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Effect of learning rate
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Figure S1: Molecular optimization task: effect of learning rates on the number of unique compounds with improved P(active) and QED, and
Tanimoto similarity >0.7 when using RL_DF(cmp)_Sim. Results are mean values and +1 standard deviation over 10 runs.
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Figure S2: Molecular optimization task: overlap of three runs with varying learning rates (Ir) on the unique compounds (a-d) and the unique
compounds with improved P(active) and QED, and Tanimoto similarity above 0.7 compared to corresponding input molecule (e-h) produced by
RL_DF(cmp)-Sim for compound 3.



