

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1a

Bond precision: C-C = 0.0055 Å Wavelength=1.54178

Cell: a=9.8336 (3) b=26.7597 (8) c=18.6548 (5)
alpha=90 beta=93.756 (1) gamma=90

Temperature: 100 K

	Calculated	Reported
Volume	4898.4 (2)	4898.4 (2)
Space group	P 21/c	P 1 21/c 1
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C50 H64 O14, 0.6(H2 O)	C50 H64 O14, 0.6(H2 O)
Sum formula	C50 H65.20 O14.60	C50 H65.20 O14.60
Mr	899.82	899.82
Dx, g cm ⁻³	1.220	1.220
Z	4	4
Mu (mm ⁻¹)	0.733	0.733
F000	1928.0	1928.0
F000'	1934.29	
h, k, lmax	11, 31, 22	11, 31, 22
Nref	8695	8636
Tmin, Tmax	0.876, 0.896	0.408, 0.753
Tmin'	0.876	

Correction method= # Reported T Limits: Tmin=0.408 Tmax=0.753
AbsCorr = MULTI-SCAN

Data completeness= 0.993 Theta (max)= 66.802

R(reflections)= 0.0981(5657) wR2 (reflections)=
0.3492(8636)
S = 1.325 Npar= 745

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT084_ALERT_3_C	High	wR2 Value (i.e. > 0.25)	0.35	Report
PLAT220_ALERT_2_C	NonSolvent	Resd 1 C Ueq(max)/Ueq(min) Range	4.6	Ratio
PLAT222_ALERT_3_C	NonSolvent	Resd 1 H Uiso(max)/Uiso(min) Range	4.4	Ratio
PLAT230_ALERT_2_C	Hirshfeld	Test Diff for C014 --C016 .	5.8	s.u.
PLAT230_ALERT_2_C	Hirshfeld	Test Diff for C019 --C01D .	5.1	s.u.
PLAT234_ALERT_4_C	Large	Hirshfeld Difference 000W --C01M .	0.18	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld Difference 000Y --C01B .	0.20	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld Difference 000Y --C01O .	0.16	Ang.
PLAT234_ALERT_4_C	Large	Hirshfeld Difference C01B --C01E .	0.22	Ang.
PLAT241_ALERT_2_C	High	'MainMol' Ueq as Compared to Neighbors of C019	Check	
PLAT241_ALERT_2_C	High	'MainMol' Ueq as Compared to Neighbors of C01B	Check	
PLAT241_ALERT_2_C	High	'MainMol' Ueq as Compared to Neighbors of C01K	Check	
PLAT241_ALERT_2_C	High	'MainMol' Ueq as Compared to Neighbors of C01M	Check	
PLAT242_ALERT_2_C	Low	'MainMol' Ueq as Compared to Neighbors of 000R	Check	
PLAT242_ALERT_2_C	Low	'MainMol' Ueq as Compared to Neighbors of 000Y	Check	
PLAT242_ALERT_2_C	Low	'MainMol' Ueq as Compared to Neighbors of C012	Check	
PLAT260_ALERT_2_C	Large	Average Ueq of Residue Including 01	0.143	Check
PLAT260_ALERT_2_C	Large	Average Ueq of Residue Including 0017	0.133	Check
PLAT340_ALERT_3_C	Low	Bond Precision on C-C Bonds	0.00553	Ang.
PLAT360_ALERT_2_C	Short	C(sp3)-C(sp3) Bond C01B - C01E .	1.36	Ang.
PLAT360_ALERT_2_C	Short	C(sp3)-C(sp3) Bond C01N - C01O .	1.40	Ang.
PLAT906_ALERT_3_C	Large	K Value in the Analysis of Variance	7.331	Check
PLAT911_ALERT_3_C	Missing	FCF Refl Between Thmin & STh/L= 0.596	59	Report

Alert level G

PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite	39	Note
PLAT003_ALERT_2_G	Number of Uiso or Uij Restrained non-H Atoms ...	47	Report
PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms	2	Report
PLAT072_ALERT_2_G	SHELXL First Parameter in WGHT Unusually Large	0.20	Report
PLAT173_ALERT_4_G	The CIF-Embedded .res File Contains DANG Records	5	Report
PLAT176_ALERT_4_G	The CIF-Embedded .res File Contains SADI Records	5	Report
PLAT178_ALERT_4_G	The CIF-Embedded .res File Contains SIMU Records	8	Report
PLAT186_ALERT_4_G	The CIF-Embedded .res File Contains ISOR Records	1	Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0300	Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100	Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100	Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100	Report
PLAT188_ALERT_3_G	A Non-default SIMU Restraint Value has been used	0.0100	Report
PLAT230_ALERT_2_G	Hirshfeld Test Diff for O4 --C01M .	7.6	s.u.
PLAT230_ALERT_2_G	Hirshfeld Test Diff for C10 --C012 .	5.7	s.u.
PLAT300_ALERT_4_G	Atom Site Occupancy of 0017 Constrained at	0.6	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H Constrained at	0.6	Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H7 Constrained at	0.6	Check
PLAT301_ALERT_3_G	Main Residue Disorder(Resd 1)	27%	Note
PLAT302_ALERT_4_G	Anion/Solvent/Minor-Residue Disorder (Resd 2)	100%	Note
PLAT304_ALERT_4_G	Non-Integer Number of Atoms in (Resd 2)	1.80	Check
PLAT367_ALERT_2_G	Long? C(sp?)-C(sp?) Bond C01K - C01M .	1.52	Ang.
PLAT398_ALERT_2_G	Deviating C-O-C Angle From 120 for O2 .	109.9	Degree
PLAT398_ALERT_2_G	Deviating C-O-C Angle From 120 for O3 .	148.1	Degree

PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O3A .	138.1 Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O00Y .	108.9 Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O12A .	84.8 Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O00{ .	109.7 Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O4 .	92.7 Degree
PLAT410_ALERT_2_G Short Intra H...H Contact H00G ..H01J .	1.74 Ang.
x,y,z = 1_555 Check	
PLAT410_ALERT_2_G Short Intra H...H Contact H00S ..H01N .	2.06 Ang.
x,y,z = 1_555 Check	
PLAT410_ALERT_2_G Short Intra H...H Contact H00S ..H01O .	2.05 Ang.
x,y,z = 1_555 Check	
PLAT415_ALERT_2_G Short Inter D-H..H-X H ..H01Y .	2.07 Ang.
x,1/2-y,-1/2+z = 4_565 Check	
PLAT432_ALERT_2_G Short Inter X...Y Contact 0017 ..C8 .	2.98 Ang.
1-x,1-y,1-z = 3_666 Check	
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	121 Note
PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms	! Info
PLAT860_ALERT_3_G Number of Least-Squares Restraints	614 Note
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF	1 Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File	5 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	4.8 Low
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	1 Info
PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by	6 Check

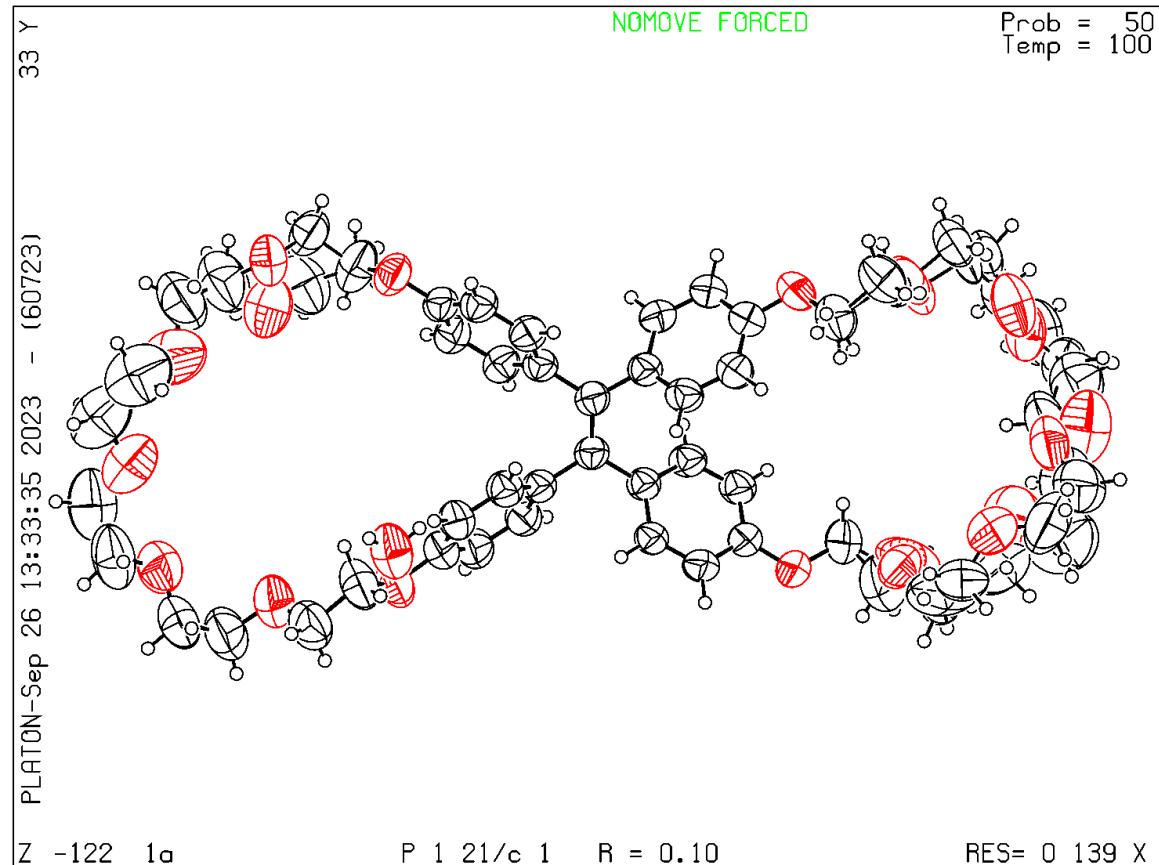
0 **ALERT level A** = Most likely a serious problem - resolve or explain
 0 **ALERT level B** = A potentially serious problem, consider carefully
 23 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
 42 **ALERT level G** = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 34 ALERT type 2 Indicator that the structure model may be wrong or deficient
 14 ALERT type 3 Indicator that the structure quality may be low
 14 ALERT type 4 Improvement, methodology, query or suggestion
 3 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.


Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/07/2023; check.def file version of 30/06/2023

Datablock 1a - ellipsoid plot

