The number of neurons in layer I, M; | M;=50 for all layers

Activation functions tanh functions:@(x) = tanh (x) = ZZ—:

Obiject function

Benchmark functions: Normalized Ackley and Adjiman

Y, = T (X, %) :e""za/xl2 + X2 +3c0s 2X, +Sin 2X,

¥a = 1(%,%) = 0030)sinG) ==

x, €[0,10], x, €[0,10]

Training data set N,

10000

Test data set N,

A total of 10000.

Batch process of weights M,,

5200 (No batch process)

Batch process of training data N, 100

W initialization Random

Pre-training None

Iterated operation BP .
Algorithm S7
1 for S7

Learn rate Ir

0.001 for BP(The learning rate is too large, the network is
not easy to converge.)

Wy

Random in [-0.001, 0.001]

Update batch of training data

Randomly selected (shuffling) every 25 iterations (Batch)

Iteration maximum

2,000,000

Training upper limit per iteration
(reuse)

1

Supplementary Figures

—Stage I —Stage [I —Stage [I1
6 '5 1‘0
Epoch X105
— Designed — — — Object Designed
==
i 500 0
100 k k .
n — Designed — — — Object h Designed
1 0
S
f —a a(n) — b{n) ? \\ / \\ ; :
: LA o
£ 06 | D 20
- |
et e
0
| 0 250 500 0 250 500
' . k k
s 1 HEea 2]) » _ — Designed — — —Object Designed
o 50 100 I W
n
500 0
k k
3 Designed — — — Object Designed

T

k k

Fig. S1. The results of Experiment 1 on IIR design. Stage | is pre-training in Algorithm S1;
Stage 11 is the iterative training in epoch 500,000, learn rate 0.1, in Algorithm S3; Stage Il is the
iterative training in epoch 1000,000, learn rate 0.01, in Algorithm S3. a, The system structure of
classical direct-type Nth-order IIR Filter, input x(n) and output y(n). b, The convergence
results of Experiment 1 on IR design. ¢, Randomly initialized system parameters {a,} and {b,}.
d, Amplitude-frequency characteristic curve |H(ef“’)| of randomly initialized system. e, Bode
plot for the magnitude of the frequency response (201g|H(ef‘“)|) of randomly initialized system.
f, System parameters after pre-training (Stage I). g, |H(e/®)| after Stage I. h, 20lg|H (e/*)| after
Stage I. i, System parameters after Stage Il. j, Adjusted value of system parameters in epoch
500,000. k, |H(e/®)| after Stage I1. I, 201g|H (e/®)| after Stage II. m, System parameters after
Stage Ill. n, the Adjusted value of system parameters in epoch 1000,000. o, |H (ef“’)| after Stage
1. p, 20lg|H (e/®)| after Stage III.

Input layer € R? Hidden layers € R 2° Output layer € R ?

b 1 T T T

w o

0 4000 8000 12000 16000

L31I L33
s
4000 8000 12000 16000
100 . Test
1F —ackleyn —adjiman
e
d Activation function: tanh
® 401
. o) = 10
At 102 ‘ ‘
0 5000 10000
f Iteration
10° ¢ Train 107 ‘
102
‘u’g 107" 9000 9500 10000
102 | ‘
0 5000 10000
Iteration
100 Success ratio Reuse ratio
& h 11%
1%
3.64%
/ 5.15%
o L
X 80 o
m 1-1000
¥ 1001-5000
Ave. 88.2% M 5001-9999
60 : ‘ =10000
0 5000 10000

Iteration

Fig. S2. The results of Experiment 2 on DNN design, in 10,000 iterations, learning rate 0.005,
and Algorithm S6. a, The structure of DNN. b, The network weighs in 10,000 iterations. ¢, The
adjusted value of network weights in 10,000 iterations. d, The activation function of neurons is
tanh. e, Two benchmark function output convergence in MSE of the test. f, Training MSE. MSE
continuously reduced for each update training data batch per 25 iterations. g, The success ratio
with iteration. The ratio is calculated once per 100 iterations. The whole average success ratio is
88.2% as shown in the blue line. h, The reuse situation of Cy. “0” means the current Cy is fail to
train. 10000 times” is the preset up-limit of reuse.

Object

Initialized

Fig. S3. The results of Experiment 2 on DNN design (The supplement of Fig.S2.). a, The
benchmark function: Ackley. b, The benchmark function: Adjiman. c, Initialized network output

of Ackley with the MSE 0.4536. d, Initialized network output of Adjiman with the MSE 0.2399.
e, Network output of Ackley with the MSE 0.1906 in iteration 10. f, Network output of Adjiman
with the MSE 0.0503 in iteration 10. g, Network output of Ackley with the MSE 0.0922 in 1000
iterations. h, Network output of Adjiman with the MSE 0.0305 in 1000 iterations. i, Network

output of Ackley with the MSE 0.0323 in 10000 iterations. j, Network output of Adjiman with the
MSE 0.0130 in 10000 iterations.

——Stagell

0.043

4 a
1"“’15‘ U ™

0.04"

49500 50000
1 10 100 1000 10000 50000
Iteration

bo,z Train

1 10 100 1000 10000 50000
Iteration

d.mo Success ratio Reuse ratio
2 80
mo
1-10
Ave. 94.65% m11-50
. 73.30% 51-100
0 25 5 m>100

Iteration w10

0 500 1000 1500 2000

Fig. S4. The results of Experiment 3 on SaNN design, in iteration 50,000, learning rate 0.01,
Algorithm S1, and Algorithm S6. a, benchmark function output convergence in MSE of the test.
b, MSE of training. Update training data batch per 25 iterations. ¢, The structure of SISO SaNN.
d, The success ratio with iteration. The ratio is calculated once per 100 iterations. The whole
average success ratio is 88.2% as shown in the blue line. e, The reuse situation of Cy. “0” means
the failure calculation of the current Cy. “10000 times” is the preset up limit of reuse. f, The
network weights in iteration 10,000. g, The adjusted value of network weights in 10,000 iterations.
h, Inter-layer link weights between different layers. A total of 3680, initialized as “0” has
1802(48.97%), “1” has 905(24.59%), and “-1” has 973 (26.44%).

Object

= S Y

Pre-trained

-
o

Iteration 50000

Fig. S5. The results of Experiment 3 on SaNN design (The supplement of Fig.S4.). Test the
whole 10000 test dataset, different from the test in Fig.3 just 100 randomly selected test data. a,

The benchmark function: Ackley. b, The benchmark function: Adjiman. c, Initialized network
output of Ackley with the MSE 0.7417. d, Initialized network output of Adjiman with the MSE
0.7154. e, Network output of Ackley with the MSE 0.1844 by pre-train in Algorithm S1. f,
Network output of Adjiman with the MSE 0.1380 by pre-train in Algorithm S1. f, Network output
of Ackley with the MSE 0.0696 in 10000 iterations in Algorithm S6. h, Network output of Adjiman
with the MSE 0.0467 in 10000 iterations in Algorithm S6. i, Network output of Ackley with the
MSE 0.0499 in 50000 iterations in Algorithm S6. j, Network output of Adjiman with the MSE
0.0410 in 50000 iterations in Algorithm S6.

0 0.5 1 1.5 2 25 3 3.5 4 45 5 0 0.5 1 15 2 25 3 35 4 4.5 5
Iterations «10% Iterations «10%

100

Fig. S6. The results of Experiment 4 on SaKAN design. a, The structure of SaKAN. b, The
structure of SISO SaNN. ¢, MSE of training. d, MSE of testing. e, Network output of Ackley
with the MSE 0.0155 in 50000 iterations in Algorithm S7. f, Network output of Adjiman with
the MSE 0.0142 in 50000 iterations in Algorithm S7.

100

Fig. S7. The results of Experiment 5 on RAN design. a, The structure of RAN. The solid circle
represents neurons with randomly selected activation functions. b, MSE of training. ¢, MSE of
testing. d, Network output of Ackley with the MSE 0.0324 in 2,000,000 iterations in Algorithm
S7. e, Network output of Adjiman with the MSE 0.0265 in 2,000,000 iterations in Algorithm S7.

MSE

102}

104F

108

10®
10° 102) 10*
[terations

0.8
0.6
04

0.2

0 .l
100

20

b100 MSE' ' ' ' ' ' ' ' '

—=|IIFT
BP
107!

102 2 i i i 3 . i i i
0 02 04 06 08 1 12 14 16 18 2
d MsE Iterations x10°
10° v . .
107 1

1 0.2 l " "
10° 102 . 10 108
Iterations

08
0.6
0.4

0.2

0 .l
100

0.2 .l
100

20

100

Fig. S8. The results of Experiment 6 on MLP design. a, The structure of MLP with activation
functions tanh . b, MSE of training. ¢, MSE of testing in BP. d, MSE of testing in LIFT. e, Network
output of Ackley with the MSE 0.0239 in 2,000,000 iterations in BP. f, Network output of Ackley
with the MSE 0.0391 in 2,000,000 iterations in LIFT S7. g, Network output of Adjiman with the
MSE 0.0181 in 2,000,000 iterations in BP.h, Network output of Adjiman with the MSE 0.0256 in
2,000,000 iterations in LIFT S7.

c w
Hy H; Hy He
Wy Woz ;u ;.u
w
Wiy Y,

d
M) Y=Y Y YrY,
—

Fig. S9. Diagrammatic sketch. a, The structure diagram of parametric system indicated by H. b,
The sub-region structure with batch processes(W,; to Wpe). ¢, The hierarchical structure with
batch processes(W,, to Wy,). d, The parallel structure with batch processes(Wp, t0 Wpy). €,
The parallel training diagram with batch processes(W, to W,,). H' is the copy(reuse module)
of H. See Algorithm S5, S6. f, Sketch of LIFT method. W is the current parameters; W* is the
expected parameters; the red solid lines represent the weight-adjusted trajectory AW; the black
dashed lines represent the ideal tuning direction.

Fig. S10. The diagrammatic sketch of visualized understanding of LL-I1C. a, System space.
b-d, System approximation by local linearization. e-f, The diagrammatic sketch of isomorphism
comparability. System approximation after stretching caused by weight adjustment. In the
process of stretching and torsion, the change of gradient is often limited. This is also the reason
why Cy is effective. It’s also the reason of its reuse.

