

Evaluation of Reinforcement Learning in Transformer-based Molecular Design

Jiazen He^{1*}, Tibo Alessandro¹, Jon Paul Janet¹, Eva Nittinger², Christian Tyrchan², Werngard Czechitzky², Ola Engkvist^{1,3}

¹*Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden*

²*Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden*

³*Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden*
^{*}*Correspondence: jiazen.he@astrazeneca.com*

Supplementary material

Effect of learning rate

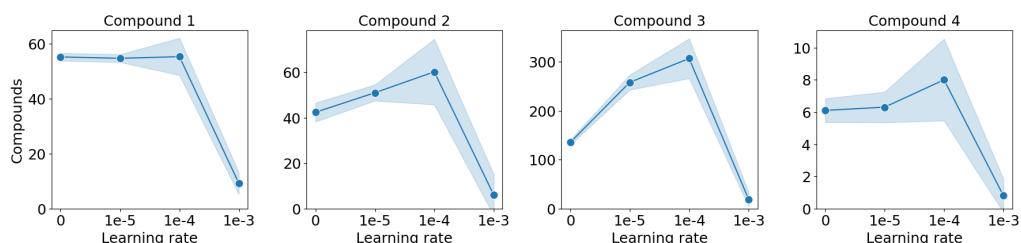


Figure S1: Molecular optimization task: effect of learning rates on the number of unique compounds with improved P(active) and QED, and Tanimoto similarity >0.7 when using RL_DF(cmp)_Sim. Results are mean values and ± 1 standard deviation over 10 runs.

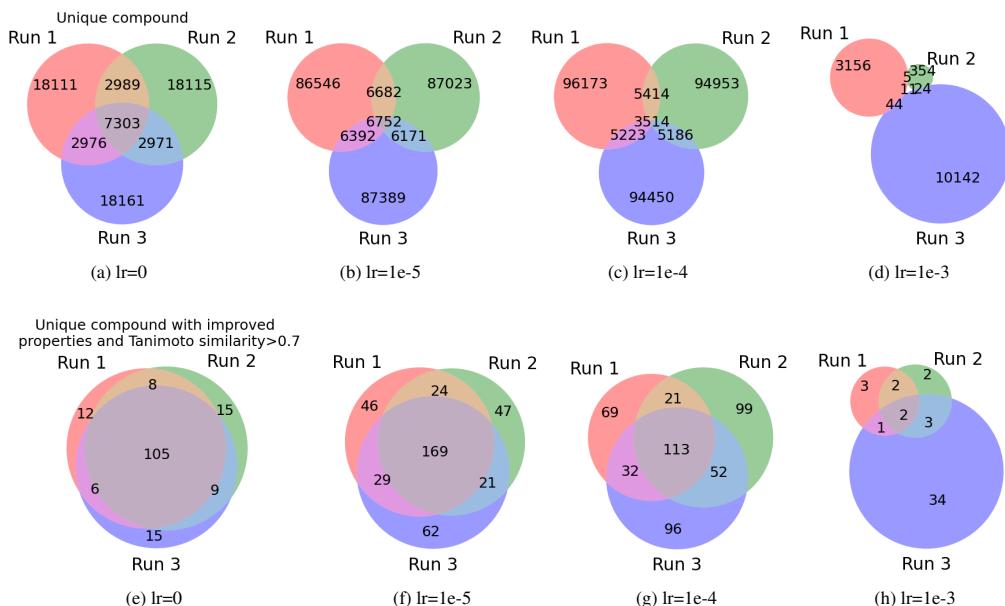


Figure S2: Molecular optimization task: overlap of three runs with varying learning rates (lr) on the unique compounds (a-d) and the unique compounds with improved P(active) and QED, and Tanimoto similarity above 0.7 compared to corresponding input molecule (e-h) produced by RL_DF(cmp)_Sim for compound 3.