scCDX: enhancing cancer driver gene identification and model interpretability with single-cell RNA sequencing data and extreme gradient boosting
Kyungwook Lee, Jooyeon Kim, Tae Yong Kim

1. Data preprocessing
1.1  Mutation frequency (MF)
Using somatic mutation data obtained from TCGA, we calculated the single nucleotide variation (SNV) frequency of each gene within different cancer types by dividing the number of non-silent mutations in the gene by its exon length. Concurrently, we utilized GISTIC2's copy number variation (CNV) analysis results [1] from the Firehose platform (https://gdac.broadinstitute.org). This analysis covered both amplified and deleted genes. For each gene, we determined its copy number mutation rate by quantifying how frequently it was amplified or deleted within a specific cohort. We combined all types of copy number alterations (CNAs), including amplifications and deletions, without distinguishing between them for a given cancer type. The gene mutation frequency was then established as the average of both SNVs and CNAs across all samples within a cancer type. Min-max normalization was applied except missing values, and missing values were set to 0.

1.2  Methylation changes (METH)
We gathered DNA methylation information from TCGA's 450K methylation microarray data, encompassing both tumor and corresponding normal samples. Within each gene, the average methylation level of the promoter region was determined by averaging the beta (β) values from all CpG sites present, after removing batch effects by ComBat [2]. Subsequently, within each cancer type, the methylation level change for a gene was computed as follows:

where c denotes the specific cancer type,  are the methylation levels of gene i in tumor and matched normal samples, respectively, and  is the number of all samples for a specific cancer type. Min-max normalization was applied except missing values, and missing values were set to 0.

1.3 Gene expression changes (GE)
The gene expression data were acquired from the study conducted by Wang et al. [3]. The data underwent quantile normalization and batch effect correction using ComBat [2]. For each gene, the extent of differential expression within a given cancer type is evaluated through the log2 fold change calculation between tumor and corresponding normal samples. This calculated value is subsequently averaged across all samples. In cases where gene expression was not assessed in either the matched normal or tumor samples, the gene's expression value was not computed and was instead assigned a value of 0. Min-max normalization was applied except missing values, and missing values were set to 0.

1.4  Systems-level properties (SYS)
The systems-level properties (SYS), the same as those in HGDC [4], are not directly related to cancer but represent 6 types of global properties of genes and consist of 10 features in total (see Supplementary Methods of sysSVM2 [5] for sources of the properties). For categorical features, we set positive samples to 1 and negative samples to -1. Then, we set missing values to 0, and used standardized features except for tree-based models. Systems-level properties used in this study are listed in Supplementary Table 3 and Table S2 of HGDC.

1.5  Topological features (TOPO)
DeepWalk [6] was performed to extract the topological information of the genes in the protein-protein interaction (PPI) network. The hyperparameters used in this study were as follows: embedding_dim, 16; walk_length, 80; context_size, 5; walks_per_node, 10; num_negative_samples, 1; p, 1; q, 1; and batch_size, 128.

1.6  Protein-protein interaction (PPI) network
The PPI network was obtained from Consensus Path DB [7]. To retain reliable interactions in the network, we removed the interactions the score lower than 0.5, resulting in 13,627 nodes and 504,378 edges.

1.7  Label data
[bookmark: OLE_LINK6]The positive samples are lists of known cancer genes obtained from Network of Cancer Genes (NCG) v6.0 [8], COSMIC Cancer Gene Census (CGC v91) [9], and DigSEE [10]. Conversely, the negative samples are genes that are highly likely to lack a relation with cancer. To obtain negative samples, following potentially cancer-related genes are removed from all genes: genes included in the NCG; genes associated with cancer pathways in the KEGG database [11]; genes present in the Online Mendelian Inheritance in Man (OMIM) database [12]; genes predicted to be associated with cancer by MutSigdb [13]; and genes whose expression had association with the expression of cancer gene [14]. Finally, 796 positive and 2187 negative samples were obtained.

2. Hyperparameter optimization for baselines
We performed grid search for hyperparameter optimization. If single-cell gene expression changes (scGE) in gene features, we The hyperparameters searched were as follows:
2.1 EMOGI
· epoch: [2000]
· lr (learning rate): [0.0005, 0.001, 0.002]
· weight_decay: [0.001, 0.005, 0.01]
· hid_dim1 (hidden layer 1 dimension): [300, 500] if scGE in features, otherwise [150, 300, 500]
· hid_dim2 (hidden layer 2 dimension): [100, 200] if scGE in features, otherwise [50, 100, 200]
· dropout: [0.5]
2.2 HGDC
· epoch: [100]
· lr (learning rate): [0.0005, 0.001, 0.002]
· weight_decay: [0.00001, 0.0001, 0.001]
· hid_dim (hidden layer dimension): [100, 200, 300] if scGE in features, otherwise [50, 100, 200, 300]
· dropout: [0.5]
2.3 MODIG
· epoch: [1000]
· lr (learning rate): [0.0005, 0.001, 0.002]
· dp (dropout rate): [0.25, 0.5]
· wd (weight decay): [0.0005]
· hs1 (hidden layer 1 dimension): [200, 300, 400]
· hs2 (hidden layer 2 dimension): [50, 100, 200]
2.4 MTGCN
· epoch: [2500]
· lr (learning rate): [0.0005, 0.001, 0.002]
· hid_dim1 (hidden layer 1 dimension): [300, 500] if scGE in features, otherwise [150, 300, 500]
· hid_dim2 (hidden layer 2 dimension): [100, 200] if scGE in features, otherwise [50, 100, 200]
· dropout: [0.5]
2.5 MRNGCN 
· epoch: [1065]
· lr (learning rate): [0.001, 0.002, 0.005]
· weight_decay: [0.0005, 0.001, 0.005]
· hid_dim1 (hidden layer 1 dimension): [256, 512] if scGE in features, otherwise [128, 256, 512]
· hid_dim2 (hidden layer 2 dimension): [128, 256] if scGE in features, otherwise [64, 128, 256]
2.6 Multi-Layer Perceptron (MLP)
· epoch: [500, 1000, 2000]
· batch_size: [256, 512]
· lr (learning rate): [0.0005, 0.001, 0.005]
· weight_decay: [0.0005]
· fcn_dim (hidden layer dimension): [(128, 64), (256, 128), (128, 64, 32), (256, 128, 64)]
· dropout: [0.5]
2.7 TabNet
· epoch: [500, 1000, 2000]
· batch_size: [512]
· lr (learning rate): [0.005, 0.01, 0.02]
· (n_d, n_a): [(8, 8), (16, 16), (32, 32)]
· n_steps: [3, 5]
· step_size: [500, 1000]
2.8 Support Vector Maching (SVM)
· C: [0.1, 1, 10, 100, 1000]
· gamma: [1, 0.1, 0.01, 0.001]
· kernel: [“rbf”, “linear”, “sigmoid”]
2.9  Random Forest (RF)
· n_estimators: [1000, 2000]
· max_depth: [4, 6, 8]
· max_features: [“sqrt”, “log2”]
· min_samples_split: [2 ,5, 10]
· min_samples_leaf: [1, 2, 4, 7]
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