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1. Experimental section

General methods. All common available reagents and solvents were purchased without further purification. Column chromatography was performed with silica gel (200 ‒ 300 mesh) produced by Shanghai Titan Scientific Co., Ltd. All yields were given as isolated yields. The enantiomeric purity of monomer (L/D-1) was determined using HPLC (SHIMADZU, SPD-20A) separations on Daicel Chiralpak OD column. The mobile phases were composed of hexane/isopropanol (70/30, v/v). The flow rate was set at 1 mL/min, and the detection wavelength was fixed at 254 nm. The temperature was kept at 25 °C. Molecular weight and polydispersity index (PDI) were observed from gel permeation chromatography (GPC) Agilent 1260 Infinity II Multi-detector system calibrated with standard PMMA. NMR spectra were recorded with a Bruker 400 MHz spectrometer. High-resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded on an Agilent 6540Q-TOF LCMS equipped with an electrospray ionization (ESI) probe operating in the positive-ion mode with direct infusion. UV-vis absorption spectra were taken on a SHIMADZU UV-1700 UV Spectrometer. FL, CD and CPL spectra were recorded by using Angdong F-380, JASCO J-810, and JASCO CPL-300 spectrometers, respectively. Transmission electron microscope (TEM) analysis was performed on a JEM-2100 instrument. Scanning electron microscopy (SEM) images were captured with a TESCAN LYRA3 GMU instrument. The crystal structures were determined by single-crystal X-ray analysis. Data collections were performed using a Bruker Apex Smart CCD diffractometer. 
Synthesis and characterization
General procedures for the synthesis of dieketone compounds
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Scheme S1. Synthesis of diketones.

General procedures for diketone: A mixture of 4,4'-dihydroxybenzophenone (1.0 mmol), compound glycol ditosylate (2.5 mmol), KI (0.25 mmol) and K2CO3 (20.0 mmol) in anhydrous MeCN (10 mL) was refulxed overnight under an argon atmosphere. The reaction mixture was filtered and rinsed three times with DCM. Organic layer was washed with deionized water, dried over Na2SO4, filtered and solvent were removed under vacuum. The crude product was purified by column chromatography over silica gel (ethyl acetate/petroleum ether, 1:1, v/v) to afford dieketone derivatives 1-4 as a white soild.
Diketone 1: Diketone 1 was obtained as a white solid (0.11 g, 0.16 mmol, 32%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 7.68 (d, J = 8.7 Hz, 8H), 6.90 (d, J = 8.8 Hz, 8H), 4.17 – 4.11 (m, 8H), 3.91 – 3.86 (m, 8H), 3.75 (s, 8H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 194.3, 162.1, 132.1, 130.7, 114.1, 71.0, 69.6, 67.5. HR-ESI-MS: m/z [M + Na]+ calcd for [C38H40O10Na]+ 679.2519, found 679.2520.
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Figure S1. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of diketone 1.
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Figure S2. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of compound diketone 1.
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Figure S3. HR-ESI-MS spectrum of diketone 1.
Diketone 2: Diketone 2 was obtained as a white solid (0.16 g, 0.22 mmol, 43%). 1H NMR (400 MHz, CDCl3, 298 K), δ (ppm): 7.69 (d, J = 8.6 Hz, 8H), 6.90 (d, J = 8.6 Hz, 8H), 4.13 (s, 8H), 3.89 (s, 8H), 3.72 (d, J = 8.1 Hz, 16H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 194.3, 162.1, 132.2, 130.8, 114.0, 70.92, 70.87, 69.6, 67.7. HR-ESI-MS: m/z [M + Na]+ calcd for [C42H48O12Na]+ 767.3043, found 767.3035.
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Figure S4. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of diketone 2.
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Figure S5. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of diketone 2.
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Figure S6. HR-ESI-MS spectrum of diketone 2.
Diketone 3: Diketone 3 was obtained as a white solid (0.16 g, 0.19 mmol, 38%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 7.71 (d, J = 8.7 Hz, 8H), 6.92 (d, J = 8.7 Hz, 8H), 4.18 – 4.13 (m, 8H), 3.88 – 3.85 (m, 8H), 3.73 – 3.66 (m, 24H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 194.4, 162.1, 132.2, 130.8, 114.1, 71.0, 70.7, 69.6, 67.7. HR-ESI-MS: m/z [M + H]+ calcd for [C46H57O14]+ 833.3748, found 833.3749.
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Figure S7. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of diketone 3.
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Figure S8. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of diketone 3.
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Figure S9. HR-ESI-MS spectrum of compound diketone 3.
Diketone 4: Diketone 4 was obtained as a white solid (0.16 g, 0.18 mmol, 35%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 7.72 (d, J = 8.7 Hz, 8H), 6.93 (d, J = 8.7 Hz, 8H), 4.19 – 4.13 (m, 8H), 3.88 – 3.83 (m, 8H), 3.72 – 3.63 (m, 32H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 194.4, 162.1, 132.2, 130.8, 114.1, 70.94, 70.71, 70.69, 70.64, 69.55, 67.7. HR-ESI-MS: m/z [M + Na]+ calcd for [C50H64O16Na]+ 943.4092, found 943.4101.
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Figure S10. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of diketone 4.
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Figure S11. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of diketone 4.
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Figure S12. HR-ESI-MS spectrum of compound diketone 4.

General procedures for the selective synthesis of sym-BCE[n] and asym-BCE[n]
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Scheme S2. Synthesis of sym-BCE[n] and asym-BCE[n].
General procedures for asym-BCE[n]: Under nitrogen atmosphere, diketone derivative (1.0 mmol) and zinc powder (10.0 mmol) were dissolved in 10 mL of anhydrous THF. The mixture was cooled to −10 ℃ and TiCl4 (5.0 mmol) was slowly added. After stirring for 1 h, the reaction mixture was warmed to room temperature and then refluxed overnight. The reaction was quenched by the addition of NaHCO3 solution. After filtration, the organic layer was collected and concentrated. The crude product was purified by silica gel column using PE/EA = 2/1, v/v) as eluent to obtain a colorless soild asym-BCE[n].

General procedures for sym-BCE[n]: Under nitrogen atmosphere, diketone derivative (1.0 mmol) and zinc powder (40.0 mmol) were dissolved in 10 mL of anhydrous THF. The mixture was cooled to −10 ℃ and TiCl4 (20.0 mmol) was slowly added. After stirring for 1 h, the reaction mixture was warmed to room temperature and then refluxed overnight. The reaction was quenched by the addition of NaHCO3 solution. After filtration, the organic layer was collected and concentrated. The crude product was purified by silica gel column using PE/EA = 2/1, v/v) as eluent to obtain a colorless soild sym-BCE[n] as a major product and asym-BCE[n] as a minor product.
Compound asym-BCE[5]: asym-BCE[5] was obtained as a colorless solid (0.30 g, 0.42 mmol, 42%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 6.91 (d, J = 8.4 Hz, 8H), 6.68 (d, J = 8.6 Hz, 8H), 4.19 – 4.15 (m, 8H), 3.78 – 3.74 (m, 8H), 3.62 (s, 16H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 157.1, 136.8, 132.5, 114.5, 71.2, 70.7, 69.8, 68.0. HR-ESI-MS: m/z [M + H]+ calcd for [C42H49O10]+ 713.3326, found 713.3317.
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Figure S13. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of compound asym-BCE[5].
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Figure S14. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of compound asym-BCE[5].
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Figure S15. HR-ESI-MS spectrum of compound asym-BCE[5].
Compound sym-BCE[5]: sym-BCE[5] was obtained as a colorless solid (0.23 g, 0.32 mmol, 32%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 6.88 (d, J = 8.8 Hz, 8H), 6.82 (d, J = 8.8 Hz, 8H), 4.25 – 4.20 (m, 8H), 3.79 – 3.76 (m, 8H), 3.64 (s, 16H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 157.3, 134.7, 131.1, 115.1, 71.2, 70.9, 70.3, 68.7. HR-ESI-MS: m/z [M + H]+ calcd for [C42H49O10]+ 713.3326, found 713.3363.
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Figure S16. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of sym-BCE[5].
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Figure S17. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of sym-BCE[5].
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Figure S18. HR-ESI-MS spectra of compound sym-BCE[5].
Compound asym-BCE[6]: asym-BCE[6] was obtained as a colorless solid (0.26 g, 0.32 mmol, 32%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 6.91 (d, J = 4.8 Hz, 8H), 6.65 (d, J = 8.0 Hz, 8H), 4.10 (s, 8H), 3.81 – 3.78 (m, 8H), 3.67 (d, J = 5.5 Hz, 24H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 157.0, 139.1, 136.8, 132.5, 114.0, 71.1, 70.7, 70.5, 69.5, 67.7. HR-ESI-MS: m/z [M + H]+ calcd for [C46H57O12]+ 801.3850, found 801.3845.
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Figure S19. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of compound asym-BCE[6].
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Figure S20. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of compound asym-BCE[6].
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Figure S21. HR-ESI-MS spectrum of compound asym-BCE[6].
Compound sym-BCE[6]: sym-BCE[6] was obtained as a colorless solid (0.17 g, 0.21 mmol, 21%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 6.87 (d, J = 8.1 Hz, 8H), 6.78 (d, J = 8.3 Hz, 8H), 4.18 (s, 8H), 3.81 (s, 8H), 3.68 (d, J = 11.3 Hz, 24H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 157.2, 134.7, 131.1, 114.5, 71.1, 70.7, 70.6, 69.8, 68.0. HR-ESI-MS: m/z [M + Na]+ calcd for [C46H56O12Na]+ 823.3669, found 823.3681.
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Figure S22. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of sym-BCE[6].
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Figure S23. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of sym-BCE[6].
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Figure S24. HR-ESI-MS spectrum of compound sym-BCE[6].

General procedures for the synthesis of BCE[4] and BCE[7]
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Scheme S3. Synthesis of crown ether BCE[4] and BCE[7].
General procedures for BCE[n]: Under nitrogen atmosphere, diketone derivative (1.0 mmol) and zinc powder (10.0 or 40.0 mmol) were dissolved in 10 mL of anhydrous THF. The mixture was cooled to −10 ℃ and TiCl4 (5 or 20.0 mmol) was slowly added. After stirring for 1 h, the reaction mixture was warmed to room temperature and then refluxed overnight. The reaction was quenched by the addition of NaHCO3 solution. After filtration, the organic layer was collected and concentrated. The crude product was purified by silica gel column using PE/EA, v/v) as eluent to obtain a colorless soild BCE[n].
Compound BCE[4]: BCE[4] was obtained as a colorless solid (0.21 g, 0.33 mmol, 33%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 6.84 (d, J = 8.5 Hz, 8H), 6.66 (d, J = 8.4 Hz, 8H), 4.21 (d, J = 3.8 Hz, 8H), 3.67 (d, J = 3.6 Hz, 8H), 3.51 (d, J = 10.1 Hz, 8H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 157.2, 140.2, 136.5, 132.3, 115.2, 71.4, 70.8, 68.5. HR-ESI-MS: m/z [M + Na]+ calcd for [C38H40O8Na]+ 647.2621, found 647.2614.
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Figure S25. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of BCE[4].
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Figure S26. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of BCE[4].
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Figure S27. HR-ESI-MS spectrum of compound BCE[4].
Compound BCE[7]: BCE[7] was obtained as a colorless solid (0.26 g, 0.29 mmol, 29%). 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm): 6.90 (d, J = 8.6 Hz, 8H), 6.65 (d, J = 8.7 Hz, 8H), 4.10 – 4.04 (m, 8H), 3.83 – 3.79 (m, 8H), 3.67 (d, J = 11.1 Hz, 32H). 13C NMR (100 MHz, CDCl3, 298 K) δ (ppm): 156.0, 137.7, 135.8, 131.5, 112.7, 69.96, 69.82, 69.66, 69.62, 68.6, 66.3. HR-ESI-MS: m/z [M + Na]+ calcd for [C50H64O14Na]+ 911.4194, found 911.4189.
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Figure S28. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of BCE[7].
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Figure S29. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of BCE[7].
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Figure S30. HR-ESI-MS spectrum of compound BCE[7].
Synthesis of compound LG (DG)
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Scheme S4. Synthesis of compound LG (DG).
Synthesis of monomer 1 [S1]: Benzyl-L-alaninate (0.43 g, 2.0 mmol) and triethylamine (0.6 mL) were dissolved in THF (20 mL) and stirred at room temperature for 30 min. Then, 4-vinylbenzoic acid (0.33 g, 2.2 mmol), 1-hydroxybenzotriazole (HOBt, 0.29 g, 2.2 mmol), 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 0.42 g, 2.2 mmol) were added into the above mixture and continuously stirred for 24 hours. At the end of the reaction, the organic phase is obtained by washing, drying, and extraction. The crude product is purified by column chromatography (hexane: ethyl acetate = 2:1, v/v) to afford monomer 1 (0.53 g, 1.7 mmol, 85%). 1H NMR (400 MHz, CDCl3, 298 K), δ (ppm): 7.76 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 7.37 (s, 5H), 6.78-6.71 (m, 2H), 5.84 (d, J = 17.6 Hz, 1H), 5.36 (d, J = 10.9 Hz, 1H), 5.27-5.18 (m, 2H), 4.85 (p, J = 7.1 Hz, 1H), 1.53 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3, 298 K), δ (ppm): 173.1, 166.4, 140.9, 135.9, 135.3, 133.0, 128.6, 128.2, 127.4, 126.3, 124.8, 116.1, 67.3, 48.6, 18.7.
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Figure S31. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of monomer 1.
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Figure S32. 13C NMR (100 MHz, CDCl3, 298 K) spectrum of monomer 1.
Polymer (LG or DG): 2-((butylthio)carbonothioyl)thiopropanoic acid (10.0 mg, 41.90 µmol), monomer 1 (0.39 g, 1.25 mmol) as a chain transfer agent (CTA), N-Isopropylacrylamide (NIPAM) (0.33 g, 2.90 mmol), AIBN (1.3 mg, 8.30 µmol) and THF (0.7 mL) were taken in a Schlenk flask with stirring bar. This reaction mixture was degassed by three freeze-pump-thaw cycles and backfilled with N2 and continuously stirred at 100 °C (oil bath) for 12 h. The reaction was quenched by cooling the reaction tube in an ice bath and the mixture was precipitated by hexane. This dissolution-precipitation was further repeated three times and the obtained yellow solid was completely dried at 40 °C for 24 h. The degree of polymerization was calculated by 1H NMR. 1H NMR (400 MHz, CDCl3, 298 K), δ (ppm): 7.46 (m, 180H), 6.72 (s, 20H), 5.19 (s, 40H), 4.81 (s, 20H), 3.70-2.97 (m, 120H), 2.31 (s, 20H), 1.96 – 1.27 (m, 200H). Mn,GPC = 13.2 kDa, PDI = 1.20.
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Figure S33. 1H NMR (400 MHz, CDCl3, 298 K) spectrum of compound LG.
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Figure S34. GPC of copolymer (LG).
2. Investigation on the selective synthesis of BCE[n] with different conformations
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Figure S35. Comparison of the 1H NMR (400 MHz, CDCl3, 298 K) spectra of BCE[4] under different reaction conditions. 
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Figure S36. Comparison of the 1H NMR (400 MHz, CDCl3, 298 K) spectra of BCE[5] under different reaction conditions. 
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Figure S37. Comparison of the 1H NMR (400 MHz, CDCl3, 298 K) spectra of BCE[6] under different reaction conditions.
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Figure S38. Comparison of the 1H NMR (400 MHz, CDCl3, 298 K) spectra of BCE[7] under different reaction conditions.
3. Crystallographic data for BCE[n]
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Figure S39. Crystal structure and data of BCE[4].
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Figure S40. Crystal structure and data of asym-BCE[5].
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Figure S41. Crystal structure and data of sym-BCE[5].
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Figure S42. Crystal structure and data of asym-BCE[6].
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Figure S43. Crystal structure and data of BCE[7].
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Figure S44. Crystal structure and data of asym-BCE[6]+K+ complexes.
4. The thermodynamic stability between different isomers of asym-BCE[5] and sym-BCE[5] 

All DFT calculations were performed using Gaussian 09 program.[S2]
[image: image49.png]Energy =-2382.0890 Energy = -2382.0772




Figure S45. DFT calculation of (a) sym-BCE[5] and (b) asym-BCE[5].
5. DFT-optimized structure of sym-BCE[6]
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Figure S46. DFT-optimized structure for sym-BCE[6].

6. Mechanism study
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Figure S47. 1H NMR titration (400 MHz, CDCl3/CD3CN, 298 K) spectra of diketone 2 (3.0 mM) titrated by Zn2+ (0-4.0 equiv.).
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Figure S48. Job’s plot for the determination of the 1:1 binding ratio between diketone 2 and Zn2+ in CHCl3 /CH3CN (5:1, v/v) solution.
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Figure S49. The proposed synthesis mechanism of sym-BCE[5].
7. Variable temperature 1H NMR experiments
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Figure S50. Variable temperature 1H NMR (400 MHz, CDCl3, 298 K) spectra of sym-BCE[5].
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Figure S51. Variable temperature 1H NMR (400 MHz, CDCl3, 298 K) spectra of asym-BCE[5].
8. Investigation on the photophysical properties
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Figure S52. UV-vis absorption spectra of sym-BCE[5] and asym-BCE[5] in CHCl3.
9. The study of host-guest interaction
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Figure S53. 1H NMR titration (400 MHz, CDCl3, 298 K) spectra of sym-BCE[5] (3.0 mM) titrated by Gm (0-3.0 equiv).
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Figure S54. UV-vis absorption spectra of sym-BCE[5] (H)⊃Gm complex and Job’s plot of the 1:1 binding ratio between sym-BCE[5] and Gm ([sym-BCE[5]] + [Gm] = 2.0× 10-5 M).
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Figure S55. UV-vis absorption spectra of sym-BCE[5] with addition of Gm and the association constant (Ka)value of the complex between sym-BCE[5] and Gm.
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Figure S56. 1H NMR titration (400 MHz, CDCl3, 298 K) spectra of asym-BCE[5] (3.0 mM) titrated by Gm (0-2.0 equiv).
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Figure S57. 1H NMR titration (400 MHz, CDCl3, 298 K) spectra of sym-BCE[6] (3.0 mM) titrated by Gm (0-2.0 equiv.).
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Figure S58. 1H NMR titration (400 MHz, CDCl3, 298 K) spectra of asym-BCE[6] (3.0 mM) titrated by Gm (0-2.0 equiv.).
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Figure S59. 1H NMR titration (400 MHz, CDCl3, 298 K) spectra of BCE[7] (3.0 mM) titrated by Gm (0-2.0 equiv.).
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Figure S60. 1H NMR titration (400 MHz, CDCl3, 298 K) spectra of sym-BCE[5] (3.0 mM) titrated by Na+ (0-3.0 equiv.).
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Figure S61. UV-vis absorption spectra of sym-BCE[5] (H)⊃Na+ complex and Job’s plot of the 1:1 binding ratio between sym-BCE[5] and Na+ ([sym-BCE[5]] + [Na+] = 2.0× 10-5 M).
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Figure S62. UV-vis absorption spectra of sym-BCE[5] with addition of Na+ and the association constant (Ka)value of the complex between sym-BCE[5] and Na+.
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Figure S63. 1H NMR titration (400 MHz, CDCl3, 298 K) spectra of asym-BCE[5] (3.0 mM) titrated by Na+ (0-4.0 equiv.).
10. Supramolecular chiral amplification analysis
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Figure S64. The UV absorbance and fluorescence emission spectra of the sym-BCE[5].
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Figure S65. Fluorescence titrations of the sym-BCE[5] (1.0 × 10-4 M, 1 equiv.) with increasing the concentrations of polymer LG (0 to 1.0 equiv.) (λex. = 350 nm, excitation/emission slit width = 10/10 nm).
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Figure S66. CD spectra of sym-BCE[5]⊃LG/DG (1:1) with increasing the concentrations of Na+ (0 to 1.0 equiv.).
11. Morphologies and sizes of host-guest complex
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Figure S67. HR-TEM images of (a) LG (b) DG (c) sym-BCE[5]⊃LG (d) sym-BCE[5]⊃DG (scale bar = 1 µm); partial images of (e) LG (f) DG (g) sym-BCE[5]⊃LG (h) sym-BCE[5]⊃DG (scale bar = 300 nm).

12. References
S1. Liu, N.; Sun, R.W.; Lu, H.J.; Li, X.L.; Liu, C.H.; Wu, Z.Q. Polym. Chem. 2017, 8, 7069.

S2. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
19

_1772127469.cdx

_1772128703.cdx

_1764171957.cdx

_1764133250.cdx

