Constructing dyadic data from non-independent
observations

Based on the workflow described here https://github.com/nuorenarra/Analysing-dyadic-data-with-brms

Table of Contents

Constructing dyadic data from non-independent observations
Table of Contents
A) 16S rRNA dyadic data set
1. Cumulative Sum Scaling (CSS) normalization
2. Read in the data
3. Construct matrices to create the dayadic dataset
3.1. Microbiome dissimilarity/distance matrices (BC, WU)
3.2. SEX similarity matrix
3.2.1 SEX combination matrix
3.3. HABITAT similarity matrix
3.3.1 HABITAT combination-factor matrix
3.4. NEST similarity matrix
3.5. YEAR similarity matrices
3.6. INFECTION status combination-factor matrix
3.7. AGE diference matrix
3.8. BCl diference matrix
4. Unravel matrices into one dyadic data frame
4.1 Build dyadic dataset
4.2 Add Individual ID and Sample ID combinations to the data set
B) 28S rRNA dyadic data set
1. Cumulative Sum Scaling (CSS) normalization
2. Read in the data
3. Construct matrices to create the dayadic dataset
3.1. Microbiome dissimilarity/distance matrices (BC, WU)
3.2. SEX similarity matrix
3.2.1 SEX combination matrix
3.3. HABITAT similarity matrix
3.3.1 HABITAT combination-factor matrix
3.4. NEST similarity matrix
3.5. YEAR similarity matrices
3.6. INFECTION status combination-factor matrix
3.7. AGE diference matrix
3.8. BCl diference matrix
4. Unravel matrices into one dyadic data frame
4.1. Build dyadic dataset
4.2. Add Individual ID and Sample ID combinations to the data set

A) 16S rRNA dyadic data set

af://n0
https://github.com/nuorenarra/Analysing-dyadic-data-with-brms
af://n5
af://n11
af://n13

1. Cumulative Sum Scaling (CSS) normalization

Load libraries
library (giime2R)
library (phyloseq)
library(tidyverse)
library (microbiome)

library (metagenomeSeq)

Create phyloseqg object

ps <- gza_to_phyloseq(
features="beta-table.qgza",
taxonomy="taxonomy.qgza",
tree = "rooted-tree.qgza",

metadata = "metadata.tsv")

#Extract taxonomy

taxonomy <- as.data.frame (tax_table (ps))

#Edit taxonomy file (for some reason Kingdom name comes with "d " before)
taxonomy$Kingdom <- gsub("d_","",as.character (taxonomy$Kingdom))

taxonomy <- as.matrix (taxonomy)

#Extract phylogeny file
tree <- phy tree(ps) # its easier to get the tree file in the correct format this way. first build the ps

object and then extract the tree

CSS data transformation

First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseqg_to_metagenomeSeq (ps)

Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast (meta.obj))

Convert CSS data into data.frame-formatted OTU table (log transformed data)
asv_table_css <- MRcounts (meta.obj, norm = TRUE, log = TRUE)

Make a new phyloseq object with with the new CSS transformed ASV table
asv_table css <- otu_table(asv_table css, taxa_are_rows = TRUE)

taxonomy <- tax_table (taxonomy)

metadata <- sample data (metadata)

tree <- phy tree(tree)

ps_css <- phyloseqg(asv_table css, taxonomy, metadata, tree)
otu <- as.data.frame (otu_table (ps_css))

Explore phyloseqg object

summarize phyloseq(ps_css)

sample names (ps_css) # looks at the sample names on the phyloseq object
meta (ps_css) # retrieves the metadata file

sample data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV 1, ASV 2...etc)

abundances (ps_css) # retrieves ASV counts table

abundances (ps_css, "compositional") # computes relative abundaces

readcount (ps_css) # number of reads per sample
Save phyloseq object as rds file for dyatic data construction

saveRDS (ps_css, "phyloseg css.rds"

af://n13

2. Read in the data

Load Libraries

library (phyloseq)
library (tidyverse)

library(janitor)

#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS ("phyloseqg css.rds")

#See:

micdata

Extract metadata file from Phyloseq object

sample data<-sample data (micdata)

Edit metadata file

sample data$ring number <- as.factor (sample data$ring number)
sample data$identifier <- as.factor (sample data$identifier)
sample data$date <- as.Date(sample data$date, "%m/%d/%Y")
sample data$std age <- as.numeric(sample data$std_age)

sample data$std BCI_two <- as.numeric(sample dataS$std BCI_ two)
sample data$sampling point <- as.factor (sample data$sampling point)
sample data$nest <- as.factor (sample dataSnest)

sample dataS$habitat <- as.factor(sample data$habitat)

sample dataS$year <- as.factor (sample dataSyear)

sample data$lbinom <- as.factor (sample data$lbinom)

sample data<- clean names (sample_data)

#make a key for the order of sample names and their associated individual IDs.

key <- data.frame (ID=sample data(micdata)$ring number, Sample name=sample data(micdata)S$identifier)

3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix (phyloseq::distance (micdata, method = "bray", type = "samples"))

#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance (micdata, method = "unifrac", type = "samples"))

#Make unweighted unifrac matrix

WUM <- as.matrix (phyloseq::distance (micdata, method = "wunifrac", type = "samples"))

Assign individual names to rownames based on the key constructed before
all (rownames (BCM) ==key$Sample name)
all (rownames (UUM) ==key$Sample name)

all(rownames(WUM)::key$Sample7name)

#Eyeball dissimilarities across individuals
BCM
WUM

af://n16
af://n19
af://n21

#Save matrices
saveRDS (BCM, "ready-matrices/BCM.rds"
saveRDS (WUM, "ready-matrices/WUM.rds"

3.2. SEX similarity matrix

The resulting matrix will have for each individual pair a value of "1"= same sex or "O"=different sex

#Create data frame with each Individual name (character) and their nest ID (Character)
sex frame<-sample datal[,c("ring number", "sex")]
sex frame$ring number<-as.character (sex frameSring number)

sex frame$sex<-as.character (sex frameS$sex)

#Create an empty numeric matrix to fill with distances

sexM<-array (0, c(nrow (sex_frame),nrow (sex_ frame)))

#Derive matrix with binary Age similarity between each sample
for(i in l:nrow(sex_ frame)) {

for(j in 1l:nrow(sex frame)) {

if (sex frameSsex[i]==sex frameS$sex[j]) {
sexM[1i,j]= 1 #same sex

} else({
sexM[1i,j]= 0 #differente sex

#Name rown amd colnames with individual names
all (rownames (sexM)==keyS$SID)
rownames (sexM) <-key$Sample name

colnames (sexM)<-key$Sample name
sexM

#Save matrix to ready matrices folder

saveRDS (sexM, "SEXM. rds")

3.2.1 SEX combination matrix

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female

"MM"=both male.

#Create data frame with each Individual name (character) and their Age (Character)
Sex frame<-sample datal[,c("ring number", "sex")]
Sex frameS$Sring number<-as.character (Sex frameSring number)

Sex frame$sex<-as.character (Sex frameS$sex)

#Create an empty character matrix to fill with characters

SEXM<-array (as.character (NA),c(nrow (Sex frame),nrow(Sex frame)))

for(i in l:nrow(Sex frame)) {

for(j in l:nrow(Sex frame)) {

if (Sex frame$sex[i]=="F" & Sex frame$sex[i]==Sex frame$sex[j]) {
SEXM[i,j]= "FF"}

if (Sex frame$sex[i]=="M" & Sex frameS$sex[i]==Sex frame$sex[j]) {
SEXM[i,j]= "MM"}

if (Sex frameS$sex[i]!=Sex frame$sex[]j]) {

SEXM[1i,j]= "FM"}

af://n24
af://n27

#Name rown amd colnames with individual names
rownames (SEXM) <-key$Sample name

colnames (SEXM) <-key$Sample name

#Save matrix to ready matrices folder

saveRDS (SEXM, "SEXM_comb.rds")

3.3. HABITAT similarity matrix

The resulting matrix will have for each individual pair a value of "1"= same habitat or "O"=different habitat

#Create data frame with each Individual name (character) and their nest ID (Character)
habitat frame<-sample datal[,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameSring number)

habitat frame$habitat<-as.character (habitat frameShabitat)

#Create an empty numeric matrix to fill with distances

habitatM<-array (0, c(nrow(habitat frame),nrow(habitat frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(habitat_ frame)) {
for(j in l:nrow(habitat frame)) {
if (habitat_ frameShabitat[i]==habitat frameShabitat[j]) {
habitatM[i,j]l= 1 #same habitat
} else{

habitatM[i,j]= 0 #differente habitat

#Name rown amd colnames with individual names
all (rownames (habitatM)==key$ID)
rownames (habitatM)<-keyS$Sample name

colnames (habitatM)<-key$Sample name
habitatM

#Save matrix to ready matrices folder

saveRDS (habitatM, "habitatM.rds"

3.3.1 HABITAT combination-factor matrix

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT=

both Teuto and all the interations.
#This type of variables are better than binary variables in revealing how some trends may be affected by

individual-level factors.

#Create data frame with each Individual name (character) and their Age (Character)
habitat frame<-sample datal[,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameS$ring number)

habitat frame$habitat<-as.character (habitat frameShabitat)

Change habitat levels from south,north teuto to S,N,T

af://n30
af://n33

habitat_ frameShabitat <- with(habitat_ frame, factor (habitat, levels = c('north', 'south', 'teuto'), labels =
C("N", "S"™, "Tw)))

#Create an empty character matrix to fill with characters

habitatM<-array (as.character (NA),c(nrow (habitat_ frame),nrow(habitat_ frame)))

for (i in l:nrow(habitat_ frame)) {

for(j in 1l:nrow(habitat_ frame)) {

if (habitat frame$habitat[i]=="N" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM([i,j]= "NN"}

if (habitat frameShabitat[i]=="S" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM[i,j]= "SS"}

if (habitat frameS$habitat[i]=="T" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM[i,j]= "TT"}

if (habitat frameShabitat[i]=="N" & habitat frameShabitat[]j]=="S") {
habitatM([i,j]= "NS"}

if (habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="N") {
habitatM[i,j]= "NS"}

if (habitat frameS$habitat[i]=="N" & habitat frameShabitat[]j]=="T") {
habitatM[i,j]= "NT"}

if (habitat frameShabitat[i]=="T" & habitat_ frameShabitat[]j]=="N") {
habitatM([i,j]= "NT"}

if (habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="T") {
habitatM[i,j]= "ST"}

if (habitat frameS$habitat[i]=="T" & habitat frameS$habitat[j]=="S") {
habitatM[i,j]= "ST"}

#Name rown amd colnames with individual names
rownames(habitatM)<—key$Sample7name

colnames (habitatM)<-keyS$Sample name

#Save matrix to ready matrices folder
saveRDS (habitatM, "habitatM comb.rds"

3.4. NEST similarity matrix

The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest

#Create data frame with each Individual name (character) and their nest ID (Character)
nest frame<-sample datal[,c("ring number","nest")]
nest_frame$ring number<-as.character (nest_ frame$ring number)

nest_ frame$nest<-as.character (nest_ frameSnest)

#Create an empty numeric matrix to fill with distances

nestM<-array (0, c(nrow(nest_frame),nrow(nest_frame)))

#Derive matrix with binary nest similarity between each sample
for(i in l:nrow(nest_frame)) {
for(j in l:nrow(nest_frame)) {
if (nest_frameSnest[i]==nest frame$nest[j]) {
nestM[i,]j]l= 1
} else{
nestM[i,j]l= 0

#Name rown amd colnames with individual names
all (rownames (nestM)==key$ID)

rownames (nestM) <-keyS$SSample name

af://n36

colnames (nestM)<-keySSample name
nestM

#Save matrix to ready matrices folder

saveRDS (nestM, "nestM. rds"

3.5. YEAR similarity matrices

#The resulting matrix will have for each individual pair a value of "1"= same year or "O"=different year

#Create data frame with each Individual name (character) and their Age (Character)
year frame<-sample datal,c("ring number", "year")]
year_ frameSring number<-as.character (year frameSring number)

year_ frameSyear<-as.character (year frame$year)

#Create an empty numeric matrix to fill with distances

yearM<-array (0, c (nrow(year_ frame),nrow(year_ frame)))

#Derive matrix with binary Age similarity between each sample
for(i in l:nrow(year frame)) {
for(j in l:nrow(year_ frame)) {
if (year frameSyear[i]==year frame$year([j]) {
yearM[i,jl= 1
} else{

yearM[i,jl= 0

#Name rown amd colnames with individual names
all (rownames (yearM)==key$ID)
rownames (yearM) <-keyS$SSample name

colnames (yearM)<-keyS$SSample name
yearM

#Save matrix to ready matrices folder

saveRDS (yearM, "yearM. rds"

3.6. INFECTION status combination-factor matrix

#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both

uninfected, "NiI= non-infected vs infected.

#Create data frame with each Individual name (character) and their infection status (Character)
lbinom frame<-sample datal[,c("ring number","lbinom")]
lbinom frameSring number<-as.character (lbinom frame$ring number)

lbinom frame$lbinom<-as.character (lbinom frame$lbinom)

#lbinom frame <- replace(lbinom frame, is.na(lbinom frame), "NA")

lbinom frame <- replace(lbinom frame, lbinom frame=="", "NA") # some missing data replaced by NA

lbinom frame$lbinom <- with(lbinom frame, factor(lbinom, levels = c('l1', '0', "NA"), labels = c("I", "Ni",

TNATY))

af://n39
af://n42

#Create an empty character matrix to fill with characters

lbinomM<-array (as.character (NA),c(nrow (lbinom_frame),nrow(lbinom_ frame)))

for (i in l:nrow(lbinom_frame)) {

for(j in l:nrow(lbinom_frame)) {

if (lbinom_ frame$lbinom[i]=="I" & lbinom frame$lbinom[i]==1lbinom frame$lbinom[j]) {
lbinomM[i,j]= "II"}
if (lbinom_ frame$lbinom[i]=="Ni" & lbinom_ frame$lbinom[i]==1lbinom_ frame$lbinom([j]) {

lbinomM[i, j]= "NiNi"}
if (lbinom_frame$lbinom[i]=="1I" & lbinom frameS$lbinom[J]=="Ni") {
lbinomM[i,j]= "NiI"}
if (lbinom_ frame$lbinom[i]=="Ni" & lbinom_ frameS$lbinom[j]=="1I") {
lbinomM[i, j]= "NiI"}
+}

#Name rown amd colnames with individual names
rownames (1lbinomM) <-key$Sample name

colnames (1lbinomM) <-key$Sample name

#Save matrix to ready matrices folder

saveRDS (1lbinomM, "1binomM. rds"

3.7. AGE diference matrix

#This matrix will describe the distance in days between age of microbiome samples

#Transform dates into a numeric variable

sample dataS$age days<-as.numeric (sample dataS$age days)

#Create data frame with each sample name (character) and age (numeric)
AgeTime frame<-sample datal[,c("ring number","age days")]

AgeTime frameSring number<-as.character (AgeTime frame$ring number)

#Create an empty matrix to fill with distances

AGEM<-array (0, c(nrow (AgeTime frame),nrow (AgeTime frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(AgeTime frame)) {

for (3 in l:nrow(AgeTime frame))

{AGEM[1i, j]=abs (AgeTime frameSage days[i] -AgeTime frame$age days[3j])

}

#Note that age diference matrix has rownames and colnames in the same order as key
all (rownames (AGEM) ==keyS$Sample name)

#Name rown amd colnames with individual names

rownames (AGEM) <-key$Sample name

colnames (AGEM) <-key$Sample name

AGEM

#Save matrix to ready matrices folder

saveRDS (AGEM, AGEM. rds"

af://n46

3.8. BCl diference matrix

#This matrix will describe the diference in body condition between the microbiome samples

#Transform body condition into a numeric variable

sample_dataS$bci_two<-as.numeric(sample data$bci_two)

#Create data frame with each sample name (character) and sampling time (numeric)
BC_frame<-sample datal[,c("ring number","bci_ two")]

BC_frameSring number<-as.character (BC_frameSring number)

#Create an empty matrix to f£ill with distances

BCondM<-array (0, c (nrow (BC_frame),nrow (BC_frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(BC_frame)) {

for (j in 1l:nrow(BC_frame))

{BCondM[1i, j]=abs (BC_frameSbci two[i] -BC_frame$bci_ two[j])

}

#Note that Temporal distance matrix has rownames and colnames in the same order as key
all (rownames (AGEM) ==key$Sample name)

So we can just call the rownames and colnames with the names of individuals since there is just one sample

per individual in this data set

#Name rown amd colnames with individual names
rownames (BCondM) <-keyS$Sample_ name

colnames (BCondM) <-keyS$SSample name

BCondM

#Save matrix to ready matrices folder

saveRDS (BCondM, "BCondM. rds")

4. Unravel matrices into one dyadic data frame

4.1 Build dyadic dataset

#Read in microbial distance matrices if not in already
BCM <- readRDS ("BCM.rds") # bray-curtis
WUM <- readRDS ("WUM.rds") # weighted unifrac

Ready in matrices of other variables
AGEM<-readRDS ("AGEM.rds") # age

BCI_twoM <-readRDS ("BCI_two M.rds") #body condition
yearM <- readRDS ("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest

SEXM <- readRDS ("SEXM.rds") # sex similarity
SEXM_comb <- readRDS ("SEXM comb.rds") # sex combination

habitatM <- readRDS ("habitatM.rds") # habitat similarity
habitatM <- readRDS ("habitatM comb.rds") # habitat combination

lbinomM <- readRDS("lbinomM.rds") # infection status

af://n49
af://n52
af://n54

#First unravel the matrices into vectors matching the lower quantile of each matrix.
#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from
the matrix.

#as.dist () by default includes only the lower quantile of the matrix and excludes the diagonal.

BC <- c(as.dist (BCM))

UU <- c(as.dist (UUM))

WU <- c(as.dist (WUM))

age <- c(as.dist (AGEM))
bci_two <-c(as.dist (BCI_twoM))
nest <- c(as.dist (nestM))

year <- c(as.dist (yearM))

sex <- c(as.dist (SEXM))

#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with

lower.tri() —-function.

sex_comb <- c(SEXM_comb[lower.tri (SEXM comb)])
habitat comb <- c(TREATMM[lower.tri (habitatM comb)])
lbinom <- c(lbinomM[lower.tri (lbinomM)])

#Combine these vectors into a data frame

data.dyad<-data.frame (BC dissim=BC , UU distance=UU, WU distance=WU, age diference=age,
bci_one = bci_one, bci_diference = bci_ two, lbinom comp = lbinom,
nest_sim=nest, habitat_sim=habitat,,habitat comb=habitat_comb,

sex_sim=sex, sex_ comb=sex_comb year_sim = year)

4.2 Add Individual ID and Sample ID combinations to the data set

#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful).

extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample name, keySSample name)

This created individual-to-same-individual pairs as well. Get rid of these:

list<-list[which(list$Varl!=1ist$Var2),]

this still has both quantiles in--> add 'unique' key
list$key <- apply(list, 1, function (x)paste(sort(x), collapse='"))
list<-subset(list, !duplicated(listS$key))

sanity check that the Individual name combinations are in the same exact order as the lower quantile value

vector of the matrices

i=34

BCM[which (rownames (BCM)==1ist$Varl[i]),which (colnames (BCM)==1ist$Var2[i])]==BC[i]

UUM [which (rownames (UUM) ==1ist$Varl[i]),which (colnames (UUM)==11ist$Var2[i])]==U0U[1i]

WUM [which (rownames (WUM) ==1ist$Varl[i]),which (colnames (WUM)==1istS$Var2([i])]==WU[1]

AGEM [which (rownames (AGEM) ==1ist$Varl[i]),which (colnames (AGEM)==1ist$Var2([i])]l==age[i]

SEXM [which (rownames (SEXM)==1ist$Varl[i]),which (colnames (SEXM)==1ist$Var2[i])]==sex[i]

TREATMM [which (rownames (TREATMM) ==1ist$Varl[i]) ,which (colnames (TREATMM)==1istS$Var2[i])]==treatm[i]
yearM[which (rownames (yearM)==1ist$Varl[i]),which (colnames (yearM)==1istS$Var2[i])]==year[i]
nestM[which (rownames (nestM)==1ist$Varl[i]),which (colnames (nestM)==1ist$Var2[i])]==nest[i]

add the names of both individuals participating in each dyad into the data frame

data.dyad$sampleA<-listS$Var2

af://n57

data.dyad$sampleB<-list$Varl

make a new key for the order of sample names and their associated individual IDs.
key2 <- data.frame (ID=sample data(micdata)$ring number, sampleA =sample data (micdata)S$identifier, sampleB

=sample_data (micdata)$identifier)
merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)
listdf = list(data.dyad, key2) # built list

data.dyad <- listdf %>% reduce(left_join, by ="sampleA", keep = FALSE) # merge based on sampleA column

data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename (data.dyad, IDA = ID, sampleB = sampleB.x) # change column names

listdf = list(data.dyad, key2) # update list

data.dyad <- listdf %>% reduce(left_ join, by ="sampleB", keep = FALSE) # merge by sample B
data.dyad <- data.dyad[,-20] # delete column duplicate

data.dyad <- rename (data.dyad, IDB = ID, sampleA = sampleA.x) # change column names

Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which (data.dyad$sampleA!=data.dyad$sampleB),]

#Save dyadic data file
saveRDS (data.dyad, "data dyad.rds")

Example of the data dyad (first 20 rows)

sampleA sampleB IDA IDB BC_dissim WU _distance age diference bci_diference Ibinom_comp nest sim habitat sim habitat comb sex_sim sex comb year sim
S001 S002 3419291 3419288 0.708478913 0.048377791 0.174242424 1l 0 1 NN 0 FM 1
S001 S003 3419291 3419287 0.742968667 0.06477989 0.178030303 0.159085291 Il 0 1 NN 1 MM 1
S001 S004 3419291 3419286 0.621086265 0.063355594 0.071969697 0.232891266 Il 0 1 NN 1 MM 1
S001 S005 3419291 3419285 0.728804856 0.056634477 0.185606061 0.043899636 Nil 0 1 NN 0 FM 1
S001 S006 3419291 3419284 0.72086191 0.04764569 0.15530303 0.057296175 Nil 0 1 NN 0 FM 1
S001 S007 3419291 3419283 0.58844846 0.081624471 0.026515152 0.219643831 Nil 0 1 NN 1 MM 1
S001 S008 3419291 3419282 0.638061537 0.058416954 0.03030303 0.192283125 Nil 0 1 NN 1 MM 1
S001 S009 3419291 3419281 0.554663665 0.058029588 0.018939394 0.223148272 Nil 0 1 NN 0 FM 1
S001 S010 3419291 3419279 0.574530808 0.056723361 0.170454546 0.003992333 Nil 0 1 NN 1 MM 1
S001 So11 3419291 3419278 0.580341291 0.042190368 0.068181818 0.045747277 1l 0 1 NN 1 MM 1
S001 S012 3419291 3419276 0.566648959 0.067971619 0.079545454 0.180183235 Nil 0 1 NN 1 MM 1
S001 S013 3419291 3419275 0.442679036 0.053512563 0.060606061 0.046341041 Nil 0 1 NN 1 MM 1
S001 S014 3419291 3419280 0.560013748 0.043511334 0.196969697 0.098652122 1] 0 1 NN 0 FM 1
S001 S015 3419291 3419297 0.671730803 0.066848843 0.246212121 0.046668815 Nil 0 1 NN 0 FM 1
S001 So016 3419291 3419294 0.666217633 0.052062348 0.231060606 0.201903615 Nil 0 0 NS 1 MM 1
S001 S017 3419291 3121005 0.631848671 0.065660102 0.034090909 0.172042132 Nil 0 1 NN 0 FM 1
S001 S018 3419291 3121004 0.656930239 0.063652836 0.011363636 0.101811651] 0 1 NN 0 FM 1
S001 S019 3419291 3121001 0.731432769 0.066831972 0.071969697 0.02611092 Il 0 1 NN 0 FM 1
S001 5020 3419291 3121006 0.650345451 0.061676228 0.193181818 0.140552659 Nil 0 1 NN 0 FM 1
S001 S021 3419291 3419299 0.712390555 0.050166339 0.049242424 0.0043404 Nil 0 1 NN 0 FM 1

B) 28S rRNA dyadic data set

af://n402
af://n404

1. Cumulative Sum Scaling (CSS) normalization

Load libraries
library (giime2R)
library (phyloseq)
library(tidyverse)
library (microbiome)

library (metagenomeSeq)

Create phyloseqg object

ps <- gza_to_phyloseq(
features="beta-table.qgza",
taxonomy="taxonomy.qgza",
tree = "rooted-tree.qgza",

metadata = "metadata.tsv")

#Extract taxonomy

taxonomy <- as.data.frame (tax_table (ps))

#Edit taxonomy file (for some reason Kingdom name comes with "d " before)
taxonomy$Kingdom <- gsub("d_ ","",as.character (taxonomy$Kingdom))

taxonomy <- as.matrix (taxonomy)

#Extract phylogeny file
tree <- phy tree(ps) # its easier to get the tree file in the correct format this way. first build the ps

object and then extract the tree

CSS data transformation

First Convert the phyloseq object to a metagenomeSeq object (MRexperiment)

meta.obj <- phyloseqg_to_metagenomeSeq (ps)

Normalise counts

meta.obj <- cumNorm(meta.obj, p = cumNormStatFast (meta.obj))

Convert CSS data into data.frame-formatted OTU table (log transformed data)
asv_table_css <- MRcounts (meta.obj, norm = TRUE, log = TRUE)

Make a new phyloseq object with with the new CSS transformed ASV table
asv_table css <- otu_table(asv_table css, taxa_are_rows = TRUE)

taxonomy <- tax_table (taxonomy)

metadata <- sample data (metadata)

tree <- phy tree(tree)

ps_css <- phyloseqg(asv_table css, taxonomy, metadata, tree)

otu <- as.data.frame (otu_table (ps_css))

Explore phyloseq object

summarize phyloseq(ps_css)

sample names (ps_css) # looks at the sample names on the phyloseq object
meta (ps_css) # retrieves the metadata file

sample data(ps_css) # retrieves the metadata file

taxa(ps) # retrieves taxa name (ASV 1, ASV 2...etc)

abundances (ps_css) # retrieves ASV counts table

abundances (ps_css, "compositional") # computes relative abundaces

readcount (ps_css) # number of reads per sample

Save phyloseq object as rds file for dyatic data construction

af://n404

saveRDS (ps_css, "phyloseg css.rds"

2. Read in the data

Load Libraries
library (phyloseq)
library (tidyverse)

library(janitor)

#Read in microbiome data and associated sample data in phyloseq format.

micdata<-readRDS ("phyloseqg css.rds")

remove sample that seems to be outlier. Distance measures always equal to 1 for this sample

micdata <- subset samples(micdata, identifier != "S024" & identifier != "S029" & identifier != "S043" &
identifier != "S174" &
identifier != "S207")
#See:
micdata

Extract metadata file from Phyloseq object

sample data<-sample data (micdata)

Edit metadata file

sample data$ring number <- as.factor (sample data$ring number)
sample data$identifier <- as.factor (sample data$identifier)
sample data$date <- as.Date(sample data$date, "%m/%d/%Y")
sample data$std age <- as.numeric(sample data$std age)

sample data$std BCI_two <- as.numeric(sample dataS$std BCI_ two)
sample data$sampling point <- as.factor (sample data$sampling point)
sample data$nest <- as.factor (sample dataSnest)

sample dataS$habitat <- as.factor(sample data$habitat)

sample data$year <- as.factor (sample dataSyear)

sample data$lbinom <- as.factor (sample data$lbinom)

sample data$sex <- as.factor (sample dataS$sex)

sample data<- clean names (sample_data)

#make a key for the order of sample names and their associated individual IDs.

key <- data.frame (ID=sample data(micdata)$ring number, Sample name=sample data(micdata)S$identifier)

3. Construct matrices to create the dayadic dataset

3.1. Microbiome dissimilarity/distance matrices (BC, WU)

#Make Bray curtis matrix from microbiome data using vegdist function embedded in phyloseq::distance

BCM<- as.matrix (phyloseq::distance (micdata, method = "bray", type = "samples"))

#Make unweighted unifrac matrix

UUM <- as.matrix(phyloseq::distance (micdata, method = "unifrac", type = "samples"))

#Make unweighted unifrac matrix

WUM <- as.matrix (phyloseq::distance (micdata, method = "wunifrac", type = "samples"))

Assign individual names to rownames based on the key constructed before

af://n407
af://n410
af://n412

all (rownames (BCM) ==key$Sample name)
all (rownames (UUM) ==key$Sample_ name)

all (rownames (WUM) ==keyS$SSample_name)

#Eyeball dissimilarities across individuals
BCM
WUM

#Save matrices
saveRDS (BCM, "ready-matrices/BCM.rds"
saveRDS (WUM, "ready-matrices/WUM.rds"

3.2. SEX similarity matrix

The resulting matrix will have for each individual pair a value of "1"= same sex or "O"=different sex

#Create data frame with each Individual name (character) and their nest ID (Character)
sex frame<-sample_datal[,c("ring number", "sex")]
sex frame$ring number<-as.character (sex frameSring number)

sex frame$sex<-as.character (sex frameS$sex)

#Create an empty numeric matrix to fill with distances

sexM<-array (0, c(nrow (sex_frame),nrow (sex_ frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(sex_frame)) {

for(j in l:nrow(sex frame)) {

if (sex frameSsex[i]==sex frameS$sex[j]) {
sexM[1i,j]= 1 #same sex

} else({
sexM[i,jl= 0 #differente sex

11}

#Name rown amd colnames with individual names
all (rownames (sexM)==keyS$SID)
rownames (sexM) <-key$Sample name

colnames (sexM)<-key$Sample name
sexM

#Save matrix to ready matrices folder

saveRDS (sexM, "SEXM. rds")

3.2.1 SEX combination matrix

#The resulting matrix will have for each individual pair a value of "FF"= both female or "FM"=male and a female

"MM"=both male.

#Create data frame with each Individual name (character) and their Age (Character)
Sex frame<-sample data[,c("ring number", "sex")]
Sex frameS$ring number<-as.character (Sex frameSring number)

Sex frame$sex<-as.character (Sex frameS$sex)

#Create an empty character matrix to fill with characters

SEXM<-array (as.character (NA), c(nrow (Sex frame),nrow (Sex frame)))

for(i in l:nrow(Sex frame)) {
for(j in l:nrow(Sex frame)) {

if (Sex frame$sex[i]=="F" & Sex frame$sex[i]==Sex frame$sex[j]) {

af://n415
af://n418

SEXM[1i,]j]= "FF"}
if (Sex_frameSsex[i]=="M" & Sex frameSsex[i]==Sex frameS$sex[j]) {
SEXM[1i,]j]= "MM"}
if (Sex frameSsex[i]!=Sex frame$sex[j]) {
SEXM[1i,]j]= "FM"}
}}

#Name rown amd colnames with individual names
rownames (SEXM) <-key$Sample name
colnames (SEXM) <-key$Sample name

#Save matrix to ready matrices folder

saveRDS (SEXM, "SEXM comb.rds")

3.3. HABITAT similarity matrix

The resulting matrix will have for each individual pair a value of "1"= same habitat or "O"=different habitat

#Create data frame with each Individual name (character) and their nest ID (Character)
habitat frame<-sample datal,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameSring number)

habitat frameS$habitat<-as.character (habitat frameShabitat)

#Create an empty numeric matrix to fill with distances

habitatM<-array (0, c(nrow(habitat frame),nrow(habitat frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(habitat_frame)) {
for(j in 1l:nrow(habitat frame)) {
if (habitat_ frameShabitat[i]==habitat frameShabitat[j]) {
habitatM[i,j]= 1 #same habitat
} else{
habitatM[i,j]l= 0 #differente habitat
b1}

#Name rown amd colnames with individual names
all (rownames (habitatM)==key$ID)
rownames (habitatM)<-keyS$Sample name

colnames (habitatM)<-keyS$Sample name
habitatM

#Save matrix to ready matrices folder
saveRDS (habitatM, "habitatM.rds"

3.3.1 HABITAT combination-factor matrix

#The resulting matrix will have for each individual pair a value of "NN"= both North or "SS"=both south, "TT=
both Teuto and all the interations.
#This type of variables are better than binary variables in revealing how some trends may be affected by

individual-level factors.

#Create data frame with each Individual name (character) and their Age (Character)
habitat frame<-sample datal[,c("ring number","habitat")]
habitat frame$ring number<-as.character (habitat frameS$ring number)

habitat frame$habitat<-as.character (habitat frameShabitat)

af://n421
af://n424

Change habitat levels from south,north teuto to S,N,T
habitat_ frameShabitat <- with(habitat_ frame, factor (habitat, levels = c('north', 'south', 'teuto'), labels

c("N", "S", "T")))

#Create an empty character matrix to fill with characters

habitatM<-array (as.character (NA),c(nrow (habitat_ frame),nrow(habitat_ frame)))

for (i in l:nrow(habitat_frame)) {
for(j in 1l:nrow(habitat_ frame)) {
if (habitat frameS$habitat[i]=="N" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {

habitatM[i,j]= "NN"}
if (habitat frameS$habitat[i]=="S" & habitat_ frameShabitat[i]==habitat_ frameShabitat[j]) {
habitatM[i,j]= "SS"}
if (habitat_ frameS$habitat[i]=="T" & habitat_ frameShabitat[i]==habitat_frameShabitat[j]) {
habitatM([i,j]= "TT"}
if (habitat frameShabitat[i]=="N" & habitat_ frameShabitat[j]=="S") {
habitatM[i,j]= "NS"}
if (habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="N") {
habitatM[i,j]= "NS"}
if (habitat frameShabitat[i]=="N" & habitat_ frameShabitat[]j]=="T") {
habitatM[i,j]= "NT"}
if (habitat frameShabitat[i]=="T" & habitat_ frameShabitat[]j]=="N") {
habitatM[i,j]= "NT"}
if (habitat frameShabitat[i]=="S" & habitat_ frameShabitat[]j]=="T") {
habitatM[i,j]= "ST"}
if (habitat frameShabitat[i]=="T" & habitat_ frameShabitat[]j]=="S") {
habitatM([i,j]= "ST"}

H}

#Name rown amd colnames with individual names
rownames(habitatM)<—key$Sample7name

colnames (habitatM)<-keyS$Sample name

#Save matrix to ready matrices folder
saveRDS (habitatM, "habitatM comb.rds"

3.4. NEST similarity matrix

The resulting matrix will have for each individual pair a value of "1"= same nest or "0"=different nest

#Create data frame with each Individual name (character) and their nest ID (Character)
nest frame<-sample datal[,c("ring number","nest")]
nest_frame$ring number<-as.character (nest_ frame$ring number)

nest_ frame$nest<-as.character (nest_ frameSnest)

#Create an empty numeric matrix to fill with distances

nestM<-array (0, c(nrow(nest_frame),nrow(nest_frame)))

#Derive matrix with binary nest similarity between each sample
for (i in l:nrow(nest_frame)) {
for(j in l:nrow(nest_frame)) {
if (nest_frameSnest[i]==nest frame$nest[j]) {
nestM[i,]j]l= 1
} else{
nestM[i,j]l= 0
b1}

#Name rown amd colnames with individual names
all (rownames (nestM)==key$ID)
rownames (nestM) <-keyS$Sample name

colnames (nestM)<-keySSample name

af://n427

nestM

#Save matrix to ready matrices folder

saveRDS (nestM, "nestM. rds"

3.5. YEAR similarity matrices

#The resulting matrix will have for each individual pair a value of "1"= same year or "O"=different year

#Create data frame with each Individual name (character) and their Age (Character)
year frame<-sample datal,c("ring number", "year")
year_ frameSring number<-as.character (year frameSring number)

year_ frameSyear<-as.character (year frame$year)

#Create an empty numeric matrix to fill with distances

yearM<-array (0, c(nrow(year_ frame),nrow(year frame)))

#Derive matrix with binary Age similarity between each sample
for (i in l:nrow(year frame)) {
for(j in l:nrow(year_ frame)) {
if (year frameSyear[i]==year frame$year([j]) {
yearM[i,jl=1
} else{
yearM[i,jl= 0
b1}

#Name rown amd colnames with individual names
all (rownames (yearM)==key$ID)

rownames (yearM)<-keyS$Sample name

colnames (yearM)<-keyS$SSample name

yearM

#Save matrix to ready matrices folder

saveRDS (yearM, "yearM.rds"

3.6. INFECTION status combination-factor matrix

#The resulting matrix will have for each individual pair a value of "II"= both infected or "NiNi"=both

uninfected, "NiI= non-infected vs infected.

#Create data frame with each Individual name (character) and their infection status (Character)
lbinom frame<-sample datal[,c("ring number","lbinom")]
lbinom frameSring number<-as.character (lbinom frame$ring number)

lbinom frameS$lbinom<-as.character (lbinom frame$lbinom)

#lbinom frame <- replace(lbinom frame, is.na(lbinom frame), "NA")

lbinom frame <- replace(lbinom_frame, lbinom_frame=="", "NA") # some missing data replaced by NA
lbinom frame$lbinom <- with(lbinom frame, factor (lbinom, levels = c('l1', '0', "NA"), labels = c("I",
TNATY))

#Create an empty character matrix to fill with characters

lbinomM<-array (as.character (NA),c(nrow(lbinom frame),nrow(lbinom frame))

"NiY,

af://n430
af://n433

for (i in l:nrow(lbinom_frame)) {
for(j in l:nrow(lbinom_frame)) {
if (l1binom frame$lbinom[i]=="I" & lbinom frame$lbinom[i]==1lbinom frame$lbinom[j]) {
lbinomM[i,j]= "II"}
if (lbinom_ frame$lbinom[i]=="Ni" & lbinom frame$lbinom[i]==1lbinom_ frame$lbinom[j]) {
lbinomM[i, j]= "NiNi"}
if (lbinom_frame$lbinom[i]=="I" & lbinom frameS$lbinom[j]=="Ni") {
lbinomM[i,j]= "NiI"}
if (lbinom_ frame$lbinom[i]=="Ni" & lbinom_ frameS$lbinom[j]=="1I") {
lbinomM[i, j]= "NiI"}
}}

#Name rown amd colnames with individual names
rownames (1lbinomM) <-key$Sample name
colnames(lbinomM)<—key$Sample_name

#Save matrix to ready matrices folder

saveRDS (1lbinomM, "1binomM. rds"

3.7. AGE diference matrix

#This matrix will describe the distance in days between age of microbiome samples

#Transform dates into a numeric variable

sample dataS$age days<-as.numeric (sample data$age days)

#Create data frame with each sample name (character) and age (numeric)
AgeTime frame<-sample datal[,c("ring number","age days")]

AgeTime frameSring number<-as.character (AgeTime frame$ring number)

#Create an empty matrix to fill with distances

AGEM<-array (0, c(nrow (AgeTime frame),nrow (AgeTime frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(AgeTime frame)) {

for (j in l:nrow(AgeTime frame))

{AGEM[1i, j]=abs (AgeTime frameSage days[i] -AgeTime frame$age days[j])

}}

#Note that age diference matrix has rownames and colnames in the same order as key

all (rownames (AGEM) ==keyS$Sample name)

#Name rown amd colnames with individual names
rownames (AGEM) <-key$Sample name

colnames (AGEM) <-key$Sample name

AGEM

#Save matrix to ready matrices folder

saveRDS (AGEM, AGEM. rds"

af://n437

3.8. BCl diference matrix

#This matrix will describe the diference in body condition between the microbiome samples

#Transform body condition into a numeric variable

sample_dataSbci_two<-as.numeric(sample data$bci_two)

#Create data frame with each sample name (character) and sampling time (numeric)
BC_frame<-sample datal[,c("ring number","bci_ two")]

BC_frameSring number<-as.character (BC_frameSring number)

#Create an empty matrix to f£ill with distances

BCondM<-array (0, c (nrow (BC_frame),nrow (BC_frame)))

#Derive matrix with time distances between each sample using abs()-function
for (i in l:nrow(BC_frame)) {

for (j in 1l:nrow(BC_frame))

{BCondM[1i,j]=abs (BC_frameSbci_ two[i] -BC_frame$bci_ two[j])

}}

#Note that Temporal distance matrix has rownames and colnames in the same order as key

all (rownames (AGEM) ==key$Sample name)

So we can just call the rownames and colnames with the names of individuals since there is just one sample

per individual in this data set

#Name rown amd colnames with individual names
rownames (BCondM) <-key$Sample name

colnames (BCondM) <-keyS$Sample name

BCondM

#Save matrix to ready matrices folder

saveRDS (BCondM, "BCondM. rds")

4. Unravel matrices into one dyadic data frame

4.1. Build dyadic dataset

#Read in microbial distance matrices if not in already
BCM <- readRDS ("BCM.rds") # bray-curtis
WUM <- readRDS ("WUM.rds") # weighted unifrac

Ready in matrices of other variables
AGEM<-readRDS ("AGEM.rds") # age

BCI_twoM <-readRDS("BCI two M.rds") #body condition
yearM <- readRDS ("yearM.rds") # year

nestM <- readRDS("nestM.rds") # nest

SEXM <- readRDS ("SEXM.rds") # sex similarity
SEXM_comb <- readRDS ("SEXM comb.rds") # sex combination

habitatM <- readRDS ("habitatM.rds") # habitat similarity
habitatM <- readRDS ("habitatM comb.rds") # habitat combination

lbinomM <- readRDS("lbinomM.rds") # infection status

af://n440
af://n443
af://n445

#First unravel the matrices into vectors matching the lower quantile of each matrix.
#From numeric matrices, this can be done by making a list (c()) of the distance object (dist()) derived from
the matrix.

#as.dist () by default includes only the lower quantile of the matrix and excludes the diagonal.

BC <- c(as.dist (BCM))

UU <- c(as.dist (UUM))

WU <- c(as.dist (WUM))

age <- c(as.dist (AGEM))
bci_two <-c(as.dist (BCI_twoM))
nest <- c(as.dist (nestM))

year <- c(as.dist (yearM))

sex <- c(as.dist (SEXM))

#From categorical matrices, this can be done by making a list (c()) of the lower quantile of the matrix with

lower.tri() —-function.

sex_comb <- c(SEXM_comb[lower.tri(SEXM_comb)])
habitat comb <- c(TREATMM[lower.tri (habitatM comb)])
lbinom <- c(lbinomM[lower.tri (lbinomM)])

#Combine these vectors into a data frame
data.dyad<-data.frame (BC_dissim=BC , UU_distance=UU, WU_distance=WU, age_diference=age,
bci diference = bci two, lbinom comp = lbinom,
nest sim=nest, habitat sim=habitat, habitat comb=habitat comb, sex sim=sex,

sex_comb=sex_comb year_sim = year)

4.2. Add Individual ID and Sample ID combinations to the data set

#Add the identities of both individuals in each dyad as separate columns into the data frame and exclude self-

comparisons (as these are not meaningful).

extracting Individual-combinations present in the matrices

list<-expand.grid(key$Sample name, keySSample name)

This created individual-to-same-individual pairs as well. Get rid of these:
list<-list[which(list$Varl!=1ist$Var2),]

this still has both quantiles in--> add 'unique' key
list$key <- apply(list, 1, function (x)paste(sort(x), collapse='"))
list<-subset(list, !duplicated(listS$key))

sanity check that the Individual name combinations are in the same exact order as the lower quantile value

vector of the matrices

i=34

BCM[which (rownames (BCM)==1ist$Varl[i]),which (colnames (BCM)==1ist$Var2[i])]==BC[i]

UUM [which (rownames (UUM) ==1ist$Varl[i]),which (colnames (UUM)==1ist$Var2[i])]==U0U[1i]

WUM [which (rownames (WUM) ==1ist$Varl[i]),which (colnames (WUM)==1istS$Var2([i])]==WU[1]

AGEM [which (rownames (AGEM) ==1ist$Varl[i]),which (colnames (AGEM)==1ist$Var2[i])]==age[i]

SEXM [which (rownames (SEXM)==1ist$Varl[i]),which (colnames (SEXM)==1ist$Var2[i])]==sex[i]

TREATMM [which (rownames (TREATMM) ==1ist$Varl[i]) ,which (colnames (TREATMM)==1istS$Var2[i])]==treatm[i]
yearM[which (rownames (yearM)==1ist$Varl[i]),which (colnames (yearM)==1istS$Var2[i])]==year[i]
nestM[which (rownames (nestM)==1ist$Varl[i]),which (colnames (nestM)==1ist$Var2[i])]==nest[i]

add the names of both individuals participating in each dyad into the data frame
data.dyad$sampleA<-listS$vVar2
data.dyad$sampleB<-1listS$varl

af://n448

make a new key for the order of sample names and their associated individual IDs.
key2 <- data.frame (ID=sample data(micdata)$ring number, sampleA =sample data (micdata)Sidentifier, sampleB

=sample_data (micdata)$identifier)

merge individual ID to each sample name (sampleA -> IDA; sampleB -> IDB)
listdf = list(data.dyad, key2) # built list
data.dyad <- listdf %>% reduce(left_ join, by ="sampleA", keep = FALSE) # merge based on sampleA column

data.dyad <- data.dyad[,-19] # delete column duplicate

data.dyad <- rename (data.dyad, IDA = ID, sampleB = sampleB.x) # change column names

listdf = list(data.dyad, key2) # update list

data.dyad <- listdf %>% reduce(left_ join, by ="sampleB", keep = FALSE) # merge by sample B
data.dyad <- data.dyad[,-20] # delete column duplicate

data.dyad <- rename (data.dyad, IDB = ID, sampleA = sampleA.x) # change column names

Make sure you have got rid of all self comparisons

data.dyad<-data.dyad[which (data.dyad$sampleA!=data.dyad$sampleB),]

#Save dyadic data file
saveRDS (data.dyad, "data dyad.rds"

	Constructing dyadic data from non-independent observations
	Table of Contents

	A) 16S rRNA dyadic data set
	1. Cumulative Sum Scaling (CSS) normalization
	2. Read in the data
	3. Construct matrices to create the dayadic dataset
	3.1. Microbiome dissimilarity/distance matrices (BC, WU)
	3.2. SEX similarity matrix
	3.2.1 SEX combination matrix
	3.3. HABITAT similarity matrix
	3.3.1 HABITAT combination-factor matrix
	3.4. NEST similarity matrix
	3.5. YEAR similarity matrices
	3.6. INFECTION status combination-factor matrix
	3.7. AGE diference matrix
	3.8. BCI diference matrix

	4. Unravel matrices into one dyadic data frame
	4.1 Build dyadic dataset
	4.2 Add Individual ID and Sample ID combinations to the data set

	B) 28S rRNA dyadic data set
	1. Cumulative Sum Scaling (CSS) normalization
	2. Read in the data
	3. Construct matrices to create the dayadic dataset
	3.1. Microbiome dissimilarity/distance matrices (BC, WU)
	3.2. SEX similarity matrix
	3.2.1 SEX combination matrix
	3.3. HABITAT similarity matrix
	3.3.1 HABITAT combination-factor matrix
	3.4. NEST similarity matrix
	3.5. YEAR similarity matrices
	3.6. INFECTION status combination-factor matrix
	3.7. AGE diference matrix
	3.8. BCI diference matrix

	4. Unravel matrices into one dyadic data frame
	4.1. Build dyadic dataset
	4.2. Add Individual ID and Sample ID combinations to the data set

