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Vegetation type

Il Tropical and Subtropical Forests

I Temperate Broadleaf and Mixed Forests

I Temperate Coniferous Forests

I Boreal Forests, Taiga
Temperate Grasslands, Savannas, and Shrublands
Montane Grasslands and Shrublands
Tundra

Il Deserts and Xeric Shrublands

FLUXNET sites
©8-909-11 ®11-13 ®13-16 @16 - 18 @18 - 21

Figure S1 Description of the study area and flux sites used in this study. The
number of sites indicated by the size of circles and detailed information of sites are

provided in Table S2.
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Figure S2 Mean preseason total precipitation (Pita) and its standard deviation (Std)
for (A-B) CRU and (C-D) ERA5 observations over 1982-2022. E-F represent

precipitation frequency (Pr¢q) for these two observations.
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39  Figure S5 Distribution of the preseason length for precipitation frequency over the

40  Northern Hemisphere.
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Table S1 Descriptions of the data used in this study.

. Spatial Temporal ,
# Variable name ] ] Time range Source
resolution resolution
1 GIMMS NDVI3g 0.0833° half-monthly 1982-2022 GIMMS?!
2 Plant functional type - - 2001 Ref. (1)
3 2m temperature 0.1° monthly 1982-2022 ERA5®
4 Total precipitation 0.1° monthly 1982-2022 ERA5®
5 Solar radiation 0.1° monthly 1982-2022 ERA5®
6  Hourly precipitation 0.1° hourly 1982-2022 ERA5’
7 Total precipitation 0.5° monthly 1982-2022 CRU®
Precipitation 5
8 0.5° monthly 1982-2022 CRU
frequency
9  Evapotranspiration 0.042° monthly 1982-2022 TerraClimate®
Vapor pressure . 6
10 o 0.042° monthly 1982-2022 TerraClimate
deficit (VPD)
Root-Zone Soil ;
11 . 0.25° monthly 1982-2022 GLEAM
Moisture
12 Root depth 0.0083° - - Ref. (2)°
Drought response 9
13 0.0833° - - Ref. (3)
lag
Drought recovery 9
13 i 0.0833° - - Ref. (3)
ime

'https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-ind
ex-3rd-generation-nasagfsc-gimms
“https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
*https://cds.climate.copernicus.eu/cdsapp - !/dataset/reanalysis-era5-land-monthly-mean
s?tab=form
“https://cds.climate.copernicus.eu/cdsappi!/dataset/reanalysis-era5-land?tab=overview
*https://crudata.uea.ac.uk/cru/data//hrg/

®https://climate.northwestknowledge.net/ TERRACLIMATE/index_animations.php/
"https://www.gleam.eu/
®https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html

*https://doi.org/10.1038/s41558-022-01584-2


https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://crudata.uea.ac.uk/cru/data/hrg/
https://climate.northwestknowledge.net/TERRACLIMATE/index_animations.php
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://www.gleam.eu/
https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html
https://doi.org/10.1038/s41558-022-01584-2
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Table S2 Descriptions of the flux sites used in this study.

# SITE IGBP LAT LON number Start year End year
1 AT-Neu GRA 47.1167 11.3175 11 2003 2012
2 BE-Bra MF  51.3092 4.5206 15 2000 2013
3 BE-Vie MF  50.3051 5.9981 18 1998 2014
4 CA-Gro MF  48.2167 -82.1556 10 2005 2013
5 CA-Man ENF 55.8796 -98.4808 14 1995 2007
6 CA-Oas DBF 53.6289 -106.198 15 1997 2010
7 CA-Obs ENF 539872 -105.118 11 2001 2010
8 CA-TP1 ENF 42.6609 -80.5595 11 2005 2014
9 CA-TP3 ENF 427068 -80.3483 12 2004 2014
10 CA-TP4 ENF 427102 -80.3574 12 2004 2014
11 CH-Cha GRA 47.2102 8.4104 10 2006 2014
12 CH-Dav ENF 46.8153 9.8559 18 1998 2014
13 CH-Fru GRA 47.1158 8.5378 9 2007 2014
14 CH-Lae MF 47.4781 8.365 10 2006 2014
15 CZ-wet WET 49.0247 14.7704 9 2007 2014
16 DE-Gri GRA 50.95 13.5126 11 2005 2014
17 DE-Hai DBF 51.0792 10.453 13 2001 2012
18 DE-Lnf DBF 51.3282 10.3678 8 2003 2009
19 DE-Tha ENF 50.9624  13.5652 18 1998 2014
20 DK-Sor DBF  55.4859 11.6446 18 1998 2014
21 DK-ZaH GRA 744732 -20.5503 12 2001 2011
22 FI-Hyy ENF 61.8474 24.2948 18 1998 2014
23 FI-Sod ENF 67.3619 26.6378 14 2002 2014
24 FR-Fon DBF 48.4764 2.7801 10 2006 2014
25 FR-LBr ENF 447171 -0.7693 12 1998 2008
26 FR-Pue EBF 43.7414 3.5958 15 2001 2014
27 IT-Col DBF 41.8494 13.5881 18 1998 2014
28 IT-Cpz EBF 41.7052 12.3761 8 2002 2008
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29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

IT-Lav
IT-MBo
IT-Ren
IT-Rol
IT-R02
IT-SRo
NL-Loo
RU-Cok
RU-Fyo
RU-Sam
US-GLE
US-Hal
US-Los
US-MMS
US-Me2
US-NR1
US-Oho
US-PFa
US-Syv
US-UMB
US-var
US-WCr
US-Whs

US-Wkg

ENF
GRA
ENF
DBF
DBF
ENF
ENF
OSH
ENF
GRA
ENF
DBF
WET
DBF
ENF
ENF
DBF
MF
MF
DBF
GRA
DBF
OSH

GRA

45.9562
46.0147
46.5869
42.4081
42.3903
43.7279
52.1666
70.8291
56.4615
72.3738
41.3667
42.5378
46.0827
39.3232
44.4523
40.0329
41.5545
45.9459
46.242
45.5598
38.4133
45.8059
31.7438

31.7365

11.2813
11.0458
11.4337
11.93
11.9209
10.2844
5.7436
147.4943
32.9221
126.4958
-106.24
-72.1715
-89.9792
-86.4131
-121.557
-105.546
-83.8438
-90.2723
-89.3477
-84.7138
-120.951
-90.0799
-110.052

-109.942

12
11
13

10
13
17
11
16
11
10
21

16
13
16
10
18
10
15
14
12

2004
2004
2000
2002
2003
2001
1998
2004
2000
2003
2006
1993
2002
2000
2003
2000
2005
1998
2002
2001
2002
2000
2008

2008

2014
2013
2011
2008
2011
2012
2013
2013
2014
2012
2014
2012
2009
2014
2014
2014
2013
2014
2010
2014
2014
2010
2014

2014
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Table S3 Description of Trendy models

# Model name Spatial resolution Temporal Time range Source

1 CABLE-POP 1°x1° monthly 1983-2021 Ref. (4)*
2 CLASSIC 1°x1° monthly 1983-2021 Ref. (5)*
3 CLM5.0 1.25°%0.9375° monthly 1983-2021 Ref. (6)"
4 DLEM 0.5°%0.5° monthly 1983-2021 Ref. (7)*
5 IBIS 1°x1° monthly 1983-2021 Ref. (8)"
6 ISAM 0.5°%0.5° monthly 1983-2021 Ref. (9)*
7 JSBACH 1.875°x1.875° monthly 1983-2021 Ref. (10)"
8 JULES 1.875°x1.25° monthly 1983-2021 Ref. (10)*
9 LPJ-GUESS 0.5°x0.5° monthly 1983-2021 Ref. (12)*
10 LPX-Bern 0.5°x0.5° monthly 1983-2021 Ref. (13)"
11 OCN 1°x1° monthly 1983-2021 Ref. (14)"
12 ORCHIDEE 0.5°x0.5° monthly 1983-2021 Ref. (15)"
13 SDGVM 1°x1° monthly 1983-2021 Ref. (16)*
14 VISIT-NIES 0.5°%0.5° monthly 1983-2021 Ref. (17)"
15 VISIT 0.5°x0.5° monthly 1983-2021 Ref. (18)"
16 YIBs 1°x1° monthly 1983-2021 Ref. (19)*

1 https://blogs.exeter.ac.uk/trendy/
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Table S4 Description of Cmip6 models

# Model name Spatial resolution ~ Temporal  Time range Source

1 ACCESS-ESM1-5 1.875°%1.25° monthly 2016-2100 Ref. (20)1
2 BCC-CSM2-MR 1.125°%1.125° monthly 2016-2100 Ref. (21)l
4 CESM2-WACCM 1.25°%x0.9375° monthly 2016-2100 Ref. (22)1
5 CMCC-CM2-SR5 1.25°x0.9375° monthly 2016-2100 Ref. (23)l
6 CMCC-ESM2 1.25°%x0.9375° monthly 2016-2100 Ref. (24)1
7 EC-Earth3-Veg 0.7031°x0.7031° monthly 2016-2100 Ref. (25)1
8  EC-Earth3-Veg-LR 1.125°x1.125° monthly ~ 2016-2100 Ref. (26)"
9 INM-CM4-8 2.0°x1.5° monthly ~ 2016-2100 Ref. (27)"
10 INM-CM5-0 2.0°x1.5° monthly ~ 2016-2100 Ref. (28)"
11 IPSL-CM6A-LR 2.5°x1.25° monthly 2016-2100 Ref. (29)1
12 MPIESM1-2-HR 0.9375°x0.9375°  monthly ~ 2016-2100 Ref. (30)*
13 MPIESM1-2-LR 1.875°%1.875° monthly 2016-2100 Ref. (31)1
14 NorESM2-MM 1.25°x0.9375° 3-hourly  2016-2100 Ref. (32)*
15 TaiESM1 1.25°x0.9375° monthly ~ 2016-2100 Ref. (33)"

1 https://esgf-node.linl.gov/projects/cmip6/
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