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Supplementary material

Effect of learning rate

Figure S1: Molecular optimization task: effect of learning rates on the number of unique compounds with improved P(active) and QED, and
Tanimoto similarity >0.7 when using RL DF(cmp) Sim. Results are mean values and ±1 standard deviation over 10 runs.
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Figure S2: Molecular optimization task: overlap of three runs with varying learning rates (lr) on the unique compounds (a-d) and the unique
compounds with improved P(active) and QED, and Tanimoto similarity above 0.7 compared to corresponding input molecule (e-h) produced by
RL DF(cmp) Sim for compound 3.

1


