Supplementary Information
The Supplementary Information includes information about the environmental forcing, temperature norm, copepod grazing, Shannon diversity index, and visual representation of the model output that is not covered by the figures in the main text.  

Temperature norm 
The initial model setup (Serra-Pompei et al., 2020) includes temperature dependencies for copepods and protists. In the present study, we replaced the temperature dependencies with a temperature norm (, Eq S1) as in Dutkiewicz et al. (2015, 2020) to simulate a temperature environmental trait of functional groups (“cold-water”, “warm water” functional groups)
			Eq. SI1
where: 
 ambient water temperature (Kelvin) 
: Coefficient that normalizes the maximum value (0.8, unitless)
: (-4000, unitless)
: reference ambient temperature (293.15 Kelvin)
: determines the width of norms (3x10-4, unitless)
: defines the optima temperature (271.15 to 304.15 with intervals of 4 Kelvin)
 decay coefficient for norms (4m unitless)

 The model includes temperature norms with eight temperature optima from 0 ˚C to 28 ˚C with 4 ˚C interval (Fig. 1). All temperature norms have the same width of ± 10 ˚C. Groups can grow within the temperature ranges of their norms and maximize their growth with temperature close to their temperature optima. As in Serra-Pompei et al. (2020), we applied the temperature norm on respiration rates and maximum uptake rates for protists, respiration, and maximum ingestion rates for copepods.

Copepod grazing 
In the model copepods have eight life stages: seven juveniles and one adult. All stages follow the same grazing behavior. Their prey preferences depend solely on a log-normal size grazing kernel between the prey (and the predator size  (Eq. SI2).
  				Eq. SI2
Where represents the optima predator:prey mass ratio ( 500 for protists, 1000 for passive feeders and 10000 for active copepod feeders) and  is the standard deviation that defines the width of the grazing kernel ( for protists and passive and 1.5 for active copepod feeders). 
In Serra-Pompei et al. (2020) copepod can graze on protists, other copepods and detritus (fecal pellets and dead protists). As in the present study we focus on how temperature affects trophic dynamics between species in the absence of dead organic matter for food we exclude detritus from the copepods’ diet. Thus, the grazing equation used in this model version is as follows (Eq. SI3): 
		Eq. SI3

with  being copepod’s different life stages and  being the function that decreases the preference for passive feeders to mimic the protection benefit against predation that passive feeders have in nature as they produce less signals to predators with their low mobility (Almeda et al., 2017).  The predation mortality for passive feeders is reduced by 1/3 relative to protists and active copepods (for more details the readers are referred to the Supplementary Materials of Serra-Pompei et al. 2020, Section E “Assumptions regarding large passive feeders”, Eq. E.2). 
Environmental forcing
Similar to Serra-Pompei et al. (2020), the present study examines how heatwaves affect a theorical community and does not have a specific regional focus. Serra-Pompei et al. (2020) use time-dependent forcing for the annual cycle of Mixed Layer Depth (MLD) and Sea Surface Temperature (SST) for a temperate ecosystem. We performed a sensitivity analysis with a different environmental forcing and found that the model output is sensitive to environmental conditions (Fig. SI1). When applied the MLD and SST set up as in Serra-Pompei et al. (2020) the copepod communities were dominated only by a few functional groups (Fig. SI2). To increase diversity, we used as environmental forcing the MLD data and Sea Surface Temperature from a representative offshore temperate ecosystem of the North Atlantic (Fig. SI3).  We calculated an annual mean to use as a forcing from a 10-year time series between 2000 and 2010. No heatwave was recorded during that period. We extrapolated the Sea Surface Temperature from the NOAA OI SST V2 High Resolution Dataset data products by the NOAA PSL (https://psl.noaa.gov, Huang et al., 2021) and the MLD data from the ECCO Consortium et al. (2021). The files and code used for the data metanalysis are publicly available and can be found on  https://zenodo.org/doi/10.5281/zenodo.10822886 (Grigoratou, Serra-Pompei, Kemberling, and Pershing, 2024). 

Shannon Index
We used the Shannon Diversity Index (Eq. SI4) to estimate the functional diversity of the protist and copepod communities in our simulations. The formula is: 
 					Eq. SI4

Where H is the diversity index, B is the biomass of each  functional groups and  is the total biomass population of all protists, active or passive copepod feeders. A higher Shannon Index means that the relative biomass of functional groups in a community is closer to equal, aka the biomass is more evenly distributed. 
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Supplementary Table and Figures 
Table SI1 Biomass size bins estimated based on the cell and body volume of protists and copepods.
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Figures 
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Fig. SI1 (a.): Absolute biomass size bins concentrations for the pre-heatwave conditions for active and passive copepod feeders and for protists with environmental forcing (Sea Surface Temperature and Mix Layer Depth) as in Serra-Pompei et al. (2020).  (b.): Solid line: Sea Surface Temperature and Mix Layer Depth as in the present study. Dash line: Sea Surface Temperature and Mix Layer Depth as in Serra-Pompei et al. (2020).
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Fig. SI2 Seasonal Shannon Diversity Index for (a) active and (b) passive copepod feeders and (c) protists for the summer (June- August) heatwave scenarios under the environmental forcing (Sea Surface Temperature and Mix Layer Depth) as in Serra-Pompei et al. (202).  X-axis: years. Year 0: pre-heatwave, Year 1: heatwave (in red) Years 2-9: after-heatwave. 
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Fig. SI3 Map of the North Atlantic Ocean. In orange the selected area used for the Sea Surface Temperature and Mix Layer Depth forcing. 
[image: ]
Fig. SI4 Absolute biomass concentration anomalies during and after the autumn seasonal heatwave (September-November) for the biomass size bins of (a.) protists, (b.) passive and (c.) active copepod feeders. Year 1 shows the seasonal biomass anomaly during the heatwave (heatwave- pre heatwave). Years 2- 9 show the seasonal biomass anomaly for 8 years after the seasonal heatwave (after heatwave – pre heatwave). HW on all plankton groups: the heatwave is directly affecting the physiological rates of all plankton groups. HW on copepods only: the heatwave is directly affecting the physiological rates of copepods only. HW on protists only: the heatwave is directly affecting the physiological rates of protists only. 
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Fig. SI5 Absolute biomass concentration anomalies during and after the winter seasonal heatwave (December- February) for the biomass size bins of (a.) protists, (b.) passive and (c.) active copepod feeders. Year 1 shows the seasonal biomass anomaly during the heatwave (heatwave- pre heatwave biomass concentration). Years 2- 9 show the seasonal biomass anomaly for 8 years after the seasonal heatwave (after heatwave – pre heatwave biomass concentration). HW on all plankton groups: the heatwave is directly affecting the physiological rates of all plankton groups. HW on copepods only: the heatwave is directly affecting the physiological rates of copepods only. HW on protists only: the heatwave is directly affecting the physiological rates of protists only. 

[image: ]
Fig. SI6 Absolute biomass concentration anomalies during and after the spring seasonal heatwave (March- May) for the biomass size bins of (a.) protists, (b.) passive and (c.) active copepod feeders. Year 1 shows the seasonal biomass anomaly during the heatwave (heatwav- pre heatwave biomass concentration). Years 2- 9 show the seasonal biomass anomaly for 8 years after the seasonal heatwave (after heatwave – pre heatwave biomass concentration). HW on all plankton groups: the heatwave is directly affecting the physiological rates of all plankton groups. HW on copepods only: the heatwave is directly affecting the physiological rates of copepods only. HW on protists only: the heatwave is directly affecting the physiological rates of protists only. 
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