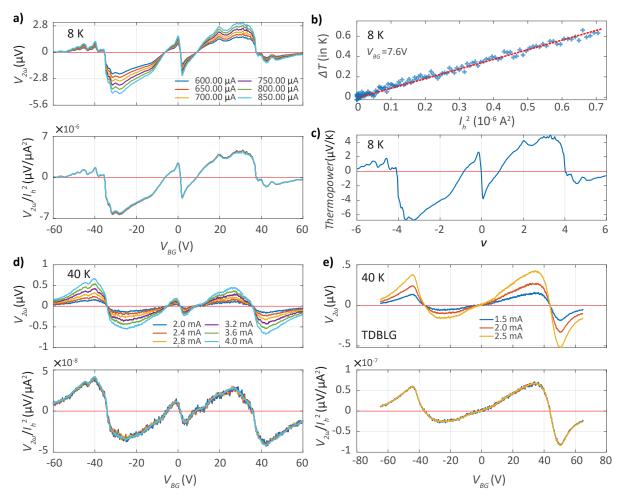
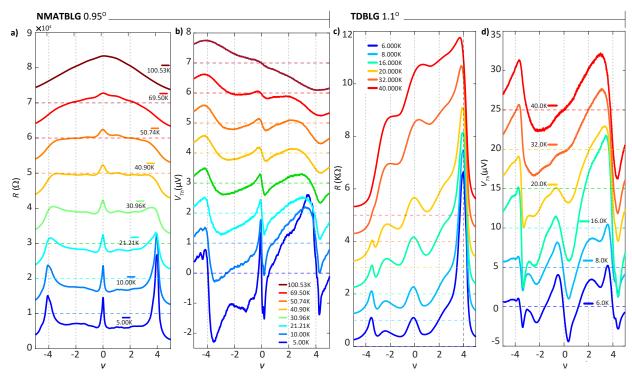


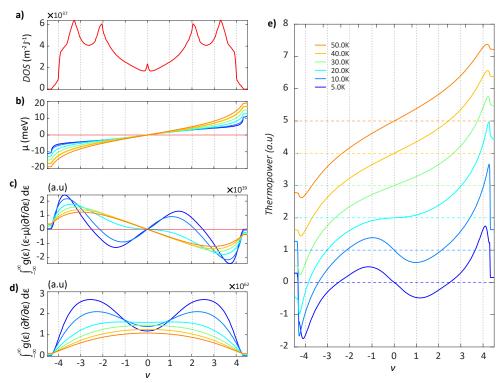
Extended Data Fig. 1: Resistance response as a function of density (n): (a), (b), and (c), Resistance as a function of density for MATBLG (at 5K), near-MATBLG (at 5K) and TDBLG (at 4K), respectively. For all three devices, we have used the full-filling ($\nu=\pm 4$) carrier density (n_s) to measure the twist angle (θ) using $n_s=8\theta^2/\sqrt{3}a^2$, where a=0.246nm is the lattice constant of monolayer graphene. For MATBLG, near-MATBLG and TDBLG $n_s\approx 2.58\times 10^{12}, 2.15\times 10^{12}$ and $3.19\times 10^{12}cm^{-2}$ respectively, which translates to $\theta\sim 1.05^0, 0.95^0$ and 1.1^0 respectively. Inset shows the optical images of the corresponding devices. The scale bars are $5\mu m$.



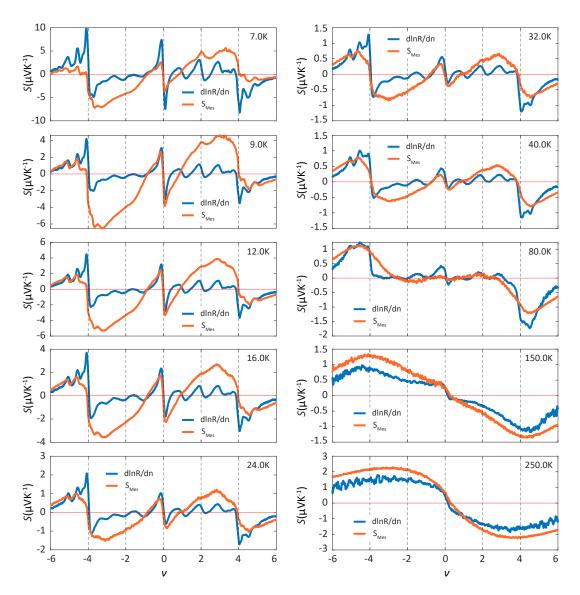
Extended Data Fig. 2: The linear regime of thermopower measurement: (a) $V_{2\omega}$ signal versus V_{bg} for different applied heater currents (I_h) , respectively, at 8K for MATBLG device (top panel). $V_{2\omega}$ signal normalized by the squire of respective heater currents (I_h^2) versus backgate voltage V_{bg} (bottom panel). All the normalized $V_{2\omega}/I_h^2$ values overlap well showing the $V_{2\omega}$ measurements have been performed in the linear response regime. (b) Measured temperature difference (ΔT) as a function of I_h^2 at 8K at backgate voltage $V_{bg}=7.6V$. Within the maximum heater current range, a clear linear trend (dashed red line) can be observed between ΔT and I_h^2 , and $\Delta T << T$. (c) Thermopower as a function of filling ν derived from measured $V_{2\omega}$ signal and ΔT . (d), (e) (Top panels) $V_{2\omega}$ signal versus V_{bg} for different applied heater currents (I_h) , at 40K for MATBLG and TDBLG device, respectively. (Bottom panels) $V_{2\omega}$ signal normalized by the squire of respective heater currents (I_h^2) versus V_{bg} , both showing linear regime behavior.



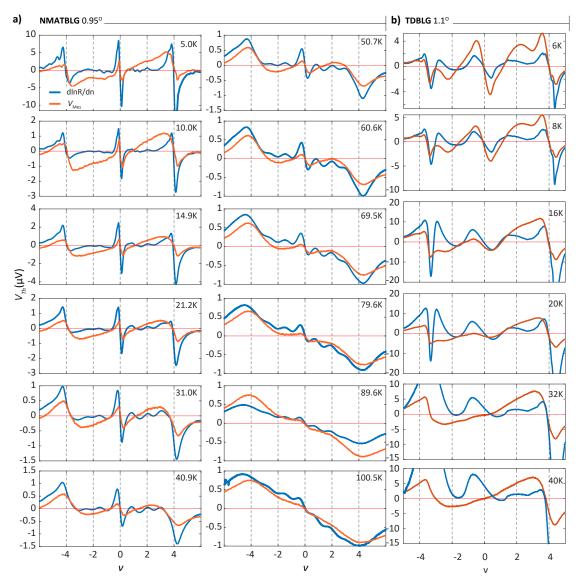
Extended Data Fig. 3: Resistance (R) and thermoelectric voltage (V_{Th}) response for near MATBLG abd TDBLG device: (a),(b), R and V_{Th} response of near MATBLG device, as a function of ν at different temperatures, depicted in a shifted plot. The horizontal lines represent the zero reference at each temperature. R remains featureless at integer fillings, except for the Dirac point and $\nu=\pm 4$. The V_{Th} closely resembles that of MATBLG, exhibiting similar crossing points near $\nu\approx\pm 1$. However, in comparison to MATBLG, these crossing points near $\nu\approx\pm 1$ show some variation with T and persist only up to 50K. Beyond 100K, V_{Th} as well as R begins to resemble a graphene-like spectrum. (c),(d), R and V_{Th} response of TDBLG device, as a function of ν at different temperatures. In contrast to MATBLG or 0.95^o near MATBLG, the additional crossing points in the band vanish at a much lower temperature, around 20K. Distinctively, above 20K, V_{Th} remain completely positive (negative) in the conduction (valence) band, which is opposite to how V_{Th} behaves for MATBLG and near MATBLG devices, but resembles semi-classical thermopower S_{SC} behaviour shown in Extended Data Fig. 4e.



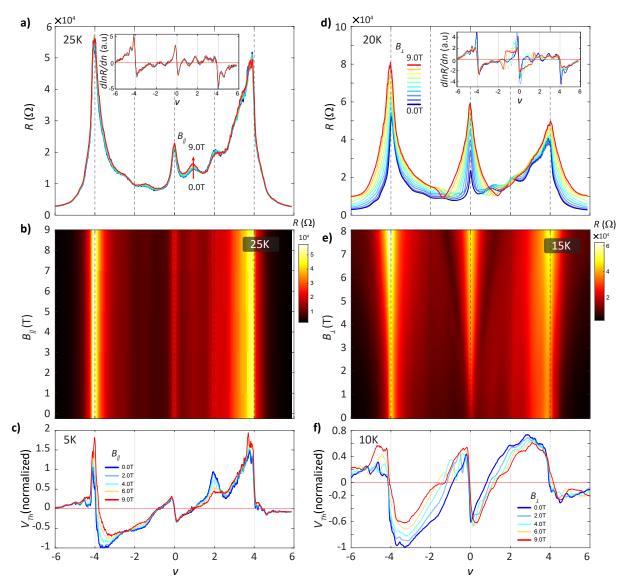
Extended Data Fig. 4: Theoretical calculations of semiclassical thermopower : (a) Continuum model DOS (by Zondiner, U. et al.) as a function of filling (ν) corresponding to twisted bilayer with twist-angle 1.05^0 . (b) Self-consistently solved chemical potential (μ) as a function of ν at different temperatures. (c) and (d), respectively, show the numerator and denominator of Eq.1 in method section as a function of ν at different temperatures. (e) Semi-classical thermopower with ν at different temperatures plotted with an offset of 1 unit. The dashed horizontal lines correspond to the zero line references for respective temperatures.



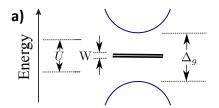
Extended Data Fig. 5: Comparison between $dln(R)/d\nu$ **and measured** V_{Th} **for MATBLG device:** Comparison between measured V_{Th} signal and $dln(R)/d\nu$ (both scaled to arbitrary units for visual clarity) at different temperatures. Blue and orange lines present the $dln(R)/d\nu$ and V_{Th} , respectively. Below T<120K, the measured thermopower (in orange solid line) lacks many of the crossing points predicted by $dln(R)/d\nu$ (in blue solid line). Above 120K the V_{Th} matches well with Mott relation with a graphene-like thermopower spectrum.



Extended Data Fig. 6: Comparison between $dln(R)/d\nu$ and measured V_{Th} for near MATBLG and TDBLG devices: (a), (b), Comparison between measured V_{Th} signal and $dln(R)/d\nu$ (both scaled to arbitrary units for visual clarity) at different temperatures for near MATBLG and TDBLG device, respectively. Blue and orange lines present the $dln(R)/d\nu$ and V_{Th} , respectively. Mott violation can also be observed in near MATBLG devices. Below 50K, V_{Th} is generally more symmetric between the valence and conduction band, showing only one crossing point for each conduction and valence band, whereas, $dln(R)/d\nu$ shows many crossing points. Here also, the measured V_{Th} matches quite well with $dln(R)/d\nu$ at higher temperatures (> 90K). In TDBLG, there is a distinct departure of the V_{Th} behaviour as compared to the MATBLG and near-MATBLG devices. At low temperatures (< 20K), V_{Th} shows qualitative agreement with $dln(R)/d\nu$ in terms of general peak and the number of zero crossing points (in the conduction band). At larger temperatures, the asymmetry in R (see Extended Data Fig. 3c) also manifests in the $dln(R)/d\nu$ data, and $dln(R)/d\nu$ mostly maintains a positive value over the whole density range of the flat band.



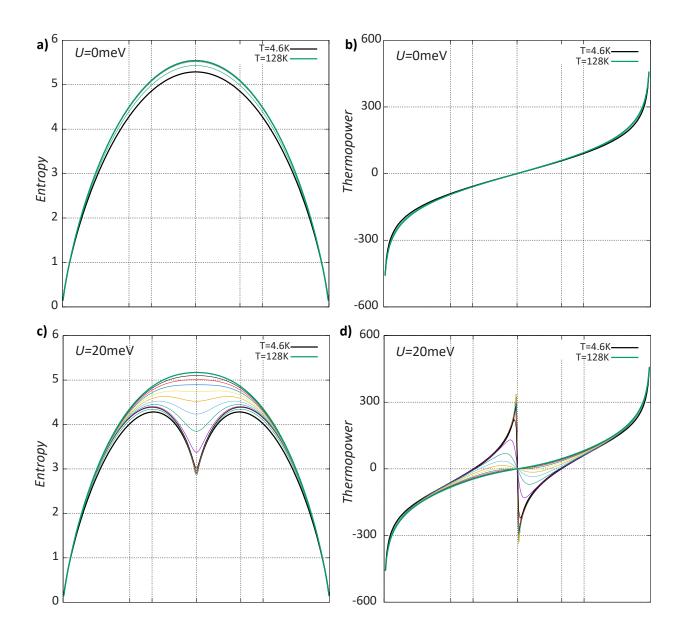
Extended Data Fig. 7: Resistance and thermoelectric voltage with in-plane and out-of-plane magnetic fields: (a) Resistance as a function of filling (ν) at different in-plane magnetic fields $(B_{||})$ at 25K. Inset shows the $dln(R)/d\nu$ at corresponding $B_{||}$. (b) 2D plot of Resistance as a function of ν and in-plane magnetic field at 25K. Clearly, no noticeable change can be observed in the resistance or dln(R)/dn response, which starkly contrasts the V_{Th} response (see Figure 4 of the manuscript) with $B_{||}$. (c) Normalized V_{Th} with ν for different $B_{||}$ at 5K. Here also, the significant reduction of V_{Th} is clearly visible with $B_{||}$. (d) Resistance as a function of ν at different out of-plane magnetic fields at 20K. Inset shows the $dln(R)/d\nu$ at corresponding B_{\perp} . (e) 2D plot of Resistance as a function of ν and out of-plane magnetic field at 15K. Except around the Dirac point, the signature of Landau levels can hardly be seen. The Mott formula, i.e., $dln(R)/d\nu$, also fails to capture any decrement with B_{\perp} seen in Figure 4 in the main manuscript. (f) Evolution of normalized V_{Th} with B_{\perp} at 10K. Reduction of $\sim 40\%$ in V_{Th} at $\nu \simeq -3$ is apparent.



b)

Temperature scales	Theoretical V_{τ_h}	Characteristic Behavior	Experimental V_{τ_h}
$K_BT > \Delta_g$	Filling (u)	>0 for v<0 and <0 for <i>v</i> >0	150.0K
$U < K_{_B}T \approx \Delta_{_g}$	$\text{Filling }(\nu)$	~0 in a range of <i>v</i>	100.0K
$U \lesssim K_{_B}T < \Delta_{_g}$	Themopower (ν)	<0 for <i>v</i> <0 and >0 for <i>v</i> >0	70.0K
$K_BT < U$	Thermodowati	Threeprominent crossings	0 -4 0 4

Extended Data Fig. 8: Comparison between the measured V_{Th} and expected theoretical thermopower at different temperature regime: (a) The key energy scales are bandwidth (W) of the flatband, the interaction strength (U), and the energy gap between the dispersing lower and upper bands (Δ_g) . (b) (i) For $k_BT > \Delta_g$; the high-temperature thermopower is positive for $\nu < 0$ and negative for $\nu > 0$ (as depicted in the 1st row). A characteristic of graphene-based systems where electron-hole symmetry renders one crossing at $\nu = 0$ (Dirac point). (ii) For $U < k_BT \approx \Delta_g$; the effect of flat bands starts contributing together with higher dispersing bands. However, both contributions have opposite signs, resulting in almost flat, close to zero V_{Th} (as shown in the second row). (iii) For $U \approx k_BT < \Delta_g$; in this regime, the effect of the flatbands dominates over the higher energy bands. This leads to entropy being maximum at $\nu = 0$ and single thermopower crossing at $\nu = 0$ with positive for $\nu > 0$ and negative for $\nu < 0$ (as depicted in the third row). (iv) $U < k_BT$; the interaction dominates and dictates the entropy, which results in three prominent crossings (as shown in the last row), and discussed in Extended data Fig. 9.



Extended Data Fig. 9: (a), (b) Behavior of entropy and thermopower for the four orbital atomic limit, where the onsite energies are $-\epsilon_1=-\epsilon_2=\epsilon_3=\epsilon_4=0.2meV$, and Hubbard interaction U=0meV. Different curves correspond to different temperatures: 4.6K, 7K, 14K, 16K, 19K, 21K, 23K, 26K, 35K, 46K, 58K, 70K, 81K, 93K, 104K, 116K and 128K. Thermopower has a zero crossing at only $\nu=0$. (c),(d) Behavior of entropy and thermopower for the four orbital atomic limit where the onsite energies are $-\epsilon_1=-\epsilon_2=\epsilon_3=\epsilon_4=0.2meV$, Hubbard interaction U=20meV. Different curves correspond to different temperatures: 4.6K, 7K, 14K, 16K, 19K, 21K, 23K, 26K, 35K, 46K, 58K, 70K, 81K, 93K, 104K, 116K and 128K. Thermopower has a zero crossing at $\nu=0$ and $\pm \frac{4}{3}$.