
Constructing dyadic data from non-independent
observations

 

 

Based on the workflow described here  https://github.com/nuorenarra/Analysing-dyadic-data-with-brms 
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A) 16S rRNA dyadic data set  
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1. Cumulative Sum Scaling (CSS) normalization  

# Load libraries

library(qiime2R)

library(phyloseq)

library(tidyverse)

library(microbiome)

library(metagenomeSeq)







# Create phyloseq object




ps <- qza_to_phyloseq(

  features="beta-table.qza",

  taxonomy="taxonomy.qza",

  tree = "rooted-tree.qza",

  metadata = "metadata.tsv")




#Extract taxonomy

taxonomy <- as.data.frame(tax_table(ps))




#Edit taxonomy file (for some reason Kingdom name comes with "d_" before)

taxonomy$Kingdom <- gsub("d__","",as.character(taxonomy$Kingdom))

taxonomy <- as.matrix(taxonomy)




#Extract phylogeny file

tree <- phy_tree(ps) # its easier to get the tree file in the correct format this way. first build the ps 

object and then extract the tree







# CSS data transformation




## First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseq_to_metagenomeSeq(ps)




## Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast(meta.obj))




## Convert CSS data into data.frame-formatted OTU table (log transformed data)

asv_table_css <- MRcounts(meta.obj, norm = TRUE, log = TRUE)







# Make a new phyloseq object with with the new CSS transformed ASV table

asv_table_css <- otu_table(asv_table_css, taxa_are_rows = TRUE)

taxonomy <- tax_table(taxonomy)

metadata <- sample_data(metadata)

tree <- phy_tree(tree)




ps_css <- phyloseq(asv_table_css, taxonomy, metadata, tree)




otu <- as.data.frame(otu_table(ps_css))




# Explore phyloseq object

summarize_phyloseq(ps_css)

sample_names(ps_css) # looks at the sample names on the phyloseq object

meta(ps_css) # retrieves the metadata file

sample_data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV_1, ASV_2...etc)

abundances(ps_css) # retrieves ASV counts table

abundances(ps_css, "compositional") # computes relative abundaces

readcount(ps_css) # number of reads per sample




# Save phyloseq object as rds file for dyatic data construction




saveRDS(ps_css,"phyloseq_css.rds")

af://n13


 

2. Read in the data  

 

3. Construct matrices to create the dayadic dataset  
 

3.1. Microbiome dissimilarity/distance matrices (BC, WU)  




# Load Libraries 




library(phyloseq)

library(tidyverse)

library(janitor)




#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS( "phyloseq_css.rds")




#See:

micdata




# Extract metadata file from Phyloseq object

sample_data<-sample_data(micdata)




# Edit metadata file

sample_data$ring_number <- as.factor(sample_data$ring_number)

sample_data$identifier <- as.factor(sample_data$identifier)

sample_data$date <- as.Date(sample_data$date, "%m/%d/%Y")

sample_data$std_age <- as.numeric(sample_data$std_age)

sample_data$std_BCI_two <- as.numeric(sample_data$std_BCI_two)

sample_data$sampling_point <- as.factor(sample_data$sampling_point)

sample_data$nest <- as.factor(sample_data$nest)

sample_data$habitat <- as.factor(sample_data$habitat)

sample_data$year <- as.factor(sample_data$year)

sample_data$lbinom <- as.factor(sample_data$lbinom)

sample_data<- clean_names(sample_data)




#make a key for the order of sample names and their associated individual IDs.

key <- data.frame(ID=sample_data(micdata)$ring_number, Sample_name=sample_data(micdata)$identifier)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix(phyloseq::distance(micdata, method = "bray", type = "samples"))




#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance(micdata, method = "unifrac", type = "samples"))




#Make unweighted unifrac matrix

WUM <- as.matrix(phyloseq::distance(micdata, method = "wunifrac", type = "samples"))




# Assign individual names to rownames based on the key constructed before

all(rownames(BCM)==key$Sample_name)

all(rownames(UUM)==key$Sample_name)

all(rownames(WUM)==key$Sample_name)




#Eyeball  dissimilarities across individuals

BCM

WUM
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3.2. SEX similarity matrix  

 

3.2.1 SEX combination matrix  

#Save matrices 

saveRDS(BCM,"ready-matrices/BCM.rds")

saveRDS(WUM,"ready-matrices/WUM.rds")

# The resulting matrix will have for each individual pair a value of "1"= same sex or "0"=different sex




#Create data frame with each Individual name (character) and their nest ID (Character)

sex_frame<-sample_data[,c("ring_number","sex")]

sex_frame$ring_number<-as.character(sex_frame$ring_number)

sex_frame$sex<-as.character(sex_frame$sex)




#Create an empty numeric matrix to fill with distances

sexM<-array(0,c(nrow(sex_frame),nrow(sex_frame)))




#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(sex_frame)){

  for(j in 1:nrow(sex_frame)){ 

    if(sex_frame$sex[i]==sex_frame$sex[j]){

      sexM[i,j]= 1 #same sex

    } else{

      sexM[i,j]= 0 #differente sex

    }

  }

} 




#Name rown amd colnames with individual names 

all(rownames(sexM)==key$ID)

rownames(sexM)<-key$Sample_name

colnames(sexM)<-key$Sample_name




sexM




#Save matrix to ready matrices folder

saveRDS(sexM,"SEXM.rds")

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female 

"MM"=both male.




#Create data frame with each Individual name (character) and their Age (Character)

Sex_frame<-sample_data[,c("ring_number","sex")]

Sex_frame$ring_number<-as.character(Sex_frame$ring_number)

Sex_frame$sex<-as.character(Sex_frame$sex)




#Create an empty character matrix to fill with characters

SEXM<-array(as.character(NA),c(nrow(Sex_frame),nrow(Sex_frame)))




for(i in 1:nrow(Sex_frame)){

  for(j in 1:nrow(Sex_frame)){ 

    if(Sex_frame$sex[i]=="F" & Sex_frame$sex[i]==Sex_frame$sex[j]){

      SEXM[i,j]= "FF"}

    if(Sex_frame$sex[i]=="M" & Sex_frame$sex[i]==Sex_frame$sex[j]){

      SEXM[i,j]= "MM"}

    if( Sex_frame$sex[i]!=Sex_frame$sex[j]){

      SEXM[i,j]= "FM"}

  }
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3.3. HABITAT similarity matrix  

 

3.3.1 HABITAT combination-factor matrix  

}







#Name rown amd colnames with individual names 

rownames(SEXM)<-key$Sample_name

colnames(SEXM)<-key$Sample_name




#Save matrix to ready matrices folder

saveRDS(SEXM,"SEXM_comb.rds") 







# The resulting matrix will have for each individual pair a value of "1"= same habitat or "0"=different habitat




#Create data frame with each Individual name (character) and their nest ID (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)




#Create an empty numeric matrix to fill with distances

habitatM<-array(0,c(nrow(habitat_frame),nrow(habitat_frame)))




#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(habitat_frame)){

  for(j in 1:nrow(habitat_frame)){ 

    if(habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= 1 #same habitat

    } else{

      habitatM[i,j]= 0 #differente habitat

    }

  }

} 




#Name rown amd colnames with individual names 

all(rownames(habitatM)==key$ID)

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name




habitatM




#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM.rds")

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT= 

both Teuto and all the interations.

#This type of variables are better than binary variables in revealing how some trends may be affected by 

individual-level factors.




#Create data frame with each Individual name (character) and their Age (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)




# Change habitat levels from south,north teuto to S,N,T
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3.4. NEST similarity matrix  

habitat_frame$habitat <- with(habitat_frame, factor(habitat, levels = c('north', 'south', 'teuto'), labels = 

c("N", "S", "T"))) 







#Create an empty character matrix to fill with characters

habitatM<-array(as.character(NA),c(nrow(habitat_frame),nrow(habitat_frame)))




for(i in 1:nrow(habitat_frame)){

  for(j in 1:nrow(habitat_frame)){

    if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= "NN"}

    if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= "SS"}

    if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= "TT"}

    if( habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="S"){

      habitatM[i,j]= "NS"}

    if( habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="N"){

      habitatM[i,j]= "NS"}

    if( habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="T"){

      habitatM[i,j]= "NT"}

    if( habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="N"){

      habitatM[i,j]= "NT"}

    if( habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="T"){

      habitatM[i,j]= "ST"}

    if( habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="S"){

      habitatM[i,j]= "ST"}

  }

}




#Name rown amd colnames with individual names 

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name




#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM_comb.rds")

# The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest




#Create data frame with each Individual name (character) and their nest ID (Character)

nest_frame<-sample_data[,c("ring_number","nest")]

nest_frame$ring_number<-as.character(nest_frame$ring_number)

nest_frame$nest<-as.character(nest_frame$nest)




#Create an empty numeric matrix to fill with distances

nestM<-array(0,c(nrow(nest_frame),nrow(nest_frame)))




#Derive matrix with binary nest similarity between each sample

for(i in 1:nrow(nest_frame)){

  for(j in 1:nrow(nest_frame)){ 

    if(nest_frame$nest[i]==nest_frame$nest[j]){

      nestM[i,j]= 1

    } else{

      nestM[i,j]= 0

    }

  }

} 




#Name rown amd colnames with individual names 

all(rownames(nestM)==key$ID)

rownames(nestM)<-key$Sample_name
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3.5. YEAR similarity matrices  

 

3.6. INFECTION status combination-factor matrix  

colnames(nestM)<-key$Sample_name




nestM




#Save matrix to ready matrices folder

saveRDS(nestM,"nestM.rds")

#The resulting matrix will have for each individual pair a value of "1"= same year or "0"=different year




#Create data frame with each Individual name (character) and their Age (Character)

year_frame<-sample_data[,c("ring_number","year")]

year_frame$ring_number<-as.character(year_frame$ring_number)

year_frame$year<-as.character(year_frame$year)




#Create an empty numeric matrix to fill with distances

yearM<-array(0,c(nrow(year_frame),nrow(year_frame)))




#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(year_frame)){

  for(j in 1:nrow(year_frame)){ 

    if(year_frame$year[i]==year_frame$year[j]){

      yearM[i,j]= 1

    } else{

      yearM[i,j]= 0

    }

  }

} 




#Name rown amd colnames with individual names 

all(rownames(yearM)==key$ID)

rownames(yearM)<-key$Sample_name

colnames(yearM)<-key$Sample_name




yearM




#Save matrix to ready matrices folder

saveRDS(yearM,"yearM.rds")




#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both 

uninfected, "NiI= non-infected vs infected.







#Create data frame with each Individual name (character) and their infection status (Character)

lbinom_frame<-sample_data[,c("ring_number","lbinom")]

lbinom_frame$ring_number<-as.character(lbinom_frame$ring_number)

lbinom_frame$lbinom<-as.character(lbinom_frame$lbinom)




#lbinom_frame <- replace(lbinom_frame, is.na(lbinom_frame), "NA")

lbinom_frame <- replace(lbinom_frame, lbinom_frame=="", "NA") #  some missing data replaced by NA




lbinom_frame$lbinom <- with(lbinom_frame, factor(lbinom, levels = c('1', '0', "NA"), labels = c("I", "Ni", 

"NA")))
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3.7. AGE diference matrix  

 




#Create an empty character matrix to fill with characters

lbinomM<-array(as.character(NA),c(nrow(lbinom_frame),nrow(lbinom_frame)))




for(i in 1:nrow(lbinom_frame)){

  for(j in 1:nrow(lbinom_frame)){

    if(lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

      lbinomM[i,j]= "II"}

    if(lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

      lbinomM[i,j]= "NiNi"}

    if( lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[j]=="Ni"){

      lbinomM[i,j]= "NiI"}

    if( lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[j]=="I"){

      lbinomM[i,j]= "NiI"}

}}




#Name rown amd colnames with individual names 

rownames(lbinomM)<-key$Sample_name

colnames(lbinomM)<-key$Sample_name




#Save matrix to ready matrices folder

saveRDS(lbinomM,"lbinomM.rds")

#This matrix will describe the distance in days between age of microbiome samples




#Transform dates into a numeric variable

sample_data$age_days<-as.numeric(sample_data$age_days)




#Create data frame with each sample name (character) and age (numeric) 

AgeTime_frame<-sample_data[,c("ring_number","age_days")]

AgeTime_frame$ring_number<-as.character(AgeTime_frame$ring_number)




#Create an empty matrix to fill with distances

AGEM<-array(0,c(nrow(AgeTime_frame),nrow(AgeTime_frame)))




#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(AgeTime_frame)){

  for (j in 1:nrow(AgeTime_frame)) 

  {AGEM[i,j]=abs(AgeTime_frame$age_days[i] -AgeTime_frame$age_days[j])

  }

}




#Note that age diference matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)




#Name rown amd colnames with individual names 

rownames(AGEM)<-key$Sample_name

colnames(AGEM)<-key$Sample_name




AGEM




#Save matrix to ready matrices folder

saveRDS(AGEM,AGEM.rds")
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3.8. BCI diference matrix  

 

4. Unravel matrices into one dyadic data frame  
 

4.1 Build dyadic dataset  

#This matrix will describe the diference in body condition between the microbiome samples




#Transform body condition into a numeric variable

sample_data$bci_two<-as.numeric(sample_data$bci_two)




#Create data frame with each sample name (character) and sampling time (numeric) 

BC_frame<-sample_data[,c("ring_number","bci_two")]

BC_frame$ring_number<-as.character(BC_frame$ring_number)




#Create an empty matrix to fill with distances

BCondM<-array(0,c(nrow(BC_frame),nrow(BC_frame)))




#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(BC_frame)){

  for (j in 1:nrow(BC_frame)) 

  {BCondM[i,j]=abs(BC_frame$bci_two[i] -BC_frame$bci_two[j])

  }

}




#Note that Temporal distance matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)




# So we can just call the rownames and colnames with the names of individuals since there is just one sample 

per individual in this data set




#Name rown amd colnames with individual names 

rownames(BCondM)<-key$Sample_name

colnames(BCondM)<-key$Sample_name




BCondM




#Save matrix to ready matrices folder

saveRDS(BCondM,"BCondM.rds")

#Read in microbial distance matrices if not in already

BCM <- readRDS("BCM.rds") # bray-curtis

WUM <- readRDS("WUM.rds") # weighted unifrac




# Ready in matrices of other variables




AGEM<-readRDS("AGEM.rds") # age

BCI_twoM <-readRDS("BCI_two_M.rds") #body condition

yearM <- readRDS("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest




SEXM <- readRDS("SEXM.rds") # sex similarity

SEXM_comb <- readRDS("SEXM_comb.rds") # sex combination




habitatM <- readRDS("habitatM.rds") # habitat similarity

habitatM <- readRDS("habitatM_comb.rds") # habitat combination




lbinomM <- readRDS("lbinomM.rds") # infection status
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4.2 Add Individual ID and Sample ID combinations to the data set  




#First unravel the matrices into vectors matching the lower quantile of each matrix. 

#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from 

the matrix. 

#as.dist() by default includes only the lower quantile of the matrix and excludes the diagonal.




BC <- c(as.dist(BCM))

UU <- c(as.dist(UUM))

WU <- c(as.dist(WUM))

age <- c(as.dist(AGEM))

bci_two <-c(as.dist(BCI_twoM))

nest <- c(as.dist(nestM))

year <- c(as.dist(yearM))

sex <- c(as.dist(SEXM))




#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with 

lower.tri() -function.




sex_comb <- c(SEXM_comb[lower.tri(SEXM_comb)])

habitat_comb <- c(TREATMM[lower.tri(habitatM_comb)])

lbinom <- c(lbinomM[lower.tri(lbinomM)])










#Combine these vectors into a data frame

data.dyad<-data.frame(BC_dissim=BC , UU_distance=UU, WU_distance=WU, age_diference=age, 

                       bci_one = bci_one, bci_diference = bci_two, lbinom_comp = lbinom, 

                       nest_sim=nest, habitat_sim=habitat,,habitat_comb=habitat_comb, 

sex_sim=sex,sex_comb=sex_comb year_sim = year)




#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful). 




# extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample_name,key$Sample_name) 




# This created individual-to-same-individual pairs as well. Get rid of these:

list<-list[which(list$Var1!=list$Var2),] 




# this still has both quantiles in--> add 'unique' key 

list$key <- apply(list, 1, function(x)paste(sort(x), collapse='')) 

list<-subset(list, !duplicated(list$key)) 




# sanity check that the Individual name combinations are in the same exact order as the lower quantile value 

vector of the matrices

i=34




BCM[which(rownames(BCM)==list$Var1[i]),which(colnames(BCM)==list$Var2[i])]==BC[i]

UUM[which(rownames(UUM)==list$Var1[i]),which(colnames(UUM)==list$Var2[i])]==UU[i]

WUM[which(rownames(WUM)==list$Var1[i]),which(colnames(WUM)==list$Var2[i])]==WU[i]




AGEM[which(rownames(AGEM)==list$Var1[i]),which(colnames(AGEM)==list$Var2[i])]==age[i]

SEXM[which(rownames(SEXM)==list$Var1[i]),which(colnames(SEXM)==list$Var2[i])]==sex[i]

TREATMM[which(rownames(TREATMM)==list$Var1[i]),which(colnames(TREATMM)==list$Var2[i])]==treatm[i]

yearM[which(rownames(yearM)==list$Var1[i]),which(colnames(yearM)==list$Var2[i])]==year[i]

nestM[which(rownames(nestM)==list$Var1[i]),which(colnames(nestM)==list$Var2[i])]==nest[i]







# add the names of both individuals participating in each dyad into the data frame

data.dyad$sampleA<-list$Var2
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sampleA sampleB IDA IDB BC_dissim WU_distance age_diference bci_diference lbinom_comp nest_sim habitat_sim habitat_comb sex_sim sex_comb year_sim

S001 S002 3419291 3419288 0.708478913 0.048377791 0.174242424   II 0 1 NN 0 FM 1

S001 S003 3419291 3419287 0.742968667 0.06477989 0.178030303 0.159085291 II 0 1 NN 1 MM 1

S001 S004 3419291 3419286 0.621086265 0.063355594 0.071969697 0.232891266 II 0 1 NN 1 MM 1

S001 S005 3419291 3419285 0.728804856 0.056634477 0.185606061 0.043899636 NiI 0 1 NN 0 FM 1

S001 S006 3419291 3419284 0.72086191 0.04764569 0.15530303 0.057296175 NiI 0 1 NN 0 FM 1

S001 S007 3419291 3419283 0.58844846 0.081624471 0.026515152 0.219643831 NiI 0 1 NN 1 MM 1

S001 S008 3419291 3419282 0.638061537 0.058416954 0.03030303 0.192283125 NiI 0 1 NN 1 MM 1

S001 S009 3419291 3419281 0.554663665 0.058029588 0.018939394 0.223148272 NiI 0 1 NN 0 FM 1

S001 S010 3419291 3419279 0.574530808 0.056723361 0.170454546 0.003992333 NiI 0 1 NN 1 MM 1

S001 S011 3419291 3419278 0.580341291 0.042190368 0.068181818 0.045747277 II 0 1 NN 1 MM 1

S001 S012 3419291 3419276 0.566648959 0.067971619 0.079545454 0.180183235 NiI 0 1 NN 1 MM 1

S001 S013 3419291 3419275 0.442679036 0.053512563 0.060606061 0.046341041 NiI 0 1 NN 1 MM 1

S001 S014 3419291 3419280 0.560013748 0.043511334 0.196969697 0.098652122 II 0 1 NN 0 FM 1

S001 S015 3419291 3419297 0.671730803 0.066848843 0.246212121 0.046668815 NiI 0 1 NN 0 FM 1

S001 S016 3419291 3419294 0.666217633 0.052062348 0.231060606 0.201903615 NiI 0 0 NS 1 MM 1

S001 S017 3419291 3121005 0.631848671 0.065660102 0.034090909 0.172042132 NiI 0 1 NN 0 FM 1

S001 S018 3419291 3121004 0.656930239 0.063652836 0.011363636 0.101811651 II 0 1 NN 0 FM 1

S001 S019 3419291 3121001 0.731432769 0.066831972 0.071969697 0.02611092 II 0 1 NN 0 FM 1

S001 S020 3419291 3121006 0.650345451 0.061676228 0.193181818 0.140552659 NiI 0 1 NN 0 FM 1

S001 S021 3419291 3419299 0.712390555 0.050166339 0.049242424 0.0043404 NiI 0 1 NN 0 FM 1

 

Example of the data dyad (first 20 rows)

 

 

 

B) 28S rRNA dyadic data set  
 

data.dyad$sampleB<-list$Var1




# make a new key for the order of sample names and their associated individual IDs.

key2 <- data.frame(ID=sample_data(micdata)$ring_number, sampleA =sample_data(micdata)$identifier, sampleB 

=sample_data(micdata)$identifier )




# merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)

listdf = list(data.dyad, key2) # built list

data.dyad <- listdf %>% reduce(left_join, by ="sampleA", keep = FALSE) # merge based on sampleA column




data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename(data.dyad, IDA = ID, sampleB = sampleB.x) # change column names




listdf = list(data.dyad, key2) # update list 

data.dyad <- listdf %>% reduce(left_join, by ="sampleB", keep = FALSE) # merge by sample B

data.dyad <- data.dyad[,-20] # delete column duplicate




data.dyad <- rename(data.dyad, IDB = ID, sampleA = sampleA.x) # change column names 







# Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which(data.dyad$sampleA!=data.dyad$sampleB),]




#Save dyadic data file

saveRDS(data.dyad,"data_dyad.rds")
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1. Cumulative Sum Scaling (CSS) normalization  

# Load libraries

library(qiime2R)

library(phyloseq)

library(tidyverse)

library(microbiome)

library(metagenomeSeq)







# Create phyloseq object




ps <- qza_to_phyloseq(

  features="beta-table.qza",

  taxonomy="taxonomy.qza",

  tree = "rooted-tree.qza",

  metadata = "metadata.tsv")




#Extract taxonomy

taxonomy <- as.data.frame(tax_table(ps))




#Edit taxonomy file (for some reason Kingdom name comes with "d_" before)

taxonomy$Kingdom <- gsub("d__","",as.character(taxonomy$Kingdom))

taxonomy <- as.matrix(taxonomy)




#Extract phylogeny file

tree <- phy_tree(ps) # its easier to get the tree file in the correct format this way. first build the ps 

object and then extract the tree







# CSS data transformation




## First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseq_to_metagenomeSeq(ps)




## Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast(meta.obj))




## Convert CSS data into data.frame-formatted OTU table (log transformed data)

asv_table_css <- MRcounts(meta.obj, norm = TRUE, log = TRUE)







# Make a new phyloseq object with with the new CSS transformed ASV table

asv_table_css <- otu_table(asv_table_css, taxa_are_rows = TRUE)

taxonomy <- tax_table(taxonomy)

metadata <- sample_data(metadata)

tree <- phy_tree(tree)




ps_css <- phyloseq(asv_table_css, taxonomy, metadata, tree)




otu <- as.data.frame(otu_table(ps_css))







# Explore phyloseq object

summarize_phyloseq(ps_css)

sample_names(ps_css) # looks at the sample names on the phyloseq object

meta(ps_css) # retrieves the metadata file

sample_data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV_1, ASV_2...etc)

abundances(ps_css) # retrieves ASV counts table

abundances(ps_css, "compositional") # computes relative abundaces

readcount(ps_css) # number of reads per sample







# Save phyloseq object as rds file for dyatic data construction
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2. Read in the data  

 

3. Construct matrices to create the dayadic dataset  
 

3.1. Microbiome dissimilarity/distance matrices (BC, WU)  

saveRDS(ps_css,"phyloseq_css.rds")




# Load Libraries 




library(phyloseq)

library(tidyverse)

library(janitor)




#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS( "phyloseq_css.rds")




# remove sample that seems to be outlier. Distance measures always equal to 1 for this sample




micdata <- subset_samples(micdata,  identifier != "S024" & identifier != "S029" & identifier != "S043" & 

identifier != "S174" &

                            identifier != "S207") 




#See:

micdata




# Extract metadata file from Phyloseq object

sample_data<-sample_data(micdata)




# Edit metadata file

sample_data$ring_number <- as.factor(sample_data$ring_number)

sample_data$identifier <- as.factor(sample_data$identifier)

sample_data$date <- as.Date(sample_data$date, "%m/%d/%Y")

sample_data$std_age <- as.numeric(sample_data$std_age)

sample_data$std_BCI_two <- as.numeric(sample_data$std_BCI_two)

sample_data$sampling_point <- as.factor(sample_data$sampling_point)

sample_data$nest <- as.factor(sample_data$nest)

sample_data$habitat <- as.factor(sample_data$habitat)

sample_data$year <- as.factor(sample_data$year)

sample_data$lbinom <- as.factor(sample_data$lbinom)

sample_data$sex <- as.factor(sample_data$sex)

sample_data<- clean_names(sample_data)




#make a key for the order of sample names and their associated individual IDs.

key <- data.frame(ID=sample_data(micdata)$ring_number, Sample_name=sample_data(micdata)$identifier)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix(phyloseq::distance(micdata, method = "bray", type = "samples"))




#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance(micdata, method = "unifrac", type = "samples"))




#Make unweighted unifrac matrix

WUM <- as.matrix(phyloseq::distance(micdata, method = "wunifrac", type = "samples"))




# Assign individual names to rownames based on the key constructed before
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3.2. SEX similarity matrix  

 

3.2.1 SEX combination matrix  

all(rownames(BCM)==key$Sample_name)

all(rownames(UUM)==key$Sample_name)

all(rownames(WUM)==key$Sample_name)




#Eyeball  dissimilarities across individuals

BCM

WUM




#Save matrices 

saveRDS(BCM,"ready-matrices/BCM.rds")

saveRDS(WUM,"ready-matrices/WUM.rds")

# The resulting matrix will have for each individual pair a value of "1"= same sex or "0"=different sex




#Create data frame with each Individual name (character) and their nest ID (Character)

sex_frame<-sample_data[,c("ring_number","sex")]

sex_frame$ring_number<-as.character(sex_frame$ring_number)

sex_frame$sex<-as.character(sex_frame$sex)




#Create an empty numeric matrix to fill with distances

sexM<-array(0,c(nrow(sex_frame),nrow(sex_frame)))




#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(sex_frame)){

  for(j in 1:nrow(sex_frame)){ 

    if(sex_frame$sex[i]==sex_frame$sex[j]){

      sexM[i,j]= 1 #same sex

    } else{

      sexM[i,j]= 0 #differente sex

}}} 




#Name rown amd colnames with individual names 

all(rownames(sexM)==key$ID)

rownames(sexM)<-key$Sample_name

colnames(sexM)<-key$Sample_name




sexM




#Save matrix to ready matrices folder

saveRDS(sexM,"SEXM.rds")

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female 

"MM"=both male.




#Create data frame with each Individual name (character) and their Age (Character)

Sex_frame<-sample_data[,c("ring_number","sex")]

Sex_frame$ring_number<-as.character(Sex_frame$ring_number)

Sex_frame$sex<-as.character(Sex_frame$sex)




#Create an empty character matrix to fill with characters

SEXM<-array(as.character(NA),c(nrow(Sex_frame),nrow(Sex_frame)))




for(i in 1:nrow(Sex_frame)){

  for(j in 1:nrow(Sex_frame)){ 

    if(Sex_frame$sex[i]=="F" & Sex_frame$sex[i]==Sex_frame$sex[j]){
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3.3. HABITAT similarity matrix  

 

3.3.1 HABITAT combination-factor matrix  

      SEXM[i,j]= "FF"}

    if(Sex_frame$sex[i]=="M" & Sex_frame$sex[i]==Sex_frame$sex[j]){

      SEXM[i,j]= "MM"}

    if( Sex_frame$sex[i]!=Sex_frame$sex[j]){

      SEXM[i,j]= "FM"}

  }}




#Name rown amd colnames with individual names 

rownames(SEXM)<-key$Sample_name

colnames(SEXM)<-key$Sample_name




#Save matrix to ready matrices folder

saveRDS(SEXM,"SEXM_comb.rds") 







# The resulting matrix will have for each individual pair a value of "1"= same habitat or "0"=different habitat




#Create data frame with each Individual name (character) and their nest ID (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)




#Create an empty numeric matrix to fill with distances

habitatM<-array(0,c(nrow(habitat_frame),nrow(habitat_frame)))




#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(habitat_frame)){

  for(j in 1:nrow(habitat_frame)){ 

    if(habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= 1 #same habitat

    } else{

      habitatM[i,j]= 0 #differente habitat

    }}} 




#Name rown amd colnames with individual names 

all(rownames(habitatM)==key$ID)

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name




habitatM




#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM.rds")

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT= 

both Teuto and all the interations.

#This type of variables are better than binary variables in revealing how some trends may be affected by 

individual-level factors.




#Create data frame with each Individual name (character) and their Age (Character)

habitat_frame<-sample_data[,c("ring_number","habitat")]

habitat_frame$ring_number<-as.character(habitat_frame$ring_number)

habitat_frame$habitat<-as.character(habitat_frame$habitat)
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3.4. NEST similarity matrix  

# Change habitat levels from south,north teuto to S,N,T

habitat_frame$habitat <- with(habitat_frame, factor(habitat, levels = c('north', 'south', 'teuto'), labels = 

c("N", "S", "T"))) 







#Create an empty character matrix to fill with characters

habitatM<-array(as.character(NA),c(nrow(habitat_frame),nrow(habitat_frame)))




for(i in 1:nrow(habitat_frame)){

  for(j in 1:nrow(habitat_frame)){

    if(habitat_frame$habitat[i]=="N" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= "NN"}

    if(habitat_frame$habitat[i]=="S" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= "SS"}

    if(habitat_frame$habitat[i]=="T" & habitat_frame$habitat[i]==habitat_frame$habitat[j]){

      habitatM[i,j]= "TT"}

    if( habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="S"){

      habitatM[i,j]= "NS"}

    if( habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="N"){

      habitatM[i,j]= "NS"}

    if( habitat_frame$habitat[i]=="N" & habitat_frame$habitat[j]=="T"){

      habitatM[i,j]= "NT"}

    if( habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="N"){

      habitatM[i,j]= "NT"}

    if( habitat_frame$habitat[i]=="S" & habitat_frame$habitat[j]=="T"){

      habitatM[i,j]= "ST"}

    if( habitat_frame$habitat[i]=="T" & habitat_frame$habitat[j]=="S"){

      habitatM[i,j]= "ST"}

  }}




#Name rown amd colnames with individual names 

rownames(habitatM)<-key$Sample_name

colnames(habitatM)<-key$Sample_name




#Save matrix to ready matrices folder

saveRDS(habitatM,"habitatM_comb.rds")

# The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest




#Create data frame with each Individual name (character) and their nest ID (Character)

nest_frame<-sample_data[,c("ring_number","nest")]

nest_frame$ring_number<-as.character(nest_frame$ring_number)

nest_frame$nest<-as.character(nest_frame$nest)




#Create an empty numeric matrix to fill with distances

nestM<-array(0,c(nrow(nest_frame),nrow(nest_frame)))




#Derive matrix with binary nest similarity between each sample

for(i in 1:nrow(nest_frame)){

  for(j in 1:nrow(nest_frame)){ 

    if(nest_frame$nest[i]==nest_frame$nest[j]){

      nestM[i,j]= 1

    } else{

      nestM[i,j]= 0

    }}} 




#Name rown amd colnames with individual names 

all(rownames(nestM)==key$ID)

rownames(nestM)<-key$Sample_name

colnames(nestM)<-key$Sample_name
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3.5. YEAR similarity matrices  

 

3.6. INFECTION status combination-factor matrix  

nestM




#Save matrix to ready matrices folder

saveRDS(nestM,"nestM.rds")

#The resulting matrix will have for each individual pair a value of "1"= same year or "0"=different year




#Create data frame with each Individual name (character) and their Age (Character)

year_frame<-sample_data[,c("ring_number","year")]

year_frame$ring_number<-as.character(year_frame$ring_number)

year_frame$year<-as.character(year_frame$year)




#Create an empty numeric matrix to fill with distances

yearM<-array(0,c(nrow(year_frame),nrow(year_frame)))




#Derive matrix with binary Age similarity between each sample

for(i in 1:nrow(year_frame)){

  for(j in 1:nrow(year_frame)){ 

    if(year_frame$year[i]==year_frame$year[j]){

      yearM[i,j]= 1

    } else{

      yearM[i,j]= 0

    }}} 




#Name rown amd colnames with individual names 

all(rownames(yearM)==key$ID)

rownames(yearM)<-key$Sample_name

colnames(yearM)<-key$Sample_name




yearM




#Save matrix to ready matrices folder

saveRDS(yearM,"yearM.rds")




#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both 

uninfected, "NiI= non-infected vs infected.







#Create data frame with each Individual name (character) and their infection status (Character)

lbinom_frame<-sample_data[,c("ring_number","lbinom")]

lbinom_frame$ring_number<-as.character(lbinom_frame$ring_number)

lbinom_frame$lbinom<-as.character(lbinom_frame$lbinom)




#lbinom_frame <- replace(lbinom_frame, is.na(lbinom_frame), "NA")

lbinom_frame <- replace(lbinom_frame, lbinom_frame=="", "NA") #  some missing data replaced by NA




lbinom_frame$lbinom <- with(lbinom_frame, factor(lbinom, levels = c('1', '0', "NA"), labels = c("I", "Ni", 

"NA")))










#Create an empty character matrix to fill with characters

lbinomM<-array(as.character(NA),c(nrow(lbinom_frame),nrow(lbinom_frame)))
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3.7. AGE diference matrix  

 

for(i in 1:nrow(lbinom_frame)){

  for(j in 1:nrow(lbinom_frame)){

    if(lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

      lbinomM[i,j]= "II"}

    if(lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[i]==lbinom_frame$lbinom[j]){

      lbinomM[i,j]= "NiNi"}

    if( lbinom_frame$lbinom[i]=="I" & lbinom_frame$lbinom[j]=="Ni"){

      lbinomM[i,j]= "NiI"}

    if( lbinom_frame$lbinom[i]=="Ni" & lbinom_frame$lbinom[j]=="I"){

      lbinomM[i,j]= "NiI"}

}}




#Name rown amd colnames with individual names 

rownames(lbinomM)<-key$Sample_name

colnames(lbinomM)<-key$Sample_name




#Save matrix to ready matrices folder

saveRDS(lbinomM,"lbinomM.rds")

#This matrix will describe the distance in days between age of microbiome samples




#Transform dates into a numeric variable

sample_data$age_days<-as.numeric(sample_data$age_days)




#Create data frame with each sample name (character) and age (numeric) 

AgeTime_frame<-sample_data[,c("ring_number","age_days")]

AgeTime_frame$ring_number<-as.character(AgeTime_frame$ring_number)




#Create an empty matrix to fill with distances

AGEM<-array(0,c(nrow(AgeTime_frame),nrow(AgeTime_frame)))




#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(AgeTime_frame)){

  for (j in 1:nrow(AgeTime_frame)) 

  {AGEM[i,j]=abs(AgeTime_frame$age_days[i] -AgeTime_frame$age_days[j])

  }}




#Note that age diference matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)




#Name rown amd colnames with individual names 

rownames(AGEM)<-key$Sample_name

colnames(AGEM)<-key$Sample_name




AGEM




#Save matrix to ready matrices folder

saveRDS(AGEM,AGEM.rds")
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3.8. BCI diference matrix  

 

4. Unravel matrices into one dyadic data frame  
 

4.1. Build dyadic dataset  

#This matrix will describe the diference in body condition between the microbiome samples




#Transform body condition into a numeric variable

sample_data$bci_two<-as.numeric(sample_data$bci_two)




#Create data frame with each sample name (character) and sampling time (numeric) 

BC_frame<-sample_data[,c("ring_number","bci_two")]

BC_frame$ring_number<-as.character(BC_frame$ring_number)




#Create an empty matrix to fill with distances

BCondM<-array(0,c(nrow(BC_frame),nrow(BC_frame)))




#Derive matrix with time distances between each sample using abs()-function

for (i in 1:nrow(BC_frame)){

  for (j in 1:nrow(BC_frame)) 

  {BCondM[i,j]=abs(BC_frame$bci_two[i] -BC_frame$bci_two[j])

  }}




#Note that Temporal distance matrix has rownames and colnames in the same order as key

all(rownames(AGEM)==key$Sample_name)




# So we can just call the rownames and colnames with the names of individuals since there is just one sample 

per individual in this data set




#Name rown amd colnames with individual names 

rownames(BCondM)<-key$Sample_name

colnames(BCondM)<-key$Sample_name




BCondM




#Save matrix to ready matrices folder

saveRDS(BCondM,"BCondM.rds")

#Read in microbial distance matrices if not in already

BCM <- readRDS("BCM.rds") # bray-curtis

WUM <- readRDS("WUM.rds") # weighted unifrac




# Ready in matrices of other variables




AGEM<-readRDS("AGEM.rds") # age

BCI_twoM <-readRDS("BCI_two_M.rds") #body condition

yearM <- readRDS("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest




SEXM <- readRDS("SEXM.rds") # sex similarity

SEXM_comb <- readRDS("SEXM_comb.rds") # sex combination




habitatM <- readRDS("habitatM.rds") # habitat similarity

habitatM <- readRDS("habitatM_comb.rds") # habitat combination




lbinomM <- readRDS("lbinomM.rds") # infection status
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4.2. Add Individual ID and Sample ID combinations to the data set  

#First unravel the matrices into vectors matching the lower quantile of each matrix. 

#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from 

the matrix. 

#as.dist() by default includes only the lower quantile of the matrix and excludes the diagonal.




BC <- c(as.dist(BCM))

UU <- c(as.dist(UUM))

WU <- c(as.dist(WUM))

age <- c(as.dist(AGEM))

bci_two <-c(as.dist(BCI_twoM))

nest <- c(as.dist(nestM))

year <- c(as.dist(yearM))

sex <- c(as.dist(SEXM))




#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with 

lower.tri() -function.




sex_comb <- c(SEXM_comb[lower.tri(SEXM_comb)])

habitat_comb <- c(TREATMM[lower.tri(habitatM_comb)])

lbinom <- c(lbinomM[lower.tri(lbinomM)])










#Combine these vectors into a data frame

data.dyad<-data.frame(BC_dissim=BC , UU_distance=UU, WU_distance=WU, age_diference=age, 

                       bci_diference = bci_two, lbinom_comp = lbinom, 

                       nest_sim=nest, habitat_sim=habitat, habitat_comb=habitat_comb, sex_sim=sex, 

sex_comb=sex_comb year_sim = year)




#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful). 




# extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample_name,key$Sample_name) 




# This created individual-to-same-individual pairs as well. Get rid of these:

list<-list[which(list$Var1!=list$Var2),] 




# this still has both quantiles in--> add 'unique' key 

list$key <- apply(list, 1, function(x)paste(sort(x), collapse='')) 

list<-subset(list, !duplicated(list$key)) 




# sanity check that the Individual name combinations are in the same exact order as the lower quantile value 

vector of the matrices

i=34




BCM[which(rownames(BCM)==list$Var1[i]),which(colnames(BCM)==list$Var2[i])]==BC[i]

UUM[which(rownames(UUM)==list$Var1[i]),which(colnames(UUM)==list$Var2[i])]==UU[i]

WUM[which(rownames(WUM)==list$Var1[i]),which(colnames(WUM)==list$Var2[i])]==WU[i]




AGEM[which(rownames(AGEM)==list$Var1[i]),which(colnames(AGEM)==list$Var2[i])]==age[i]

SEXM[which(rownames(SEXM)==list$Var1[i]),which(colnames(SEXM)==list$Var2[i])]==sex[i]

TREATMM[which(rownames(TREATMM)==list$Var1[i]),which(colnames(TREATMM)==list$Var2[i])]==treatm[i]

yearM[which(rownames(yearM)==list$Var1[i]),which(colnames(yearM)==list$Var2[i])]==year[i]

nestM[which(rownames(nestM)==list$Var1[i]),which(colnames(nestM)==list$Var2[i])]==nest[i]







# add the names of both individuals participating in each dyad into the data frame

data.dyad$sampleA<-list$Var2

data.dyad$sampleB<-list$Var1
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# make a new key for the order of sample names and their associated individual IDs.

key2 <- data.frame(ID=sample_data(micdata)$ring_number, sampleA =sample_data(micdata)$identifier, sampleB 

=sample_data(micdata)$identifier )




# merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)

listdf = list(data.dyad, key2) # built list

data.dyad <- listdf %>% reduce(left_join, by ="sampleA", keep = FALSE) # merge based on sampleA column




data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename(data.dyad, IDA = ID, sampleB = sampleB.x) # change column names




listdf = list(data.dyad, key2) # update list 

data.dyad <- listdf %>% reduce(left_join, by ="sampleB", keep = FALSE) # merge by sample B

data.dyad <- data.dyad[,-20] # delete column duplicate




data.dyad <- rename(data.dyad, IDB = ID, sampleA = sampleA.x) # change column names 







# Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which(data.dyad$sampleA!=data.dyad$sampleB),]




#Save dyadic data file

saveRDS(data.dyad,"data_dyad.rds")
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