
Constructing dyadic data from non-independent
observations

Based on the workflow described here https://github.com/nuorenarra/Analysing-dyadic-data-with-brms

Table of Contents

Constructing dyadic data from non-independent observations
Table of Contents

A) 16S rRNA dyadic data set
1. Cumulative Sum Scaling (CSS) normalization
2. Read in the data
3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)
3.2. SEX similarity matrix
3.2.1 SEX combination matrix
3.3. HABITAT similarity matrix
3.3.1 HABITAT combination-factor matrix
3.4. NEST similarity matrix
3.5. YEAR similarity matrices
3.6. INFECTION status combination-factor matrix
3.7. AGE diference matrix
3.8. BCI diference matrix

4. Unravel matrices into one dyadic data frame
4.1 Build dyadic dataset
4.2 Add Individual ID and Sample ID combinations to the data set

B) 28S rRNA dyadic data set
1. Cumulative Sum Scaling (CSS) normalization
2. Read in the data
3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)
3.2. SEX similarity matrix
3.2.1 SEX combination matrix
3.3. HABITAT similarity matrix
3.3.1 HABITAT combination-factor matrix
3.4. NEST similarity matrix
3.5. YEAR similarity matrices
3.6. INFECTION status combination-factor matrix
3.7. AGE diference matrix
3.8. BCI diference matrix

4. Unravel matrices into one dyadic data frame
4.1. Build dyadic dataset
4.2. Add Individual ID and Sample ID combinations to the data set

A) 16S rRNA dyadic data set

af://n0
https://github.com/nuorenarra/Analysing-dyadic-data-with-brms
af://n5
af://n11
af://n13

1. Cumulative Sum Scaling (CSS) normalization

Load libraries

library(qiime2R)

library(phyloseq)

library(tidyverse)

library(microbiome)

library(metagenomeSeq)

Create phyloseq object

ps <- qza_to_phyloseq(

 features="beta-table.qza",

 taxonomy="taxonomy.qza",

 tree = "rooted-tree.qza",

 metadata = "metadata.tsv")

#Extract taxonomy

taxonomy <- as.data.frame(tax_table(ps))

#Edit taxonomy file (for some reason Kingdom name comes with "d_" before)

taxonomy$Kingdom <- gsub("d__","",as.character(taxonomy$Kingdom))

taxonomy <- as.matrix(taxonomy)

#Extract phylogeny file

tree <- phy_tree(ps) # its easier to get the tree file in the correct format this way. first build the ps

object and then extract the tree

CSS data transformation

First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseq_to_metagenomeSeq(ps)

Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast(meta.obj))

Convert CSS data into data.frame-formatted OTU table (log transformed data)

asv_table_css <- MRcounts(meta.obj, norm = TRUE, log = TRUE)

Make a new phyloseq object with with the new CSS transformed ASV table

asv_table_css <- otu_table(asv_table_css, taxa_are_rows = TRUE)

taxonomy <- tax_table(taxonomy)

metadata <- sample_data(metadata)

tree <- phy_tree(tree)

ps_css <- phyloseq(asv_table_css, taxonomy, metadata, tree)

otu <- as.data.frame(otu_table(ps_css))

Explore phyloseq object

summarize_phyloseq(ps_css)

sample_names(ps_css) # looks at the sample names on the phyloseq object

meta(ps_css) # retrieves the metadata file

sample_data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV_1, ASV_2...etc)

abundances(ps_css) # retrieves ASV counts table

abundances(ps_css, "compositional") # computes relative abundaces

readcount(ps_css) # number of reads per sample

Save phyloseq object as rds file for dyatic data construction

saveRDS(ps_css,"phyloseq_css.rds")

af://n13

2. Read in the data

3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)

Load Libraries

library(phyloseq)

library(tidyverse)

library(janitor)

#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS("phyloseq_css.rds")

#See:

micdata

Extract metadata file from Phyloseq object

sample_data<-sample_data(micdata)

Edit metadata file

sample_data$ring_number <- as.factor(sample_data$ring_number)

sample_data$identifier <- as.factor(sample_data$identifier)

sample_data$date <- as.Date(sample_data$date, "%m/%d/%Y")

sample_data$std_age <- as.numeric(sample_data$std_age)

sample_data$std_BCI_two <- as.numeric(sample_data$std_BCI_two)

sample_data$sampling_point <- as.factor(sample_data$sampling_point)

sample_data$nest <- as.factor(sample_data$nest)

sample_data$habitat <- as.factor(sample_data$habitat)

sample_data$year <- as.factor(sample_data$year)

sample_data$lbinom <- as.factor(sample_data$lbinom)

sample_data<- clean_names(sample_data)

#make a key for the order of sample names and their associated individual IDs.

key <- data.frame(ID=sample_data(micdata)$ring_number, Sample_name=sample_data(micdata)$identifier)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix(phyloseq::distance(micdata, method = "bray", type = "samples"))

#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance(micdata, method = "unifrac", type = "samples"))

#Make unweighted unifrac matrix

WUM <- as.matrix(phyloseq::distance(micdata, method = "wunifrac", type = "samples"))

Assign individual names to rownames based on the key constructed before

all(rownames(BCM)==key$Sample_name)

all(rownames(UUM)==key$Sample_name)

all(rownames(WUM)==key$Sample_name)

#Eyeball dissimilarities across individuals

BCM

WUM

af://n16
af://n19
af://n21

3.2. SEX similarity matrix

3.2.1 SEX combination matrix

#Save matrices

saveRDS(BCM,"ready-matrices/BCM.rds")

saveRDS(WUM,"ready-matrices/WUM.rds")

The resulting matrix will have for each individual pair a value of "1"= same sex or "0"=different sex

#Create data frame with each Individual name (character) and their nest ID (Character)

sex_frame<-sample_data[,c("ring_number","sex")]

sex_frame$ring_number<-as.character(sex_frame$ring_number)

sex_frame$sex<-as.character(sex_frame$sex)

#Create an empty numeric matrix to fill with distances

sexM<-array(0,c(nrow(sex_frame),nrow(sex_frame)))

#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(sex_frame)){

 for(j in 1:nrow(sex_frame)){

 if(sex_frame$sex[i]==sex_frame$sex[j]){

 sexM[i,j]= 1 #same sex

 } else{

 sexM[i,j]= 0 #differente sex

 }

 }

}

#Name rown amd colnames with individual names

all(rownames(sexM)==key$ID)

rownames(sexM)<-key$Sample_name

colnames(sexM)<-key$Sample_name

sexM

#Save matrix to ready matrices folder

saveRDS(sexM,"SEXM.rds")

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female

"MM"=both male.

#Create data frame with each Individual name (character) and their Age (Character)

Sex_frame<-sample_data[,c("ring_number","sex")]

Sex_frame$ring_number<-as.character(Sex_frame$ring_number)

Sex_frame$sex<-as.character(Sex_frame$sex)

#Create an empty character matrix to fill with characters

SEXM<-array(as.character(NA),c(nrow(Sex_frame),nrow(Sex_frame)))

for(i in 1:nrow(Sex_frame)){

 for(j in 1:nrow(Sex_frame)){

 if(Sex_frame$sex[i]=="F" & Sex_frame$sex[i]==Sex_frame$sex[j]){

 SEXM[i,j]= "FF"}

 if(Sex_frame$sex[i]=="M" & Sex_frame$sex[i]==Sex_frame$sex[j]){

 SEXM[i,j]= "MM"}

 if(Sex_frame$sex[i]!=Sex_frame$sex[j]){

 SEXM[i,j]= "FM"}

 }

af://n24
af://n27

3.3. HABITAT similarity matrix

3.3.1 HABITAT combination-factor matrix

}

#Name rown amd colnames with individual names

rownames(SEXM)<-key$Sample_name

colnames(SEXM)<-key$Sample_name

#Save matrix to ready matrices folder

saveRDS(SEXM,"SEXM_comb.rds")

The resulting matrix will have for each individual pair a value of "1"= same habitat or "0"=different habitat

#Create data frame with each Individual name (character) and their nest ID (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)

#Create an empty numeric matrix to fill with distances

habitatM<-array(0,c(nrow(habitat_frame),nrow(habitat_frame)))

#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(habitat_frame)){

 for(j in 1:nrow(habitat_frame)){

 if(habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= 1 #same habitat

 } else{

 habitatM[i,j]= 0 #differente habitat

 }

 }

}

#Name rown amd colnames with individual names

all(rownames(habitatM)==key$ID)

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name

habitatM

#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM.rds")

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT=

both Teuto and all the interations.

#This type of variables are better than binary variables in revealing how some trends may be affected by

individual-level factors.

#Create data frame with each Individual name (character) and their Age (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)

Change habitat levels from south,north teuto to S,N,T

af://n30
af://n33

3.4. NEST similarity matrix

habitat_frame$habitat <- with(habitat_frame, factor(habitat, levels = c('north', 'south', 'teuto'), labels =

c("N", "S", "T")))

#Create an empty character matrix to fill with characters

habitatM<-array(as.character(NA),c(nrow(habitat_frame),nrow(habitat_frame)))

for(i in 1:nrow(habitat_frame)){

 for(j in 1:nrow(habitat_frame)){

 if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= "NN"}

 if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= "SS"}

 if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= "TT"}

 if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="S"){

 habitatM[i,j]= "NS"}

 if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="N"){

 habitatM[i,j]= "NS"}

 if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="T"){

 habitatM[i,j]= "NT"}

 if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="N"){

 habitatM[i,j]= "NT"}

 if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="T"){

 habitatM[i,j]= "ST"}

 if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="S"){

 habitatM[i,j]= "ST"}

 }

}

#Name rown amd colnames with individual names

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name

#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM_comb.rds")

The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest

#Create data frame with each Individual name (character) and their nest ID (Character)

nest_frame<-sample_data[,c("ring_number","nest")]

nest_frame$ring_number<-as.character(nest_frame$ring_number)

nest_frame$nest<-as.character(nest_frame$nest)

#Create an empty numeric matrix to fill with distances

nestM<-array(0,c(nrow(nest_frame),nrow(nest_frame)))

#Derive matrix with binary nest similarity between each sample

for(i in 1:nrow(nest_frame)){

 for(j in 1:nrow(nest_frame)){

 if(nest_frame$nest[i]==nest_frame$nest[j]){

 nestM[i,j]= 1

 } else{

 nestM[i,j]= 0

 }

 }

}

#Name rown amd colnames with individual names

all(rownames(nestM)==key$ID)

rownames(nestM)<-key$Sample_name

af://n36

3.5. YEAR similarity matrices

3.6. INFECTION status combination-factor matrix

colnames(nestM)<-key$Sample_name

nestM

#Save matrix to ready matrices folder

saveRDS(nestM,"nestM.rds")

#The resulting matrix will have for each individual pair a value of "1"= same year or "0"=different year

#Create data frame with each Individual name (character) and their Age (Character)

year_frame<-sample_data[,c("ring_number","year")]

year_frame$ring_number<-as.character(year_frame$ring_number)

year_frame$year<-as.character(year_frame$year)

#Create an empty numeric matrix to fill with distances

yearM<-array(0,c(nrow(year_frame),nrow(year_frame)))

#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(year_frame)){

 for(j in 1:nrow(year_frame)){

 if(year_frame$year[i]==year_frame$year[j]){

 yearM[i,j]= 1

 } else{

 yearM[i,j]= 0

 }

 }

}

#Name rown amd colnames with individual names

all(rownames(yearM)==key$ID)

rownames(yearM)<-key$Sample_name

colnames(yearM)<-key$Sample_name

yearM

#Save matrix to ready matrices folder

saveRDS(yearM,"yearM.rds")

#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both

uninfected, "NiI= non-infected vs infected.

#Create data frame with each Individual name (character) and their infection status (Character)

lbinom_frame<-sample_data[,c("ring_number","lbinom")]

lbinom_frame$ring_number<-as.character(lbinom_frame$ring_number)

lbinom_frame$lbinom<-as.character(lbinom_frame$lbinom)

#lbinom_frame <- replace(lbinom_frame, is.na(lbinom_frame), "NA")

lbinom_frame <- replace(lbinom_frame, lbinom_frame=="", "NA") # some missing data replaced by NA

lbinom_frame$lbinom <- with(lbinom_frame, factor(lbinom, levels = c('1', '0', "NA"), labels = c("I", "Ni",

"NA")))

af://n39
af://n42

3.7. AGE diference matrix

#Create an empty character matrix to fill with characters

lbinomM<-array(as.character(NA),c(nrow(lbinom_frame),nrow(lbinom_frame)))

for(i in 1:nrow(lbinom_frame)){

 for(j in 1:nrow(lbinom_frame)){

 if(lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

 lbinomM[i,j]= "II"}

 if(lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

 lbinomM[i,j]= "NiNi"}

 if(lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[j]=="Ni"){

 lbinomM[i,j]= "NiI"}

 if(lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[j]=="I"){

 lbinomM[i,j]= "NiI"}

}}

#Name rown amd colnames with individual names

rownames(lbinomM)<-key$Sample_name

colnames(lbinomM)<-key$Sample_name

#Save matrix to ready matrices folder

saveRDS(lbinomM,"lbinomM.rds")

#This matrix will describe the distance in days between age of microbiome samples

#Transform dates into a numeric variable

sample_data$age_days<-as.numeric(sample_data$age_days)

#Create data frame with each sample name (character) and age (numeric)

AgeTime_frame<-sample_data[,c("ring_number","age_days")]

AgeTime_frame$ring_number<-as.character(AgeTime_frame$ring_number)

#Create an empty matrix to fill with distances

AGEM<-array(0,c(nrow(AgeTime_frame),nrow(AgeTime_frame)))

#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(AgeTime_frame)){

 for (j in 1:nrow(AgeTime_frame))

 {AGEM[i,j]=abs(AgeTime_frame$age_days[i] -AgeTime_frame$age_days[j])

 }

}

#Note that age diference matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)

#Name rown amd colnames with individual names

rownames(AGEM)<-key$Sample_name

colnames(AGEM)<-key$Sample_name

AGEM

#Save matrix to ready matrices folder

saveRDS(AGEM,AGEM.rds")

af://n46

3.8. BCI diference matrix

4. Unravel matrices into one dyadic data frame

4.1 Build dyadic dataset

#This matrix will describe the diference in body condition between the microbiome samples

#Transform body condition into a numeric variable

sample_data$bci_two<-as.numeric(sample_data$bci_two)

#Create data frame with each sample name (character) and sampling time (numeric)

BC_frame<-sample_data[,c("ring_number","bci_two")]

BC_frame$ring_number<-as.character(BC_frame$ring_number)

#Create an empty matrix to fill with distances

BCondM<-array(0,c(nrow(BC_frame),nrow(BC_frame)))

#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(BC_frame)){

 for (j in 1:nrow(BC_frame))

 {BCondM[i,j]=abs(BC_frame$bci_two[i] -BC_frame$bci_two[j])

 }

}

#Note that Temporal distance matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)

So we can just call the rownames and colnames with the names of individuals since there is just one sample

per individual in this data set

#Name rown amd colnames with individual names

rownames(BCondM)<-key$Sample_name

colnames(BCondM)<-key$Sample_name

BCondM

#Save matrix to ready matrices folder

saveRDS(BCondM,"BCondM.rds")

#Read in microbial distance matrices if not in already

BCM <- readRDS("BCM.rds") # bray-curtis

WUM <- readRDS("WUM.rds") # weighted unifrac

Ready in matrices of other variables

AGEM<-readRDS("AGEM.rds") # age

BCI_twoM <-readRDS("BCI_two_M.rds") #body condition

yearM <- readRDS("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest

SEXM <- readRDS("SEXM.rds") # sex similarity

SEXM_comb <- readRDS("SEXM_comb.rds") # sex combination

habitatM <- readRDS("habitatM.rds") # habitat similarity

habitatM <- readRDS("habitatM_comb.rds") # habitat combination

lbinomM <- readRDS("lbinomM.rds") # infection status

af://n49
af://n52
af://n54

4.2 Add Individual ID and Sample ID combinations to the data set

#First unravel the matrices into vectors matching the lower quantile of each matrix.

#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from

the matrix.

#as.dist() by default includes only the lower quantile of the matrix and excludes the diagonal.

BC <- c(as.dist(BCM))

UU <- c(as.dist(UUM))

WU <- c(as.dist(WUM))

age <- c(as.dist(AGEM))

bci_two <-c(as.dist(BCI_twoM))

nest <- c(as.dist(nestM))

year <- c(as.dist(yearM))

sex <- c(as.dist(SEXM))

#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with

lower.tri() -function.

sex_comb <- c(SEXM_comb[lower.tri(SEXM_comb)])

habitat_comb <- c(TREATMM[lower.tri(habitatM_comb)])

lbinom <- c(lbinomM[lower.tri(lbinomM)])

#Combine these vectors into a data frame

data.dyad<-data.frame(BC_dissim=BC , UU_distance=UU, WU_distance=WU, age_diference=age,

 bci_one = bci_one, bci_diference = bci_two, lbinom_comp = lbinom,

 nest_sim=nest, habitat_sim=habitat,,habitat_comb=habitat_comb,

sex_sim=sex,sex_comb=sex_comb year_sim = year)

#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful).

extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample_name,key$Sample_name)

This created individual-to-same-individual pairs as well. Get rid of these:

list<-list[which(list$Var1!=list$Var2),]

this still has both quantiles in--> add 'unique' key

list$key <- apply(list, 1, function(x)paste(sort(x), collapse=''))

list<-subset(list, !duplicated(list$key))

sanity check that the Individual name combinations are in the same exact order as the lower quantile value

vector of the matrices

i=34

BCM[which(rownames(BCM)==list$Var1[i]),which(colnames(BCM)==list$Var2[i])]==BC[i]

UUM[which(rownames(UUM)==list$Var1[i]),which(colnames(UUM)==list$Var2[i])]==UU[i]

WUM[which(rownames(WUM)==list$Var1[i]),which(colnames(WUM)==list$Var2[i])]==WU[i]

AGEM[which(rownames(AGEM)==list$Var1[i]),which(colnames(AGEM)==list$Var2[i])]==age[i]

SEXM[which(rownames(SEXM)==list$Var1[i]),which(colnames(SEXM)==list$Var2[i])]==sex[i]

TREATMM[which(rownames(TREATMM)==list$Var1[i]),which(colnames(TREATMM)==list$Var2[i])]==treatm[i]

yearM[which(rownames(yearM)==list$Var1[i]),which(colnames(yearM)==list$Var2[i])]==year[i]

nestM[which(rownames(nestM)==list$Var1[i]),which(colnames(nestM)==list$Var2[i])]==nest[i]

add the names of both individuals participating in each dyad into the data frame

data.dyad$sampleA<-list$Var2

af://n57

sampleA sampleB IDA IDB BC_dissim WU_distance age_diference bci_diference lbinom_comp nest_sim habitat_sim habitat_comb sex_sim sex_comb year_sim

S001 S002 3419291 3419288 0.708478913 0.048377791 0.174242424 II 0 1 NN 0 FM 1

S001 S003 3419291 3419287 0.742968667 0.06477989 0.178030303 0.159085291 II 0 1 NN 1 MM 1

S001 S004 3419291 3419286 0.621086265 0.063355594 0.071969697 0.232891266 II 0 1 NN 1 MM 1

S001 S005 3419291 3419285 0.728804856 0.056634477 0.185606061 0.043899636 NiI 0 1 NN 0 FM 1

S001 S006 3419291 3419284 0.72086191 0.04764569 0.15530303 0.057296175 NiI 0 1 NN 0 FM 1

S001 S007 3419291 3419283 0.58844846 0.081624471 0.026515152 0.219643831 NiI 0 1 NN 1 MM 1

S001 S008 3419291 3419282 0.638061537 0.058416954 0.03030303 0.192283125 NiI 0 1 NN 1 MM 1

S001 S009 3419291 3419281 0.554663665 0.058029588 0.018939394 0.223148272 NiI 0 1 NN 0 FM 1

S001 S010 3419291 3419279 0.574530808 0.056723361 0.170454546 0.003992333 NiI 0 1 NN 1 MM 1

S001 S011 3419291 3419278 0.580341291 0.042190368 0.068181818 0.045747277 II 0 1 NN 1 MM 1

S001 S012 3419291 3419276 0.566648959 0.067971619 0.079545454 0.180183235 NiI 0 1 NN 1 MM 1

S001 S013 3419291 3419275 0.442679036 0.053512563 0.060606061 0.046341041 NiI 0 1 NN 1 MM 1

S001 S014 3419291 3419280 0.560013748 0.043511334 0.196969697 0.098652122 II 0 1 NN 0 FM 1

S001 S015 3419291 3419297 0.671730803 0.066848843 0.246212121 0.046668815 NiI 0 1 NN 0 FM 1

S001 S016 3419291 3419294 0.666217633 0.052062348 0.231060606 0.201903615 NiI 0 0 NS 1 MM 1

S001 S017 3419291 3121005 0.631848671 0.065660102 0.034090909 0.172042132 NiI 0 1 NN 0 FM 1

S001 S018 3419291 3121004 0.656930239 0.063652836 0.011363636 0.101811651 II 0 1 NN 0 FM 1

S001 S019 3419291 3121001 0.731432769 0.066831972 0.071969697 0.02611092 II 0 1 NN 0 FM 1

S001 S020 3419291 3121006 0.650345451 0.061676228 0.193181818 0.140552659 NiI 0 1 NN 0 FM 1

S001 S021 3419291 3419299 0.712390555 0.050166339 0.049242424 0.0043404 NiI 0 1 NN 0 FM 1

Example of the data dyad (first 20 rows)

B) 28S rRNA dyadic data set

data.dyad$sampleB<-list$Var1

make a new key for the order of sample names and their associated individual IDs.

key2 <- data.frame(ID=sample_data(micdata)$ring_number, sampleA =sample_data(micdata)$identifier, sampleB

=sample_data(micdata)$identifier)

merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)

listdf = list(data.dyad, key2) # built list

data.dyad <- listdf %>% reduce(left_join, by ="sampleA", keep = FALSE) # merge based on sampleA column

data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename(data.dyad, IDA = ID, sampleB = sampleB.x) # change column names

listdf = list(data.dyad, key2) # update list

data.dyad <- listdf %>% reduce(left_join, by ="sampleB", keep = FALSE) # merge by sample B

data.dyad <- data.dyad[,-20] # delete column duplicate

data.dyad <- rename(data.dyad, IDB = ID, sampleA = sampleA.x) # change column names

Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which(data.dyad$sampleA!=data.dyad$sampleB),]

#Save dyadic data file

saveRDS(data.dyad,"data_dyad.rds")

af://n402
af://n404

1. Cumulative Sum Scaling (CSS) normalization

Load libraries

library(qiime2R)

library(phyloseq)

library(tidyverse)

library(microbiome)

library(metagenomeSeq)

Create phyloseq object

ps <- qza_to_phyloseq(

 features="beta-table.qza",

 taxonomy="taxonomy.qza",

 tree = "rooted-tree.qza",

 metadata = "metadata.tsv")

#Extract taxonomy

taxonomy <- as.data.frame(tax_table(ps))

#Edit taxonomy file (for some reason Kingdom name comes with "d_" before)

taxonomy$Kingdom <- gsub("d__","",as.character(taxonomy$Kingdom))

taxonomy <- as.matrix(taxonomy)

#Extract phylogeny file

tree <- phy_tree(ps) # its easier to get the tree file in the correct format this way. first build the ps

object and then extract the tree

CSS data transformation

First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseq_to_metagenomeSeq(ps)

Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast(meta.obj))

Convert CSS data into data.frame-formatted OTU table (log transformed data)

asv_table_css <- MRcounts(meta.obj, norm = TRUE, log = TRUE)

Make a new phyloseq object with with the new CSS transformed ASV table

asv_table_css <- otu_table(asv_table_css, taxa_are_rows = TRUE)

taxonomy <- tax_table(taxonomy)

metadata <- sample_data(metadata)

tree <- phy_tree(tree)

ps_css <- phyloseq(asv_table_css, taxonomy, metadata, tree)

otu <- as.data.frame(otu_table(ps_css))

Explore phyloseq object

summarize_phyloseq(ps_css)

sample_names(ps_css) # looks at the sample names on the phyloseq object

meta(ps_css) # retrieves the metadata file

sample_data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV_1, ASV_2...etc)

abundances(ps_css) # retrieves ASV counts table

abundances(ps_css, "compositional") # computes relative abundaces

readcount(ps_css) # number of reads per sample

Save phyloseq object as rds file for dyatic data construction

af://n404

2. Read in the data

3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)

saveRDS(ps_css,"phyloseq_css.rds")

Load Libraries

library(phyloseq)

library(tidyverse)

library(janitor)

#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS("phyloseq_css.rds")

remove sample that seems to be outlier. Distance measures always equal to 1 for this sample

micdata <- subset_samples(micdata, identifier != "S024" & identifier != "S029" & identifier != "S043" &

identifier != "S174" &

 identifier != "S207")

#See:

micdata

Extract metadata file from Phyloseq object

sample_data<-sample_data(micdata)

Edit metadata file

sample_data$ring_number <- as.factor(sample_data$ring_number)

sample_data$identifier <- as.factor(sample_data$identifier)

sample_data$date <- as.Date(sample_data$date, "%m/%d/%Y")

sample_data$std_age <- as.numeric(sample_data$std_age)

sample_data$std_BCI_two <- as.numeric(sample_data$std_BCI_two)

sample_data$sampling_point <- as.factor(sample_data$sampling_point)

sample_data$nest <- as.factor(sample_data$nest)

sample_data$habitat <- as.factor(sample_data$habitat)

sample_data$year <- as.factor(sample_data$year)

sample_data$lbinom <- as.factor(sample_data$lbinom)

sample_data$sex <- as.factor(sample_data$sex)

sample_data<- clean_names(sample_data)

#make a key for the order of sample names and their associated individual IDs.

key <- data.frame(ID=sample_data(micdata)$ring_number, Sample_name=sample_data(micdata)$identifier)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix(phyloseq::distance(micdata, method = "bray", type = "samples"))

#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance(micdata, method = "unifrac", type = "samples"))

#Make unweighted unifrac matrix

WUM <- as.matrix(phyloseq::distance(micdata, method = "wunifrac", type = "samples"))

Assign individual names to rownames based on the key constructed before

af://n407
af://n410
af://n412

3.2. SEX similarity matrix

3.2.1 SEX combination matrix

all(rownames(BCM)==key$Sample_name)

all(rownames(UUM)==key$Sample_name)

all(rownames(WUM)==key$Sample_name)

#Eyeball dissimilarities across individuals

BCM

WUM

#Save matrices

saveRDS(BCM,"ready-matrices/BCM.rds")

saveRDS(WUM,"ready-matrices/WUM.rds")

The resulting matrix will have for each individual pair a value of "1"= same sex or "0"=different sex

#Create data frame with each Individual name (character) and their nest ID (Character)

sex_frame<-sample_data[,c("ring_number","sex")]

sex_frame$ring_number<-as.character(sex_frame$ring_number)

sex_frame$sex<-as.character(sex_frame$sex)

#Create an empty numeric matrix to fill with distances

sexM<-array(0,c(nrow(sex_frame),nrow(sex_frame)))

#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(sex_frame)){

 for(j in 1:nrow(sex_frame)){

 if(sex_frame$sex[i]==sex_frame$sex[j]){

 sexM[i,j]= 1 #same sex

 } else{

 sexM[i,j]= 0 #differente sex

}}}

#Name rown amd colnames with individual names

all(rownames(sexM)==key$ID)

rownames(sexM)<-key$Sample_name

colnames(sexM)<-key$Sample_name

sexM

#Save matrix to ready matrices folder

saveRDS(sexM,"SEXM.rds")

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female

"MM"=both male.

#Create data frame with each Individual name (character) and their Age (Character)

Sex_frame<-sample_data[,c("ring_number","sex")]

Sex_frame$ring_number<-as.character(Sex_frame$ring_number)

Sex_frame$sex<-as.character(Sex_frame$sex)

#Create an empty character matrix to fill with characters

SEXM<-array(as.character(NA),c(nrow(Sex_frame),nrow(Sex_frame)))

for(i in 1:nrow(Sex_frame)){

 for(j in 1:nrow(Sex_frame)){

 if(Sex_frame$sex[i]=="F" & Sex_frame$sex[i]==Sex_frame$sex[j]){

af://n415
af://n418

3.3. HABITAT similarity matrix

3.3.1 HABITAT combination-factor matrix

 SEXM[i,j]= "FF"}

 if(Sex_frame$sex[i]=="M" & Sex_frame$sex[i]==Sex_frame$sex[j]){

 SEXM[i,j]= "MM"}

 if(Sex_frame$sex[i]!=Sex_frame$sex[j]){

 SEXM[i,j]= "FM"}

 }}

#Name rown amd colnames with individual names

rownames(SEXM)<-key$Sample_name

colnames(SEXM)<-key$Sample_name

#Save matrix to ready matrices folder

saveRDS(SEXM,"SEXM_comb.rds")

The resulting matrix will have for each individual pair a value of "1"= same habitat or "0"=different habitat

#Create data frame with each Individual name (character) and their nest ID (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)

#Create an empty numeric matrix to fill with distances

habitatM<-array(0,c(nrow(habitat_frame),nrow(habitat_frame)))

#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(habitat_frame)){

 for(j in 1:nrow(habitat_frame)){

 if(habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= 1 #same habitat

 } else{

 habitatM[i,j]= 0 #differente habitat

 }}}

#Name rown amd colnames with individual names

all(rownames(habitatM)==key$ID)

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name

habitatM

#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM.rds")

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT=

both Teuto and all the interations.

#This type of variables are better than binary variables in revealing how some trends may be affected by

individual-level factors.

#Create data frame with each Individual name (character) and their Age (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)

af://n421
af://n424

3.4. NEST similarity matrix

Change habitat levels from south,north teuto to S,N,T

habitat_frame$habitat <- with(habitat_frame, factor(habitat, levels = c('north', 'south', 'teuto'), labels =

c("N", "S", "T")))

#Create an empty character matrix to fill with characters

habitatM<-array(as.character(NA),c(nrow(habitat_frame),nrow(habitat_frame)))

for(i in 1:nrow(habitat_frame)){

 for(j in 1:nrow(habitat_frame)){

 if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= "NN"}

 if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= "SS"}

 if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

 habitatM[i,j]= "TT"}

 if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="S"){

 habitatM[i,j]= "NS"}

 if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="N"){

 habitatM[i,j]= "NS"}

 if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="T"){

 habitatM[i,j]= "NT"}

 if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="N"){

 habitatM[i,j]= "NT"}

 if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="T"){

 habitatM[i,j]= "ST"}

 if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="S"){

 habitatM[i,j]= "ST"}

 }}

#Name rown amd colnames with individual names

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name

#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM_comb.rds")

The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest

#Create data frame with each Individual name (character) and their nest ID (Character)

nest_frame<-sample_data[,c("ring_number","nest")]

nest_frame$ring_number<-as.character(nest_frame$ring_number)

nest_frame$nest<-as.character(nest_frame$nest)

#Create an empty numeric matrix to fill with distances

nestM<-array(0,c(nrow(nest_frame),nrow(nest_frame)))

#Derive matrix with binary nest similarity between each sample

for(i in 1:nrow(nest_frame)){

 for(j in 1:nrow(nest_frame)){

 if(nest_frame$nest[i]==nest_frame$nest[j]){

 nestM[i,j]= 1

 } else{

 nestM[i,j]= 0

 }}}

#Name rown amd colnames with individual names

all(rownames(nestM)==key$ID)

rownames(nestM)<-key$Sample_name

colnames(nestM)<-key$Sample_name

af://n427

3.5. YEAR similarity matrices

3.6. INFECTION status combination-factor matrix

nestM

#Save matrix to ready matrices folder

saveRDS(nestM,"nestM.rds")

#The resulting matrix will have for each individual pair a value of "1"= same year or "0"=different year

#Create data frame with each Individual name (character) and their Age (Character)

year_frame<-sample_data[,c("ring_number","year")]

year_frame$ring_number<-as.character(year_frame$ring_number)

year_frame$year<-as.character(year_frame$year)

#Create an empty numeric matrix to fill with distances

yearM<-array(0,c(nrow(year_frame),nrow(year_frame)))

#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(year_frame)){

 for(j in 1:nrow(year_frame)){

 if(year_frame$year[i]==year_frame$year[j]){

 yearM[i,j]= 1

 } else{

 yearM[i,j]= 0

 }}}

#Name rown amd colnames with individual names

all(rownames(yearM)==key$ID)

rownames(yearM)<-key$Sample_name

colnames(yearM)<-key$Sample_name

yearM

#Save matrix to ready matrices folder

saveRDS(yearM,"yearM.rds")

#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both

uninfected, "NiI= non-infected vs infected.

#Create data frame with each Individual name (character) and their infection status (Character)

lbinom_frame<-sample_data[,c("ring_number","lbinom")]

lbinom_frame$ring_number<-as.character(lbinom_frame$ring_number)

lbinom_frame$lbinom<-as.character(lbinom_frame$lbinom)

#lbinom_frame <- replace(lbinom_frame, is.na(lbinom_frame), "NA")

lbinom_frame <- replace(lbinom_frame, lbinom_frame=="", "NA") # some missing data replaced by NA

lbinom_frame$lbinom <- with(lbinom_frame, factor(lbinom, levels = c('1', '0', "NA"), labels = c("I", "Ni",

"NA")))

#Create an empty character matrix to fill with characters

lbinomM<-array(as.character(NA),c(nrow(lbinom_frame),nrow(lbinom_frame)))

af://n430
af://n433

3.7. AGE diference matrix

for(i in 1:nrow(lbinom_frame)){

 for(j in 1:nrow(lbinom_frame)){

 if(lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

 lbinomM[i,j]= "II"}

 if(lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

 lbinomM[i,j]= "NiNi"}

 if(lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[j]=="Ni"){

 lbinomM[i,j]= "NiI"}

 if(lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[j]=="I"){

 lbinomM[i,j]= "NiI"}

}}

#Name rown amd colnames with individual names

rownames(lbinomM)<-key$Sample_name

colnames(lbinomM)<-key$Sample_name

#Save matrix to ready matrices folder

saveRDS(lbinomM,"lbinomM.rds")

#This matrix will describe the distance in days between age of microbiome samples

#Transform dates into a numeric variable

sample_data$age_days<-as.numeric(sample_data$age_days)

#Create data frame with each sample name (character) and age (numeric)

AgeTime_frame<-sample_data[,c("ring_number","age_days")]

AgeTime_frame$ring_number<-as.character(AgeTime_frame$ring_number)

#Create an empty matrix to fill with distances

AGEM<-array(0,c(nrow(AgeTime_frame),nrow(AgeTime_frame)))

#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(AgeTime_frame)){

 for (j in 1:nrow(AgeTime_frame))

 {AGEM[i,j]=abs(AgeTime_frame$age_days[i] -AgeTime_frame$age_days[j])

 }}

#Note that age diference matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)

#Name rown amd colnames with individual names

rownames(AGEM)<-key$Sample_name

colnames(AGEM)<-key$Sample_name

AGEM

#Save matrix to ready matrices folder

saveRDS(AGEM,AGEM.rds")

af://n437

3.8. BCI diference matrix

4. Unravel matrices into one dyadic data frame

4.1. Build dyadic dataset

#This matrix will describe the diference in body condition between the microbiome samples

#Transform body condition into a numeric variable

sample_data$bci_two<-as.numeric(sample_data$bci_two)

#Create data frame with each sample name (character) and sampling time (numeric)

BC_frame<-sample_data[,c("ring_number","bci_two")]

BC_frame$ring_number<-as.character(BC_frame$ring_number)

#Create an empty matrix to fill with distances

BCondM<-array(0,c(nrow(BC_frame),nrow(BC_frame)))

#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(BC_frame)){

 for (j in 1:nrow(BC_frame))

 {BCondM[i,j]=abs(BC_frame$bci_two[i] -BC_frame$bci_two[j])

 }}

#Note that Temporal distance matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)

So we can just call the rownames and colnames with the names of individuals since there is just one sample

per individual in this data set

#Name rown amd colnames with individual names

rownames(BCondM)<-key$Sample_name

colnames(BCondM)<-key$Sample_name

BCondM

#Save matrix to ready matrices folder

saveRDS(BCondM,"BCondM.rds")

#Read in microbial distance matrices if not in already

BCM <- readRDS("BCM.rds") # bray-curtis

WUM <- readRDS("WUM.rds") # weighted unifrac

Ready in matrices of other variables

AGEM<-readRDS("AGEM.rds") # age

BCI_twoM <-readRDS("BCI_two_M.rds") #body condition

yearM <- readRDS("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest

SEXM <- readRDS("SEXM.rds") # sex similarity

SEXM_comb <- readRDS("SEXM_comb.rds") # sex combination

habitatM <- readRDS("habitatM.rds") # habitat similarity

habitatM <- readRDS("habitatM_comb.rds") # habitat combination

lbinomM <- readRDS("lbinomM.rds") # infection status

af://n440
af://n443
af://n445

4.2. Add Individual ID and Sample ID combinations to the data set

#First unravel the matrices into vectors matching the lower quantile of each matrix.

#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from

the matrix.

#as.dist() by default includes only the lower quantile of the matrix and excludes the diagonal.

BC <- c(as.dist(BCM))

UU <- c(as.dist(UUM))

WU <- c(as.dist(WUM))

age <- c(as.dist(AGEM))

bci_two <-c(as.dist(BCI_twoM))

nest <- c(as.dist(nestM))

year <- c(as.dist(yearM))

sex <- c(as.dist(SEXM))

#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with

lower.tri() -function.

sex_comb <- c(SEXM_comb[lower.tri(SEXM_comb)])

habitat_comb <- c(TREATMM[lower.tri(habitatM_comb)])

lbinom <- c(lbinomM[lower.tri(lbinomM)])

#Combine these vectors into a data frame

data.dyad<-data.frame(BC_dissim=BC , UU_distance=UU, WU_distance=WU, age_diference=age,

 bci_diference = bci_two, lbinom_comp = lbinom,

 nest_sim=nest, habitat_sim=habitat, habitat_comb=habitat_comb, sex_sim=sex,

sex_comb=sex_comb year_sim = year)

#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful).

extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample_name,key$Sample_name)

This created individual-to-same-individual pairs as well. Get rid of these:

list<-list[which(list$Var1!=list$Var2),]

this still has both quantiles in--> add 'unique' key

list$key <- apply(list, 1, function(x)paste(sort(x), collapse=''))

list<-subset(list, !duplicated(list$key))

sanity check that the Individual name combinations are in the same exact order as the lower quantile value

vector of the matrices

i=34

BCM[which(rownames(BCM)==list$Var1[i]),which(colnames(BCM)==list$Var2[i])]==BC[i]

UUM[which(rownames(UUM)==list$Var1[i]),which(colnames(UUM)==list$Var2[i])]==UU[i]

WUM[which(rownames(WUM)==list$Var1[i]),which(colnames(WUM)==list$Var2[i])]==WU[i]

AGEM[which(rownames(AGEM)==list$Var1[i]),which(colnames(AGEM)==list$Var2[i])]==age[i]

SEXM[which(rownames(SEXM)==list$Var1[i]),which(colnames(SEXM)==list$Var2[i])]==sex[i]

TREATMM[which(rownames(TREATMM)==list$Var1[i]),which(colnames(TREATMM)==list$Var2[i])]==treatm[i]

yearM[which(rownames(yearM)==list$Var1[i]),which(colnames(yearM)==list$Var2[i])]==year[i]

nestM[which(rownames(nestM)==list$Var1[i]),which(colnames(nestM)==list$Var2[i])]==nest[i]

add the names of both individuals participating in each dyad into the data frame

data.dyad$sampleA<-list$Var2

data.dyad$sampleB<-list$Var1

af://n448

make a new key for the order of sample names and their associated individual IDs.

key2 <- data.frame(ID=sample_data(micdata)$ring_number, sampleA =sample_data(micdata)$identifier, sampleB

=sample_data(micdata)$identifier)

merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)

listdf = list(data.dyad, key2) # built list

data.dyad <- listdf %>% reduce(left_join, by ="sampleA", keep = FALSE) # merge based on sampleA column

data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename(data.dyad, IDA = ID, sampleB = sampleB.x) # change column names

listdf = list(data.dyad, key2) # update list

data.dyad <- listdf %>% reduce(left_join, by ="sampleB", keep = FALSE) # merge by sample B

data.dyad <- data.dyad[,-20] # delete column duplicate

data.dyad <- rename(data.dyad, IDB = ID, sampleA = sampleA.x) # change column names

Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which(data.dyad$sampleA!=data.dyad$sampleB),]

#Save dyadic data file

saveRDS(data.dyad,"data_dyad.rds")

	Constructing dyadic data from non-independent observations
	Table of Contents

	A) 16S rRNA dyadic data set
	1. Cumulative Sum Scaling (CSS) normalization
	2. Read in the data
	3. Construct matrices to create the dayadic dataset
	3.1. Microbiome dissimilarity/distance matrices (BC, WU)
	3.2. SEX similarity matrix
	3.2.1 SEX combination matrix
	3.3. HABITAT similarity matrix
	3.3.1 HABITAT combination-factor matrix
	3.4. NEST similarity matrix
	3.5. YEAR similarity matrices
	3.6. INFECTION status combination-factor matrix
	3.7. AGE diference matrix
	3.8. BCI diference matrix

	4. Unravel matrices into one dyadic data frame
	4.1 Build dyadic dataset
	4.2 Add Individual ID and Sample ID combinations to the data set

	B) 28S rRNA dyadic data set
	1. Cumulative Sum Scaling (CSS) normalization
	2. Read in the data
	3. Construct matrices to create the dayadic dataset
	3.1. Microbiome dissimilarity/distance matrices (BC, WU)
	3.2. SEX similarity matrix
	3.2.1 SEX combination matrix
	3.3. HABITAT similarity matrix
	3.3.1 HABITAT combination-factor matrix
	3.4. NEST similarity matrix
	3.5. YEAR similarity matrices
	3.6. INFECTION status combination-factor matrix
	3.7. AGE diference matrix
	3.8. BCI diference matrix

	4. Unravel matrices into one dyadic data frame
	4.1. Build dyadic dataset
	4.2. Add Individual ID and Sample ID combinations to the data set

