Constructing dyadic data from non-independent
observations

Based on the workflow described here https://github.com/nuorenarra/Analysing-dyadic-data-with-brms
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A) 16S rRNA dyadic data set
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1. Cumulative Sum Scaling (CSS) normalization

# Load libraries
library (giime2R)
library (phyloseq)
library(tidyverse)
library (microbiome)

library (metagenomeSeq)

# Create phyloseqg object

ps <- gza_to_phyloseq(
features="beta-table.qgza",
taxonomy="taxonomy.qgza",
tree = "rooted-tree.qgza",

metadata = "metadata.tsv")

#Extract taxonomy

taxonomy <- as.data.frame (tax_table (ps))

#Edit taxonomy file (for some reason Kingdom name comes with "d " before)
taxonomy$Kingdom <- gsub("d_","",as.character (taxonomy$Kingdom))

taxonomy <- as.matrix (taxonomy)

#Extract phylogeny file
tree <- phy tree(ps) # its easier to get the tree file in the correct format this way. first build the ps

object and then extract the tree

# CSS data transformation

## First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseqg_to_metagenomeSeq (ps)

## Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast (meta.obj))

## Convert CSS data into data.frame-formatted OTU table (log transformed data)
asv_table_css <- MRcounts (meta.obj, norm = TRUE, log = TRUE)

# Make a new phyloseq object with with the new CSS transformed ASV table
asv_table css <- otu_table(asv_table css, taxa_are_rows = TRUE)

taxonomy <- tax_table (taxonomy)

metadata <- sample data (metadata)

tree <- phy tree(tree)

ps_css <- phyloseqg(asv_table css, taxonomy, metadata, tree)
otu <- as.data.frame (otu_table (ps_css))

# Explore phyloseqg object

summarize phyloseq(ps_css)

sample names (ps_css) # looks at the sample names on the phyloseq object
meta (ps_css) # retrieves the metadata file

sample data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV 1, ASV 2...etc)

abundances (ps_css) # retrieves ASV counts table

abundances (ps_css, "compositional") # computes relative abundaces

readcount (ps_css) # number of reads per sample
# Save phyloseq object as rds file for dyatic data construction

saveRDS (ps_css, "phyloseg css.rds"
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2. Read in the data

# Load Libraries

library (phyloseq)
library (tidyverse)

library(janitor)

#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS ( "phyloseqg css.rds")

#See:

micdata

# Extract metadata file from Phyloseq object

sample data<-sample data (micdata)

# Edit metadata file

sample data$ring number <- as.factor (sample data$ring number)
sample data$identifier <- as.factor (sample data$identifier)
sample data$date <- as.Date(sample data$date, "%m/%d/%Y")
sample data$std age <- as.numeric(sample data$std_age)

sample data$std BCI_two <- as.numeric(sample dataS$std BCI_ two)
sample data$sampling point <- as.factor (sample data$sampling point)
sample data$nest <- as.factor (sample dataSnest)

sample dataS$habitat <- as.factor(sample data$habitat)

sample dataS$year <- as.factor (sample dataSyear)

sample data$lbinom <- as.factor (sample data$lbinom)

sample data<- clean names (sample_data)

#make a key for the order of sample names and their associated individual IDs.

key <- data.frame (ID=sample data(micdata)$ring number, Sample name=sample data(micdata)S$identifier)

3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix (phyloseq::distance (micdata, method = "bray", type = "samples"))

#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance (micdata, method = "unifrac", type = "samples"))

#Make unweighted unifrac matrix

WUM <- as.matrix (phyloseq::distance (micdata, method = "wunifrac", type = "samples"))

# Assign individual names to rownames based on the key constructed before
all (rownames (BCM) ==key$Sample name)
all (rownames (UUM) ==key$Sample name)

all(rownames(WUM)::key$Sample7name)

#Eyeball dissimilarities across individuals
BCM
WUM
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#Save matrices
saveRDS (BCM, "ready-matrices/BCM.rds"
saveRDS (WUM, "ready-matrices/WUM.rds"

3.2. SEX similarity matrix

# The resulting matrix will have for each individual pair a value of "1"= same sex or "O"=different sex

#Create data frame with each Individual name (character) and their nest ID (Character)
sex frame<-sample datal[,c("ring number", "sex")]
sex frame$ring number<-as.character (sex frameSring number)

sex frame$sex<-as.character (sex frameS$sex)

#Create an empty numeric matrix to fill with distances

sexM<-array (0, c(nrow (sex_frame),nrow (sex_ frame)))

#Derive matrix with binary Age similarity between each sample
for(i in l:nrow(sex_ frame)) {

for(j in 1l:nrow(sex frame)) {

if (sex frameSsex[i]==sex frameS$sex[j]) {
sexM[1i,j]= 1 #same sex

} else({
sexM[1i,j]= 0 #differente sex

#Name rown amd colnames with individual names
all (rownames (sexM)==keyS$SID)
rownames (sexM) <-key$Sample name

colnames (sexM)<-key$Sample name
sexM

#Save matrix to ready matrices folder

saveRDS (sexM, "SEXM. rds")

3.2.1 SEX combination matrix

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female

"MM"=both male.

#Create data frame with each Individual name (character) and their Age (Character)
Sex frame<-sample datal[,c("ring number", "sex")]
Sex frameS$Sring number<-as.character (Sex frameSring number)

Sex frame$sex<-as.character (Sex frameS$sex)

#Create an empty character matrix to fill with characters

SEXM<-array (as.character (NA),c(nrow (Sex frame),nrow(Sex frame)))

for(i in l:nrow(Sex frame)) {

for(j in l:nrow(Sex frame)) {

if (Sex frame$sex[i]=="F" & Sex frame$sex[i]==Sex frame$sex[j]) {
SEXM[i,j]= "FF"}

if (Sex frame$sex[i]=="M" & Sex frameS$sex[i]==Sex frame$sex[j]) {
SEXM[i,j]= "MM"}

if ( Sex frameS$sex[i]!=Sex frame$sex[]j]) {

SEXM[1i,j]= "FM"}
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#Name rown amd colnames with individual names
rownames (SEXM) <-key$Sample name

colnames (SEXM) <-key$Sample name

#Save matrix to ready matrices folder

saveRDS (SEXM, "SEXM_comb.rds")

3.3. HABITAT similarity matrix

# The resulting matrix will have for each individual pair a value of "1"= same habitat or "O"=different habitat

#Create data frame with each Individual name (character) and their nest ID (Character)
habitat frame<-sample datal[,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameSring number)

habitat frame$habitat<-as.character (habitat frameShabitat)

#Create an empty numeric matrix to fill with distances

habitatM<-array (0, c(nrow(habitat frame),nrow(habitat frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(habitat_ frame)) {
for(j in l:nrow(habitat frame)) {
if (habitat_ frameShabitat[i]==habitat frameShabitat[j]) {
habitatM[i,j]l= 1 #same habitat
} else{

habitatM[i,j]= 0 #differente habitat

#Name rown amd colnames with individual names
all (rownames (habitatM)==key$ID)
rownames (habitatM)<-keyS$Sample name

colnames (habitatM)<-key$Sample name
habitatM

#Save matrix to ready matrices folder

saveRDS (habitatM, "habitatM.rds"

3.3.1 HABITAT combination-factor matrix

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT=

both Teuto and all the interations.
#This type of variables are better than binary variables in revealing how some trends may be affected by

individual-level factors.

#Create data frame with each Individual name (character) and their Age (Character)
habitat frame<-sample datal[,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameS$ring number)

habitat frame$habitat<-as.character (habitat frameShabitat)

# Change habitat levels from south,north teuto to S,N,T
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habitat_ frameShabitat <- with(habitat_ frame, factor (habitat, levels = c('north', 'south', 'teuto'), labels =
C("N", "S"™, "Tw)))

#Create an empty character matrix to fill with characters

habitatM<-array (as.character (NA),c(nrow (habitat_ frame),nrow(habitat_ frame)))

for (i in l:nrow(habitat_ frame)) {

for(j in 1l:nrow(habitat_ frame)) {

if (habitat frame$habitat[i]=="N" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM([i,j]= "NN"}

if (habitat frameShabitat[i]=="S" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM[i,j]= "SS"}

if (habitat frameS$habitat[i]=="T" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM[i,j]= "TT"}

if ( habitat frameShabitat[i]=="N" & habitat frameShabitat[]j]=="S") {
habitatM([i,j]= "NS"}

if ( habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="N") {
habitatM[i,j]= "NS"}

if ( habitat frameS$habitat[i]=="N" & habitat frameShabitat[]j]=="T") {
habitatM[i,j]= "NT"}

if ( habitat frameShabitat[i]=="T" & habitat_ frameShabitat[]j]=="N") {
habitatM([i,j]= "NT"}

if ( habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="T") {
habitatM[i,j]= "ST"}

if ( habitat frameS$habitat[i]=="T" & habitat frameS$habitat[j]=="S") {
habitatM[i,j]= "ST"}

#Name rown amd colnames with individual names
rownames(habitatM)<—key$Sample7name

colnames (habitatM)<-keyS$Sample name

#Save matrix to ready matrices folder
saveRDS (habitatM, "habitatM comb.rds"

3.4. NEST similarity matrix

# The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest

#Create data frame with each Individual name (character) and their nest ID (Character)
nest frame<-sample datal[,c("ring number","nest")]
nest_frame$ring number<-as.character (nest_ frame$ring number)

nest_ frame$nest<-as.character (nest_ frameSnest)

#Create an empty numeric matrix to fill with distances

nestM<-array (0, c(nrow(nest_frame),nrow(nest_frame)))

#Derive matrix with binary nest similarity between each sample
for(i in l:nrow(nest_frame)) {
for(j in l:nrow(nest_frame)) {
if (nest_frameSnest[i]==nest frame$nest[j]) {
nestM[i,]j]l= 1
} else{
nestM[i,j]l= 0

#Name rown amd colnames with individual names
all (rownames (nestM)==key$ID)

rownames (nestM) <-keyS$SSample name
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colnames (nestM)<-keySSample name
nestM

#Save matrix to ready matrices folder

saveRDS (nestM, "nestM. rds"

3.5. YEAR similarity matrices

#The resulting matrix will have for each individual pair a value of "1"= same year or "O"=different year

#Create data frame with each Individual name (character) and their Age (Character)
year frame<-sample datal,c("ring number", "year")]
year_ frameSring number<-as.character (year frameSring number)

year_ frameSyear<-as.character (year frame$year)

#Create an empty numeric matrix to fill with distances

yearM<-array (0, c (nrow(year_ frame),nrow(year_ frame)))

#Derive matrix with binary Age similarity between each sample
for(i in l:nrow(year frame)) {
for(j in l:nrow(year_ frame)) {
if (year frameSyear[i]==year frame$year([j]) {
yearM[i,jl= 1
} else{

yearM[i,jl= 0

#Name rown amd colnames with individual names
all (rownames (yearM)==key$ID)
rownames (yearM) <-keyS$SSample name

colnames (yearM)<-keyS$SSample name
yearM

#Save matrix to ready matrices folder

saveRDS (yearM, "yearM. rds"

3.6. INFECTION status combination-factor matrix

#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both

uninfected, "NiI= non-infected vs infected.

#Create data frame with each Individual name (character) and their infection status (Character)
lbinom frame<-sample datal[,c("ring number","lbinom") ]
lbinom frameSring number<-as.character (lbinom frame$ring number)

lbinom frame$lbinom<-as.character (lbinom frame$lbinom)

#lbinom frame <- replace(lbinom frame, is.na(lbinom frame), "NA")

lbinom frame <- replace(lbinom frame, lbinom frame=="", "NA") # some missing data replaced by NA

lbinom frame$lbinom <- with(lbinom frame, factor(lbinom, levels = c('l1', '0', "NA"), labels = c("I", "Ni",

TNATY ) )
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#Create an empty character matrix to fill with characters

lbinomM<-array (as.character (NA),c(nrow (lbinom_frame),nrow(lbinom_ frame)))

for (i in l:nrow(lbinom_frame)) {

for(j in l:nrow(lbinom_frame)) {

if (lbinom_ frame$lbinom[i]=="I" & lbinom frame$lbinom[i]==1lbinom frame$lbinom[j]) {
lbinomM[i,j]= "II"}
if (lbinom_ frame$lbinom[i]=="Ni" & lbinom_ frame$lbinom[i]==1lbinom_ frame$lbinom([j]) {

lbinomM[i, j]= "NiNi"}
if ( lbinom_frame$lbinom[i]=="1I" & lbinom frameS$lbinom[J]=="Ni") {
lbinomM[i,j]= "NiI"}
if ( lbinom_ frame$lbinom[i]=="Ni" & lbinom_ frameS$lbinom[j]=="1I") {
lbinomM[i, j]= "NiI"}
+}

#Name rown amd colnames with individual names
rownames (1lbinomM) <-key$Sample name

colnames (1lbinomM) <-key$Sample name

#Save matrix to ready matrices folder

saveRDS (1lbinomM, "1binomM. rds"

3.7. AGE diference matrix

#This matrix will describe the distance in days between age of microbiome samples

#Transform dates into a numeric variable

sample dataS$age days<-as.numeric (sample dataS$age days)

#Create data frame with each sample name (character) and age (numeric)
AgeTime frame<-sample datal[,c("ring number","age days")]

AgeTime frameSring number<-as.character (AgeTime frame$ring number)

#Create an empty matrix to fill with distances

AGEM<-array (0, c(nrow (AgeTime frame),nrow (AgeTime frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(AgeTime frame)) {

for (3 in l:nrow(AgeTime frame))

{AGEM[1i, j]=abs (AgeTime frameSage days[i] -AgeTime frame$age days[3j])

}

#Note that age diference matrix has rownames and colnames in the same order as key
all (rownames (AGEM) ==keyS$Sample name)

#Name rown amd colnames with individual names

rownames (AGEM) <-key$Sample name

colnames (AGEM) <-key$Sample name

AGEM

#Save matrix to ready matrices folder

saveRDS (AGEM, AGEM. rds"
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3.8. BCl diference matrix

#This matrix will describe the diference in body condition between the microbiome samples

#Transform body condition into a numeric variable

sample_dataS$bci_two<-as.numeric(sample data$bci_two)

#Create data frame with each sample name (character) and sampling time (numeric)
BC_frame<-sample datal[,c("ring number","bci_ two")]

BC_frameSring number<-as.character (BC_frameSring number)

#Create an empty matrix to f£ill with distances

BCondM<-array (0, c (nrow (BC_frame),nrow (BC_frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(BC_frame)) {

for (j in 1l:nrow(BC_frame))

{BCondM[1i, j]=abs (BC_frameSbci two[i] -BC_frame$bci_ two[j])

}

#Note that Temporal distance matrix has rownames and colnames in the same order as key
all (rownames (AGEM) ==key$Sample name)

# So we can just call the rownames and colnames with the names of individuals since there is just one sample

per individual in this data set

#Name rown amd colnames with individual names
rownames (BCondM) <-keyS$Sample_ name

colnames (BCondM) <-keyS$SSample name

BCondM

#Save matrix to ready matrices folder

saveRDS (BCondM, "BCondM. rds")

4. Unravel matrices into one dyadic data frame

4.1 Build dyadic dataset

#Read in microbial distance matrices if not in already
BCM <- readRDS ("BCM.rds") # bray-curtis
WUM <- readRDS ("WUM.rds") # weighted unifrac

# Ready in matrices of other variables
AGEM<-readRDS ("AGEM.rds") # age

BCI_twoM <-readRDS ("BCI_two M.rds") #body condition
yearM <- readRDS ("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest

SEXM <- readRDS ("SEXM.rds") # sex similarity
SEXM_comb <- readRDS ("SEXM comb.rds") # sex combination

habitatM <- readRDS ("habitatM.rds") # habitat similarity
habitatM <- readRDS ("habitatM comb.rds") # habitat combination

lbinomM <- readRDS("lbinomM.rds") # infection status
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#First unravel the matrices into vectors matching the lower quantile of each matrix.
#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from
the matrix.

#as.dist () by default includes only the lower quantile of the matrix and excludes the diagonal.

BC <- c(as.dist (BCM))

UU <- c(as.dist (UUM))

WU <- c(as.dist (WUM))

age <- c(as.dist (AGEM))
bci_two <-c(as.dist (BCI_twoM))
nest <- c(as.dist (nestM))

year <- c(as.dist (yearM))

sex <- c(as.dist (SEXM))

#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with

lower.tri() —-function.

sex_comb <- c(SEXM_comb[lower.tri (SEXM comb)])
habitat comb <- c(TREATMM[lower.tri (habitatM comb) ])
lbinom <- c(lbinomM[lower.tri (lbinomM) ])

#Combine these vectors into a data frame

data.dyad<-data.frame (BC dissim=BC , UU distance=UU, WU distance=WU, age diference=age,
bci_one = bci_one, bci_diference = bci_ two, lbinom comp = lbinom,
nest_sim=nest, habitat_sim=habitat,,habitat comb=habitat_comb,

sex_sim=sex, sex_ comb=sex_comb year_sim = year)

4.2 Add Individual ID and Sample ID combinations to the data set

#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful).

# extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample name, keySSample name)

# This created individual-to-same-individual pairs as well. Get rid of these:

list<-list[which(list$Varl!=1ist$Var2),]

# this still has both quantiles in--> add 'unique' key
list$key <- apply(list, 1, function (x)paste(sort(x), collapse='"))
list<-subset(list, !duplicated(listS$key))

# sanity check that the Individual name combinations are in the same exact order as the lower quantile value

vector of the matrices

i=34

BCM[which (rownames (BCM)==1ist$Varl[i]),which (colnames (BCM)==1ist$Var2[i])]==BC[i]

UUM [which (rownames (UUM) ==1ist$Varl[i]),which (colnames (UUM)==11ist$Var2[i]) ]==U0U[1i]

WUM [which (rownames (WUM) ==1ist$Varl[i]),which (colnames (WUM)==1istS$Var2([i]) ]==WU[1]

AGEM [which (rownames (AGEM) ==1ist$Varl[i]),which (colnames (AGEM)==1ist$Var2([i]) ]l==age[i]

SEXM [which (rownames (SEXM)==1ist$Varl[i]),which (colnames (SEXM)==1ist$Var2[i]) ]==sex[i]

TREATMM [which (rownames (TREATMM) ==1ist$Varl[i]) ,which (colnames (TREATMM)==1istS$Var2[i]) ]==treatm[i]
yearM[which (rownames (yearM)==1ist$Varl[i]),which (colnames (yearM)==1istS$Var2[i]) ]==year[i]
nestM[which (rownames (nestM)==1ist$Varl[i]),which (colnames (nestM)==1ist$Var2[i]) ]==nest[i]

# add the names of both individuals participating in each dyad into the data frame

data.dyad$sampleA<-listS$Var2
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data.dyad$sampleB<-list$Varl

# make a new key for the order of sample names and their associated individual IDs.
key2 <- data.frame (ID=sample data(micdata)$ring number, sampleA =sample data (micdata)S$identifier, sampleB

=sample_data (micdata)$identifier )
# merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)
listdf = list(data.dyad, key2) # built list

data.dyad <- listdf %>% reduce(left_join, by ="sampleA", keep = FALSE) # merge based on sampleA column

data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename (data.dyad, IDA = ID, sampleB = sampleB.x) # change column names

listdf = list(data.dyad, key2) # update list

data.dyad <- listdf %>% reduce(left_ join, by ="sampleB", keep = FALSE) # merge by sample B
data.dyad <- data.dyad[,-20] # delete column duplicate

data.dyad <- rename (data.dyad, IDB = ID, sampleA = sampleA.x) # change column names

# Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which (data.dyad$sampleA!=data.dyad$sampleB), ]

#Save dyadic data file
saveRDS (data.dyad, "data dyad.rds")

Example of the data dyad (first 20 rows)

sampleA sampleB IDA IDB BC_dissim WU _distance age diference bci_diference Ibinom_comp nest sim habitat sim habitat comb sex_sim sex comb year sim
S001 S002 3419291 3419288 0.708478913 0.048377791  0.174242424 1l 0 1 NN 0 FM 1
S001 S003 3419291 3419287 0.742968667  0.06477989 0.178030303 0.159085291 Il 0 1 NN 1 MM 1
S001 S004 3419291 3419286 0.621086265 0.063355594  0.071969697 0.232891266 Il 0 1 NN 1 MM 1
S001 S005 3419291 3419285 0.728804856 0.056634477  0.185606061 0.043899636 Nil 0 1 NN 0 FM 1
S001 S006 3419291 3419284 0.72086191 0.04764569 0.15530303 0.057296175 Nil 0 1 NN 0 FM 1
S001 S007 3419291 3419283 0.58844846 0.081624471  0.026515152 0.219643831 Nil 0 1 NN 1 MM 1
S001 S008 3419291 3419282 0.638061537 0.058416954  0.03030303 0.192283125 Nil 0 1 NN 1 MM 1
S001 S009 3419291 3419281 0.554663665 0.058029588  0.018939394 0.223148272 Nil 0 1 NN 0 FM 1
S001 S010 3419291 3419279 0.574530808 0.056723361  0.170454546 0.003992333  Nil 0 1 NN 1 MM 1
S001 So11 3419291 3419278 0.580341291 0.042190368  0.068181818 0.045747277 1l 0 1 NN 1 MM 1
S001 S012 3419291 3419276 0.566648959 0.067971619  0.079545454 0.180183235 Nil 0 1 NN 1 MM 1
S001 S013 3419291 3419275 0.442679036 0.053512563  0.060606061 0.046341041 Nil 0 1 NN 1 MM 1
S001 S014 3419291 3419280 0.560013748 0.043511334  0.196969697 0.098652122 1] 0 1 NN 0 FM 1
S001 S015 3419291 3419297 0.671730803 0.066848843  0.246212121 0.046668815 Nil 0 1 NN 0 FM 1
S001 So016 3419291 3419294 0.666217633 0.052062348  0.231060606 0.201903615 Nil 0 0 NS 1 MM 1
S001 S017 3419291 3121005 0.631848671 0.065660102  0.034090909 0.172042132  Nil 0 1 NN 0 FM 1
S001 S018 3419291 3121004 0.656930239  0.063652836  0.011363636 0.101811651 ] 0 1 NN 0 FM 1
S001 S019 3419291 3121001 0.731432769 0.066831972  0.071969697 0.02611092 Il 0 1 NN 0 FM 1
S001 5020 3419291 3121006 0.650345451 0.061676228  0.193181818 0.140552659 Nil 0 1 NN 0 FM 1
S001 S021 3419291 3419299 0.712390555 0.050166339  0.049242424 0.0043404 Nil 0 1 NN 0 FM 1

B) 28S rRNA dyadic data set
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1. Cumulative Sum Scaling (CSS) normalization

# Load libraries
library (giime2R)
library (phyloseq)
library(tidyverse)
library (microbiome)

library (metagenomeSeq)

# Create phyloseqg object

ps <- gza_to_phyloseq(
features="beta-table.qgza",
taxonomy="taxonomy.qgza",
tree = "rooted-tree.qgza",

metadata = "metadata.tsv")

#Extract taxonomy

taxonomy <- as.data.frame (tax_table (ps))

#Edit taxonomy file (for some reason Kingdom name comes with "d " before)
taxonomy$Kingdom <- gsub("d_ ","",as.character (taxonomy$Kingdom))

taxonomy <- as.matrix (taxonomy)

#Extract phylogeny file
tree <- phy tree(ps) # its easier to get the tree file in the correct format this way. first build the ps

object and then extract the tree

# CSS data transformation

## First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseqg_to_metagenomeSeq (ps)

## Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast (meta.obj))

## Convert CSS data into data.frame-formatted OTU table (log transformed data)
asv_table_css <- MRcounts (meta.obj, norm = TRUE, log = TRUE)

# Make a new phyloseq object with with the new CSS transformed ASV table
asv_table css <- otu_table(asv_table css, taxa_are_rows = TRUE)

taxonomy <- tax_table (taxonomy)

metadata <- sample data (metadata)

tree <- phy tree(tree)

ps_css <- phyloseqg(asv_table css, taxonomy, metadata, tree)

otu <- as.data.frame (otu_table (ps_css))

# Explore phyloseq object

summarize phyloseq(ps_css)

sample names (ps_css) # looks at the sample names on the phyloseq object
meta (ps_css) # retrieves the metadata file

sample data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV 1, ASV 2...etc)

abundances (ps_css) # retrieves ASV counts table

abundances (ps_css, "compositional") # computes relative abundaces

readcount (ps_css) # number of reads per sample

# Save phyloseq object as rds file for dyatic data construction
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saveRDS (ps_css, "phyloseg css.rds"

2. Read in the data

# Load Libraries
library (phyloseq)
library (tidyverse)

library(janitor)

#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS ( "phyloseqg css.rds")

# remove sample that seems to be outlier. Distance measures always equal to 1 for this sample

micdata <- subset samples(micdata, identifier != "S024" & identifier != "S029" & identifier != "S043" &
identifier != "S174" &
identifier != "S207")
#See:
micdata

# Extract metadata file from Phyloseq object

sample data<-sample data (micdata)

# Edit metadata file

sample data$ring number <- as.factor (sample data$ring number)
sample data$identifier <- as.factor (sample data$identifier)
sample data$date <- as.Date(sample data$date, "%m/%d/%Y")
sample data$std age <- as.numeric(sample data$std age)

sample data$std BCI_two <- as.numeric(sample dataS$std BCI_ two)
sample data$sampling point <- as.factor (sample data$sampling point)
sample data$nest <- as.factor (sample dataSnest)

sample dataS$habitat <- as.factor(sample data$habitat)

sample data$year <- as.factor (sample dataSyear)

sample data$lbinom <- as.factor (sample data$lbinom)

sample data$sex <- as.factor (sample dataS$sex)

sample data<- clean names (sample_data)

#make a key for the order of sample names and their associated individual IDs.

key <- data.frame (ID=sample data(micdata)$ring number, Sample name=sample data(micdata)S$identifier)

3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix (phyloseq::distance (micdata, method = "bray", type = "samples"))

#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance (micdata, method = "unifrac", type = "samples"))

#Make unweighted unifrac matrix

WUM <- as.matrix (phyloseq::distance (micdata, method = "wunifrac", type = "samples"))

# Assign individual names to rownames based on the key constructed before
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all (rownames (BCM) ==key$Sample name)
all (rownames (UUM) ==key$Sample_ name)

all (rownames (WUM) ==keyS$SSample_name)

#Eyeball dissimilarities across individuals
BCM
WUM

#Save matrices
saveRDS (BCM, "ready-matrices/BCM.rds"
saveRDS (WUM, "ready-matrices/WUM.rds"

3.2. SEX similarity matrix

# The resulting matrix will have for each individual pair a value of "1"= same sex or "O"=different sex

#Create data frame with each Individual name (character) and their nest ID (Character)
sex frame<-sample_datal[,c("ring number", "sex")]
sex frame$ring number<-as.character (sex frameSring number)

sex frame$sex<-as.character (sex frameS$sex)

#Create an empty numeric matrix to fill with distances

sexM<-array (0, c(nrow (sex_frame),nrow (sex_ frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(sex_frame)) {

for(j in l:nrow(sex frame)) {

if (sex frameSsex[i]==sex frameS$sex[j]) {
sexM[1i,j]= 1 #same sex

} else({
sexM[i,jl= 0 #differente sex

11}

#Name rown amd colnames with individual names
all (rownames (sexM)==keyS$SID)
rownames (sexM) <-key$Sample name

colnames (sexM)<-key$Sample name
sexM

#Save matrix to ready matrices folder

saveRDS (sexM, "SEXM. rds")

3.2.1 SEX combination matrix

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female

"MM"=both male.

#Create data frame with each Individual name (character) and their Age (Character)
Sex frame<-sample data[,c("ring number", "sex")]
Sex frameS$ring number<-as.character (Sex frameSring number)

Sex frame$sex<-as.character (Sex frameS$sex)

#Create an empty character matrix to fill with characters

SEXM<-array (as.character (NA), c(nrow (Sex frame),nrow (Sex frame)))

for(i in l:nrow(Sex frame)) {
for(j in l:nrow(Sex frame)) {

if (Sex frame$sex[i]=="F" & Sex frame$sex[i]==Sex frame$sex[j]) {
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SEXM[1i,]j]= "FF"}
if (Sex_frameSsex[i]=="M" & Sex frameSsex[i]==Sex frameS$sex[j]) {
SEXM[1i,]j]= "MM"}
if ( Sex frameSsex[i]!=Sex frame$sex[j]) {
SEXM[1i,]j]= "FM"}
}}

#Name rown amd colnames with individual names
rownames (SEXM) <-key$Sample name
colnames (SEXM) <-key$Sample name

#Save matrix to ready matrices folder

saveRDS (SEXM, "SEXM comb.rds")

3.3. HABITAT similarity matrix

# The resulting matrix will have for each individual pair a value of "1"= same habitat or "O"=different habitat

#Create data frame with each Individual name (character) and their nest ID (Character)
habitat frame<-sample datal,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameSring number)

habitat frameS$habitat<-as.character (habitat frameShabitat)

#Create an empty numeric matrix to fill with distances

habitatM<-array (0, c(nrow(habitat frame),nrow(habitat frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(habitat_frame)) {
for(j in 1l:nrow(habitat frame)) {
if (habitat_ frameShabitat[i]==habitat frameShabitat[j]) {
habitatM[i,j]= 1 #same habitat
} else{
habitatM[i,j]l= 0 #differente habitat
b1}

#Name rown amd colnames with individual names
all (rownames (habitatM)==key$ID)
rownames (habitatM)<-keyS$Sample name

colnames (habitatM)<-keyS$Sample name
habitatM

#Save matrix to ready matrices folder
saveRDS (habitatM, "habitatM.rds"

3.3.1 HABITAT combination-factor matrix

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT=
both Teuto and all the interations.
#This type of variables are better than binary variables in revealing how some trends may be affected by

individual-level factors.

#Create data frame with each Individual name (character) and their Age (Character)
habitat frame<-sample datal[,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameS$ring number)

habitat frame$habitat<-as.character (habitat frameShabitat)
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# Change habitat levels from south,north teuto to S,N,T
habitat_ frameShabitat <- with(habitat_ frame, factor (habitat, levels = c('north', 'south', 'teuto'), labels

c("N", "S", "T")))

#Create an empty character matrix to fill with characters

habitatM<-array (as.character (NA),c(nrow (habitat_ frame),nrow(habitat_ frame)))

for (i in l:nrow(habitat_frame)) {
for(j in 1l:nrow(habitat_ frame)) {
if (habitat frameS$habitat[i]=="N" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {

habitatM[i,j]= "NN"}
if (habitat frameS$habitat[i]=="S" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM[i,j]= "SS"}
if (habitat_ frameS$habitat[i]=="T" & habitat_ frameShabitat[i]==habitat_frameShabitat[j]) {
habitatM([i,j]= "TT"}
if ( habitat frameShabitat[i]=="N" & habitat_ frameShabitat[j]=="S") {
habitatM[i,j]= "NS"}
if ( habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="N") {
habitatM[i,j]= "NS"}
if ( habitat frameShabitat[i]=="N" & habitat_ frameShabitat[]j]=="T") {
habitatM[i,j]= "NT"}
if ( habitat frameShabitat[i]=="T" & habitat_ frameShabitat[]j]=="N") {
habitatM[i,j]= "NT"}
if ( habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="T") {
habitatM[i,j]= "ST"}
if ( habitat frameShabitat[i]=="T" & habitat_ frameShabitat[]j]=="S") {
habitatM([i,j]= "ST"}

H}

#Name rown amd colnames with individual names
rownames(habitatM)<—key$Sample7name

colnames (habitatM)<-keyS$Sample name

#Save matrix to ready matrices folder
saveRDS (habitatM, "habitatM comb.rds"

3.4. NEST similarity matrix

# The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest

#Create data frame with each Individual name (character) and their nest ID (Character)
nest frame<-sample datal[,c("ring number","nest")]
nest_frame$ring number<-as.character (nest_ frame$ring number)

nest_ frame$nest<-as.character (nest_ frameSnest)

#Create an empty numeric matrix to fill with distances

nestM<-array (0, c(nrow(nest_frame),nrow(nest_frame)))

#Derive matrix with binary nest similarity between each sample
for (i in l:nrow(nest_frame)) {
for(j in l:nrow(nest_frame)) {
if (nest_frameSnest[i]==nest frame$nest[j]) {
nestM[i,]j]l= 1
} else{
nestM[i,j]l= 0
b1}

#Name rown amd colnames with individual names
all (rownames (nestM)==key$ID)
rownames (nestM) <-keyS$Sample name

colnames (nestM)<-keySSample name
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nestM

#Save matrix to ready matrices folder

saveRDS (nestM, "nestM. rds"

3.5. YEAR similarity matrices

#The resulting matrix will have for each individual pair a value of "1"= same year or "O"=different year

#Create data frame with each Individual name (character) and their Age (Character)
year frame<-sample datal,c("ring number", "year")
year_ frameSring number<-as.character (year frameSring number)

year_ frameSyear<-as.character (year frame$year)

#Create an empty numeric matrix to fill with distances

yearM<-array (0, c(nrow(year_ frame),nrow(year frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(year frame)) {
for(j in l:nrow(year_ frame)) {
if (year frameSyear[i]==year frame$year([j]) {
yearM[i,jl=1
} else{
yearM[i,jl= 0
b1}

#Name rown amd colnames with individual names
all (rownames (yearM)==key$ID)

rownames (yearM)<-keyS$Sample name

colnames (yearM)<-keyS$SSample name

yearM

#Save matrix to ready matrices folder

saveRDS (yearM, "yearM.rds"

3.6. INFECTION status combination-factor matrix

#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both

uninfected, "NiI= non-infected vs infected.

#Create data frame with each Individual name (character) and their infection status (Character)
lbinom frame<-sample datal[,c("ring number","lbinom") ]
lbinom frameSring number<-as.character (lbinom frame$ring number)

lbinom frameS$lbinom<-as.character (lbinom frame$lbinom)

#lbinom frame <- replace(lbinom frame, is.na(lbinom frame), "NA")

lbinom frame <- replace(lbinom_frame, lbinom_frame=="", "NA") # some missing data replaced by NA
lbinom frame$lbinom <- with(lbinom frame, factor (lbinom, levels = c('l1', '0', "NA"), labels = c("I",
TNATY ) )

#Create an empty character matrix to fill with characters

lbinomM<-array (as.character (NA),c(nrow(lbinom frame),nrow(lbinom frame))

"NiY,
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for (i in l:nrow(lbinom_frame)) {
for(j in l:nrow(lbinom_frame)) {
if (l1binom frame$lbinom[i]=="I" & lbinom frame$lbinom[i]==1lbinom frame$lbinom[j]) {
lbinomM[i,j]= "II"}
if (lbinom_ frame$lbinom[i]=="Ni" & lbinom frame$lbinom[i]==1lbinom_ frame$lbinom[j]) {
lbinomM[i, j]= "NiNi"}
if ( lbinom_frame$lbinom[i]=="I" & lbinom frameS$lbinom[j]=="Ni") {
lbinomM[i,j]= "NiI"}
if ( lbinom_ frame$lbinom[i]=="Ni" & lbinom_ frameS$lbinom[j]=="1I") {
lbinomM[i, j]= "NiI"}
}}

#Name rown amd colnames with individual names
rownames (1lbinomM) <-key$Sample name
colnames(lbinomM)<—key$Sample_name

#Save matrix to ready matrices folder

saveRDS (1lbinomM, "1binomM. rds"

3.7. AGE diference matrix

#This matrix will describe the distance in days between age of microbiome samples

#Transform dates into a numeric variable

sample dataS$age days<-as.numeric (sample data$age days)

#Create data frame with each sample name (character) and age (numeric)
AgeTime frame<-sample datal[,c("ring number","age days")]

AgeTime frameSring number<-as.character (AgeTime frame$ring number)

#Create an empty matrix to fill with distances

AGEM<-array (0, c(nrow (AgeTime frame),nrow (AgeTime frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(AgeTime frame)) {

for (j in l:nrow(AgeTime frame))

{AGEM[1i, j]=abs (AgeTime frameSage days[i] -AgeTime frame$age days[j])

}}

#Note that age diference matrix has rownames and colnames in the same order as key

all (rownames (AGEM) ==keyS$Sample name)

#Name rown amd colnames with individual names
rownames (AGEM) <-key$Sample name

colnames (AGEM) <-key$Sample name

AGEM

#Save matrix to ready matrices folder

saveRDS (AGEM, AGEM. rds"
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3.8. BCl diference matrix

#This matrix will describe the diference in body condition between the microbiome samples

#Transform body condition into a numeric variable

sample_dataSbci_two<-as.numeric(sample data$bci_two)

#Create data frame with each sample name (character) and sampling time (numeric)
BC_frame<-sample datal[,c("ring number","bci_ two")]

BC_frameSring number<-as.character (BC_frameSring number)

#Create an empty matrix to f£ill with distances

BCondM<-array (0, c (nrow (BC_frame),nrow (BC_frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(BC_frame)) {

for (j in 1l:nrow(BC_frame))

{BCondM[1i,j]=abs (BC_frameSbci_ two[i] -BC_frame$bci_ two[j])

}}

#Note that Temporal distance matrix has rownames and colnames in the same order as key

all (rownames (AGEM) ==key$Sample name)

# So we can just call the rownames and colnames with the names of individuals since there is just one sample

per individual in this data set

#Name rown amd colnames with individual names
rownames (BCondM) <-key$Sample name

colnames (BCondM) <-keyS$Sample name

BCondM

#Save matrix to ready matrices folder

saveRDS (BCondM, "BCondM. rds")

4. Unravel matrices into one dyadic data frame

4.1. Build dyadic dataset

#Read in microbial distance matrices if not in already
BCM <- readRDS ("BCM.rds") # bray-curtis
WUM <- readRDS ("WUM.rds") # weighted unifrac

# Ready in matrices of other variables
AGEM<-readRDS ("AGEM.rds") # age

BCI_twoM <-readRDS("BCI two M.rds") #body condition
yearM <- readRDS ("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest

SEXM <- readRDS ("SEXM.rds") # sex similarity
SEXM_comb <- readRDS ("SEXM comb.rds") # sex combination

habitatM <- readRDS ("habitatM.rds") # habitat similarity
habitatM <- readRDS ("habitatM comb.rds") # habitat combination

lbinomM <- readRDS("lbinomM.rds") # infection status
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#First unravel the matrices into vectors matching the lower quantile of each matrix.
#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from
the matrix.

#as.dist () by default includes only the lower quantile of the matrix and excludes the diagonal.

BC <- c(as.dist (BCM))

UU <- c(as.dist (UUM))

WU <- c(as.dist (WUM))

age <- c(as.dist (AGEM))
bci_two <-c(as.dist (BCI_twoM))
nest <- c(as.dist (nestM))

year <- c(as.dist (yearM))

sex <- c(as.dist (SEXM))

#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with

lower.tri() —-function.

sex_comb <- c(SEXM_comb[lower.tri(SEXM_comb)])
habitat comb <- c(TREATMM[lower.tri (habitatM comb)])
lbinom <- c(lbinomM[lower.tri (lbinomM) ])

#Combine these vectors into a data frame
data.dyad<-data.frame (BC_dissim=BC , UU_distance=UU, WU_distance=WU, age_diference=age,
bci diference = bci two, lbinom comp = lbinom,
nest sim=nest, habitat sim=habitat, habitat comb=habitat comb, sex sim=sex,

sex_comb=sex_comb year_sim = year)

4.2. Add Individual ID and Sample ID combinations to the data set

#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful).

# extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample name, keySSample name)

# This created individual-to-same-individual pairs as well. Get rid of these:
list<-list[which(list$Varl!=1ist$Var2),]

# this still has both quantiles in--> add 'unique' key
list$key <- apply(list, 1, function (x)paste(sort(x), collapse='"))
list<-subset(list, !duplicated(listS$key))

# sanity check that the Individual name combinations are in the same exact order as the lower quantile value

vector of the matrices

i=34

BCM[which (rownames (BCM)==1ist$Varl[i]),which (colnames (BCM)==1ist$Var2[i])]==BC[i]

UUM [which (rownames (UUM) ==1ist$Varl[i]),which (colnames (UUM)==1ist$Var2[i]) ]==U0U[1i]

WUM [which (rownames (WUM) ==1ist$Varl[i]),which (colnames (WUM)==1istS$Var2([i]) ]==WU[1]

AGEM [which (rownames (AGEM) ==1ist$Varl[i]),which (colnames (AGEM)==1ist$Var2[i]) ]==age[i]

SEXM [which (rownames (SEXM)==1ist$Varl[i]),which (colnames (SEXM)==1ist$Var2[i]) ]==sex[i]

TREATMM [which (rownames (TREATMM) ==1ist$Varl[i]) ,which (colnames (TREATMM)==1istS$Var2[i]) ]==treatm[i]
yearM[which (rownames (yearM)==1ist$Varl[i]),which (colnames (yearM)==1istS$Var2[i]) ]==year[i]
nestM[which (rownames (nestM)==1ist$Varl[i]),which (colnames (nestM)==1ist$Var2[i]) ]==nest[i]

# add the names of both individuals participating in each dyad into the data frame
data.dyad$sampleA<-listS$vVar2
data.dyad$sampleB<-1listS$varl


af://n448

# make a new key for the order of sample names and their associated individual IDs.
key2 <- data.frame (ID=sample data(micdata)$ring number, sampleA =sample data (micdata)Sidentifier, sampleB

=sample_data (micdata)$identifier )

# merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)
listdf = list(data.dyad, key2) # built list
data.dyad <- listdf %>% reduce(left_ join, by ="sampleA", keep = FALSE) # merge based on sampleA column

data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename (data.dyad, IDA = ID, sampleB = sampleB.x) # change column names

listdf = list(data.dyad, key2) # update list

data.dyad <- listdf %>% reduce(left_ join, by ="sampleB", keep = FALSE) # merge by sample B
data.dyad <- data.dyad[,-20] # delete column duplicate

data.dyad <- rename (data.dyad, IDB = ID, sampleA = sampleA.x) # change column names

# Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which (data.dyad$sampleA!=data.dyad$sampleB), ]

#Save dyadic data file
saveRDS (data.dyad, "data dyad.rds"
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