Materials and Methods
Animals: All animal experimentation was approved by the Institutional Animal Care and Use Committee at Vanderbilt University (IACUC protocols M2000086-00 and M1500013-02). Mice were maintained in rooms with an average temperature of 23C and with a 12h light and 12h dark cycle. For all our studies, we purchased 7-week-old C57/BL6 male mice from Jackson Labs (JAX, Connecticut, strain number 000664). Mice were housed for 1 week before any experimentation. 
Catheter implantation and glucose infusion: Catheters were surgically placed in the carotid artery and jugular vein for blood sampling and stable isotope infusions, respectively, as previously established 1. Catheters were implanted 3 days prior to the stable isotope infusions. On the day of the infusions, mice were fasted for 6h or 16h before any of the procedures. Mice were awake and were not restrained during the stable isotope labelling experiments. At the end of the infusion, mice were anesthetized with an intra-venous (i.v.) injection of pentobarbital in the jugular line, and tissues were immediately excised, and flash frozen in liquid nitrogen for mass spectrometry or prepared for MIMS-EM as described below. 
Indirect Calorimetry and 13C-Breath Testing. On the morning of the experiment, mice were individually placed in circular acrylic containers (135mm internal diameter and 120 mm internal height) with paper-based bedding in a 12h light/dark cycle, temperature-controlled dedicated room located in the Vanderbilt Mouse Metabolic Phenotyping Center (MMPC, RRID: SCIR_021939). Energy expenditure measures were obtained by indirect calorimetry (Promethion, Sable Systems, Las Vegas, NV). In short, the gas within each container was sampled through a raised microperforated acrylic false floor that ensures uniform gas sampling. Respiratory gases were measured using an integrated fuel cell O2 analyzer, spectrophotometric CO2 analyzer, capacitive water vapor partial pressure analyzer, and barometric pressure sensor (GA-3, Sable Systems, Las Vegas, NV). This system used two GA-3 analyzers operating in parallel, devoted to one container apiece, to maximize metabolic data resolution. Gas sensors were calibrated monthly with 100% N2 as zero reference and with a span gas containing known concentrations of CO2. The gain of the O2 channel was adjusted during each new incurrent measurement so that incurrent O2, after correction for water vapor dilution and barometric pressure, yielded a concentration of 20.94% STPD (standard temperature [0°C] and pressure [1ATM], dry). Promethion utilizes a pull-mode, negative pressure system. As such, two multi-channel mass flow generators continually measured and controlled air flows (FR8, Sable Systems, Las Vegas, NV) ensuring that the excurrent flow rates remained constant at 3000 mL/min. Water vapor was continuously measured and its dilution effect on O2 and CO2 concentrations were mathematically compensated for in the analysis 2. The O2 consumption (i.e., VO2) and CO2 production (i.e., VCO2) were measured for each mouse continuously. Incurrent air reference/background values were determined every 5 minutes. A 400-600ml/min subsample of the gas exiting each metabolic chamber was diverted into a stable isotope analyzer (Sable Systems International) which measured the amount of 13C (i.e., δ13C) in the carbon dioxide in real time using a process called 13C-breath testing 3,4. Because the CO2 from the measured gas stream is a dynamic mixture of both ambient CO2 and the CO2 released as a byproduct of the mouse, we used a previously published mathematical approach to remove the effect of ambient CO2 by accounting for the dynamic concentration of ambient CO2 and its δ13C recorded during periodic incurrent air measurements 5. The δ13C is reported in terms of 13CVPDB 6. Respiratory quotient (RQ) was calculated as the ratio of VCO2 to VO2. Energy expenditure was calculated using the Weir equation: EE (kcal/hr) = 60*(0.003941*VO2(ml/min) +0.001106*VCO2(ml/min)) 7. Data acquisition and processing were coordinated by PromethionLive and MacroInterpreter (Sable Systems) using an analysis script detailing all aspects of data transformation. The script is available on request from Sable Systems. Body composition was determined by NMR (Bruker Minispec).
Sample processing for MIMS-EM. Tissue processing for MIMS-EM imaging was done as previously described by us 8,9. First, stable isotope-labelled animals were sedated using sodium diethylbarbiturate (Nembutal, 35mg/kg i.v.) and euthanized via diaphragm resection followed by transcardiac perfusion 37oC Ringer’s solution (0.79% NaCl/0.038% KCl/0.02% MgCl2·6H2O/0.018% Na2HPO4/0.125% NaHCO3/0.03% CaCl2·2H2O/0.2% dextrose/0.02% xylocaine) for 60 seconds followed by perfusion with ice cold 2.5% glutaraldehyde and 2% PFA in 0.15M sodium cacodylate for 10 minutes (rate at 5mL/min). Next, we cut small biopsies samples of the medial liver lobe and prepared them for scanning electron microscopy (SEM) followed by MIMS. Here, the perfusion-fixed liver tissue was cut into ~1mm3 pieces and post-fixed in the same fixative at 4°C overnight. Next, each sample was washed for 1 hour at room temperature using 0.15M cacodylate buffer and then post-fixed in 2% osmium tetroxide and 1.5% potassium ferrocyanide solution made with 0.15M sodium cacodylate buffer. Samples were then thoroughly washed in double distilled water (ddH20) and placed in a 0.5% thiocarbohydrazide solution for 30 minutes followed by five washes in ddH20 at room temperature. Next, tissue samples were placed in a 2% aqueous osmium tetroxide solution for 1 hour, then extensively washed in ddH20, and next placed in a 2% aqueous uranyl acetate solution at 4°C overnight. Samples were again washed with ddH20 and placed into Walton’s lead aspartate solution and baked for for 30 min at 60°C using a bench-top baking oven. Baked samples were washed with ddH20 followed by serial dehydration using ice-cold ethanol at 70%, 90%, and 100% EtOH followed by dry acetone (10 minutes each step on ice). Dehydrated tissues were placed into 1:3, 1:1, and 3:1 solutions of Durcupan ACM:acetone for 12 hours in each concentration for tissue embedding. Embedded tissues were exposed to three changes of 100% Durcupan ACM for 24 hours each before being baked for 48 hours at 65°C for solidification.
Correlative Electron Microscopy and Multi-isotope Mass Spectroscopy (MIMS-EM). MIMS-EM measures spatially localized concentrations of several isotopes in biological samples overlaid with high-resolution scanning electron microscopy (SEM) to provide accurate spatial and quantitative information regarding the chemical composition of macromolecules, organelles, cells, and tissues 8-10. To create large field-of-view (FoV) maps of distinct liver lobe regions, 80nm-thick sections were cut using an ultramicrotome (Leica UC7) and arranged on 5x7mm silicon wafers (Electron Microscopy Services (EMS), cat# 71893-10) and mapped using SEM (Crossbeam 550, Zeiss, Germany). User-supervised image acquisition was guided using automated tile acquisition and image mosaicking software (Atlas 5, Fibics, Ottawa, Canada). Images were acquired with a pixel size of 5nm and covered areas of approximately 300um2 per tissue sample. Next, wafers containing the mapped samples were transferred to a MIMS microscope (50L NanoSIMS, Cameca, France) for acquisition of multi-isotope maps (13C, 12C, 32S, 14N, and 31P) as previously established 8,11 using the following MIMS image acquisition parameters: image size of 512x512 pixels, raster size of 30-to-40um2, at least three frames per raster with a 10min acquisition time per frame using the beam adaptor D1-3 to yield a spatial resolution of ~80nm in X-Y. 
MIMS-EM Image Registration and data display. The elemental maps and relative isotope ratios (i.e., 13C/12C ratiometric images) obtained by the 50L NanoSIMS were overlaid on the SEM image of the same section, after alignment and post-processing to create an overlay image that contains both the elemental maps from MIMS and the spatial resolution of the SEM. MIMS-EM imaging data registration was performed using a python-based version of the “MesoFusion” plugin tool in ImageJ 9. Briefly, each MIMS image was re-scaled to match the pixel size of the corresponding SEM image, and coarsely aligned using linear image transformations (linear shifts, orientation, and image flips) to ensure both MIMS and SEM images have similar fields of view. Next, we applied either manual or machine learning (ML)-based image segmentation to annotate matching landmark structures on both SEM and 32S MIMS images to create fiducial points that were used to guide image registration using UnwarpJ 12. Next, we applied the transformation matrices to the 13C/12C ratiometric images and binned the 13C/12C ratiometric data into categories representing different levels of relative 13C enrichment to create MIMS-EM overlays. The CMYK coloring pattern was generally followed to promote a color-blind friendly visualization of all imaging data. Quantification of 13C/12C ratiometric signal at the cell level was calculated by manually drawing around individual cells or, for organelles and sub-cellular neighborhoods, data was automatically extracted using spatial analysis software (described below).
Machine learning (ML) segmentation of organelles. To create segmentation masks of hepatocyte endoplasmic reticulum (ER), glycogen, mitochondria, and lipid droplets (LDs) imaged with SEM, we trained 2-dimensional (2D) U-nets using Aivia software’s Deep Learning analysis module (Leica Microsystems). 2D U-nets were trained using multiple sets of manually annotated SEM images. Each training set consisted of an 8-bit SEM image and a matching 8-bit binary mask image of a specific type of organelle, which was called the ground truth (GT). GT images were created using manual annotation of features (e.g., ER sheets, mitochondria) using the LabKit plugin on ImageJ. At least 25 different pairs SEM and GT images were loaded into Aivia (v11.0), and 2D U-nets were trained with the following general hyperparameters: 8 layers, 64 Init Filters, 64 Filter Growth Factor, a channel reduction factor of 8, an image block size of 256x256 pixels, and an intensity threshold of 0.25 and area ratio threshold of 0.05 for foreground path selection. We used the Adam optimizer with a learning rate of 0.0001 and a staircase exponential decay for the learning rate scheduling method. The number of epochs for each model ranged from 600 (Mitochondria, LD, and glycogen) to 10,000 (ER) with 256 steps per epoch. Balanced Binary Cross Entropy was used as the loss function. The resulting trained models were applied in batch to SEM images of single hepatocytes manually segmented using ImageJ to create 32-bit organelle “probability maps”. After optimization to determine the ideal probability interval for each organelle, each probability map was thresholded before converting each image to 8-bit binary masks for further processing. All imaging data was processed using one of two standalone computers configured with a 14-core Intel Xeon W-2275 with a 3.3 GHz CPU, 256GB of DDR5 RAM, and GPU cards with 24 or 48GB of memory (RTX-Quattro 5000 or 8000 series, respectively).
Optimization and benchmarking ML segmentation models. The accuracy and precision of each segmentation model was optimized and evaluated using two different approaches. First, we determined the optimal threshold level for our organelle segmentation model by plotting a line profile across representative organelle planes and determined that a confidence interval of 90% was sufficient to isolate most true-positive pixels (Figure S4A). Second, we applied our image segmentation models to the SEM images used to train each model and create probability maps which were then thresholded at different levels (50, 70, 80, 90, and 99%) and compared to the manually annotated GT masks. Comparison of ML segmentation and GT image pairs was done using CellProfiler (version 4.2.6) the “MeasureObjectOverlap” function to extract f-scores, precision, recall, and the “MeasureColocalization” function to quantify image colocalization indexes (Pearson’s and Mander’s) for each ML segmentation model. A confidence interval threshold cut-off of 90% was used to create segmentation binary models since this confidence range achieved a high level of precision and object colocalization (~60-to-90%) by successfully isolating true-positive pixels (object recall rates of ~70-to-90%) while sustaining a small (~5%) false-positive rate (Figure S4A-B). A representative set of manually annotated images with a sample size of 58-to-98 image pairs was used for benchmarking our ML models.
Pre-processing of MIMS-EM for spatial analysis and quantification. We used MATLAB (Version 2020b, MathWorks) to develop a computational pipeline to automatically process and quantify several spatial aspects of cell- and organelle-anatomy and 13C enrichment levels acquired with SEM and MIMS, respectively. Since our models have a ~5% false-positive rate (Supplementary Figure S4A-B), we implemented steps to eliminate any eventual pixel overlap across organelle segmentation masks and improve segmentation accuracy. First, any holes inside objects (i.e., cell and mitochondria masks) using MATLAB's “bwfill” function and “holes” argument. Next, to smooth organelle shapes, an erosion filter was applied 4x to ER masks using a 3x3 “square” morphological structuring element and MATLAB’s “imerode” function. Furthermore, using MATLAB’s “imdilate” function and a 3x3 “diamond” structuring element, we applied 2x a dilation filter on the LD masks. Next, we take a negative of the cell mask, containing all the pixels outside of the cell, and store it in a multidimensional matrix as the first image to ensure all image objects analyzed are inside the cell area. The other masks are stowed in the following order: nucleus, mitochondria, ER, Glycogen, and LD. Next, the ith image in the order is subtracted by the 1st through the (ith – 1) image to ensure no overlap between any of the organelles. This organelle organization and subtraction order was decided by visually comparing the end results of the subtractions to the original EM images as a measure of segmentation improvement. After the first cycle is complete, using the subtracted images, the cytosol mask is subtracted first by the nucleus, followed by mitochondria and LD masks. To compensate for the spatial resolution difference between SEM and MIMS images and enhance MIMS-EM signal to noise, we applied a mean filter of 17 pixels (80nm in size) to the 13C/12C images. Rare 13C/12C image pixels values that were below 102 were reset to the terrestrial background value of 102. Next, once all organelle masks were pre-processed, we identified the spatial position of individual organelles using MATLAB’s “bwconncomp” function that uses a connected component labeling algorithm for binary images. To filter remaining false-positive objects, we applied an object size exclusion filter using pre-determined threshold sizes for each organelle class object (ER, 500 pixels; Mitochondria, 5000 pixels; Glycogen, 500 pixels; LD, 5000 pixels). The size of these exclusion filters was determined after calculating the size distribution associated with each unique object and organelle class. Finally, after all image and mask preprocessing was achieved, the filtered and processed organelle image masks were converted to arrays containing pixel-by-pixel metrics that reported the spatial location of all remaining pixel values and their respective 13C/12C ratiometric values. 
Spatial Analysis of MIMS-EM data. We extracted morphological features (i.e., circularity, area, perimeter, total size, X and Y coordinates of object centroid) from all segmented organelles. Organelle processing was achieved by mapping the centroid of individual organelles and were stored in indexed matrices along with organelle 13C/12C ratios. Individual objects were mapped using 8-pixel connectivity patterns and a unique object identifier was stored using a 16-bit image format. In addition, we created corresponding matrices to store the spatial coordinates and 13C/12C values for each individual pixel linked to each unique organelle object. Next, we classified and mapped organelle types (i.e., mitochondria, endoplasmic reticulum, glycogen, and lipid droplets) to individual objects according to the identity of the segmented image. We calculated organelle distances using the Euclidean distance formula:

Here, the distance d between points p and q in n-dimensional Euclidean space can be defined in terms of qi and pi, or the cartesian coordinate component in the ith dimension of the n-dimensional space. To identify “contact sites” between neighboring organelles, we first defined a range of distances as our search radius. In our case, we considered pixels to be “in contact” with one another between different organelle objects if the distance between two pixels were within 1–2-pixel lengths, or 5-10 nm. Next, we centered on the pixels lying along the perimeter of each organelle object and calculated relative distances between neighboring organelles. To reduce the time needed for computations, distance calculations were only performed on a “region of interest” (in 2D, a [m+1] x [m+1] matrix where “m” is the maximum of our “search threshold” in pixels) centered on said perimeter pixel. If a neighboring organelle image object contained pixels within the search distance radius, then these pixels were annotated as contacting pixels (see attached code for more details). To quantify the total area occupied by organelle contacts in each organelle, features such as the number of “contacting” pixels and the perimeter of an object in contact, for example, are recorded. To denote separate contact sites from one another, MATLAB’s connected component labeling algorithm, ‘bwconncomp” is used in a similar fashion to how organelle objects are labeled previously. To reduce the false positive rate, contact sites of a single contacting pixel were removed. Organelle perimeters were obtained using 2D image convolution with MATLAB’s “conv2” function and a kernel to detect 8-connected image edges. Perimeter length is reported as the number of pixels that lay along the perimeter, rather than the pixel length distance, thus, quantification of the percentage of an organelle objects perimeter in contact with another is reported as the ratio of the number of contacting pixels to the number of pixels along object’s perimeter. To quantify the composition of each cell by organelle area, following the processing of the 8-bit organelle masks, the remaining area covered by each organelle type is compared to the area covered by the manually segmented cell mask. To obtain the average 13C/12C value for organelle image objects and per organelle type across an image, we used the arithmetic mean of the 13C/12C image pixel values in the corresponding spatial regions of interest between the different images. When calculating the distances between image objects, the centroids of the image objects are used. Circularity scores were calculated according to the formula:	Comment by Arrojo e Drigo, Rafael: Aliyah
Circularity Score = 
Here, A is the area of the object, P is the object perimeter, and:

Statistics: Student’s t-test (Prism 10, GraphPad) was used to compare two groups and One-Way ANOVA was used to compare three or more groups. A p-value of <0.05 was considered significant. In all figures, data is shown with ± 95% confidence interval (C.I.) of the data.
Data availability. All code pipelines and data associated with this manuscript can be freely accessed on GitHub (https://github.com/ArrojoDrigoLab/MIMS-EM) and Mendeley Data (doi: 10.17632/tr8xdwv28g.1). 
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