Figure 1S: PREMO Samples
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Figure 2S: SIENNA Post-Analysis Predicted Positive and Negative Samples

Task 1: Non-Tumor Vs Tumor Task 2: GBM Vs Non-GBM Task 3: MET Vs Non-MET

FP TP

[ Correctly classified MRI scans across the three classification tasks [1 Commonly misclassified MRI scans across the three classification tasks



Figure 3S: Trainable Parameter Trends in MRI Diagnostics
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SUPPLEMENTAL TABLE

Table 1S. Clinical Dataset 1 (This study)

Metastasized Tumor Patients (MET)

Name Sex Age Range Manufacturer Model Magnetic Slice Thickness
Field (T)
MP1 M 56-60 GE Medical SignaHDxt 1.5 5
MP2 F 51-55 Philips Ingenia 3.0 3
MP3 F 41-45 Philips Ingenia 3.0 3
MP4 M 46-50 Philips Ingenia 3.0 3
MP5 F 56-60 GE Medical Signa Artist 1.5 3
MP6 F 61-65 GE Medical Signa Artist 1.5 3
MP7 M 66-70 GE Medical SignaHDxt 1.5 5
MP8 F 41-45 Philips Ingenia 3.0 3
Glioblastoma Patients (GBM)
Name Sex Age Range Manufacturer Model Magnetic Slice Thickness
Field (T)

GP1 M 71-75 GE Medical SignaHDxt 1.5 5
GP2 F 66-70 GE Medical SignaHDxt 1.5 5
GP3 F 76-80 GE Medical SignaHDxt 1.5 5
GP4 F 26-30 Philips Ingenia 3.0 3
GP5 M 66-70 GE Medical SignaHDxt 1.5 5
GP6 F 56-60 Philips Ingenia 3.0 3
GP7 M 61-65 GE Medical SignaHDxt 1.5 5
GP8 F 71-75 Philips Ingenia 3.0 3
GP9 M 46-50 Philips Ingenia 3.0 3




Table 28S. Clinical brain tumor - medical imaging based application study through 2015-2024

dataset
Yea Model Type MRI datasets | No.of | Metric: Trainable Multiclassification
r for TVT MRI Accurac | Parameters Tasks
scans y
1 2021 CNN RIDER, 2990 99.33 11123938 Tumor vs Non-tumor
REMBRAND,
CNN TCGA-LGG 3950 92.66 628885 Normal, Glioma, Meningioma,
and Chengetal Pituitary, Metastatic
CNN 4570 98.14 3245347 Grades II, Il and IV
2 | 2020 | CNN Cheng et al 3064 96.56 33655939 Glioma, Meningioma, Pituitary
3 | 2022 | CNN-LSTM Kaggle 3264 92.00 1510273 Glioma, Meningioma, Pituitary
4 | 2022 | CNN-SVM Classifier | BraTS 2018 3720 96.19 42079040 High-Grade Glioma
CNN-SVM Classifier 4960 95.46 42079040 Low-Grade Glioma
5 | 2023 InceptionV3 Kaggle Brain 7023 98.00 23851784 Glioma, Meningioma, Pituitary,
Tumor Normal
MRI Dataset
VGG19 96.00 143667240 Glioma, Meningioma, Pituitary,
Normal
DenseNet121 96.00 8062504 Glioma, Meningioma, Pituitary,
Normal
MobileNet 96.00 4253864 Glioma, Meningioma, Pituitary,
Normal
6 | 2021 | Inception ResNetv2 | Cheng etal 3064 99.69 9445379 Glioma, Meningioma, Pituitary
7 | 2023 | CNN BraTS 2017, NA 97.87,97.67,] 287809 Grades I, 11, Ill and IV
BraTS 2018, (by dataset)
BraTS 2019
and BVHB
8 | 2022 | MRI-based BraTS 2020 and NA 69.80 25000000 Peritumoral edema,
ResUNet approach CPM-RadPath 2020 Enhancing tumor, Necrosis
9 | 2023 | EfficientNetBO CE-MRI Figshare 2145 97.43 4100000 Glioma, Meningioma, Pituitary
EfficientNetB1 98.66 6610000 Glioma, Meningioma, Pituitary
EfficientNetB2 99.06 7810000 Glioma, Meningioma, Pituitary
EfficientNetB3 98.08 10830000 Glioma, Meningioma, Pituitary
EfficientNetB4 97.90 17850000 Glioma, Meningioma, Pituitary
10| 2021 Cascade CNN BraTS 2018 NA 92.03,91.13,] 22491460 Segmentation : Whole,

87.26 (Dice)

Enhancing, Core tumor




11| 2023 AlexNet CNN+ ML Kaggle Brain 3600 88.75, 62378344 Glioma, Meningioma, Pituitary,
Classifiers Tumor Classification 98.15, 86.25, Normal
(MRI) and Br35H 100.00
12| 2016 InputCascadeCNN BraTS 2013 NA 88.00, 79.00,| 802368 Segmentation : Whole,
73.00 (Dice) Enhancing, Core tumor
LocalCascadeCNN NA 88.00, 76.00,| 654368 Segmentation : Whole,
72.00 (Dice) Enhancing, Core tumor
MFCascadeCNN NA 86.00,77.00,| 662513 Segmentation : Whole,
73.00 (Dice) Enhancing and Core tumor
13]| 2018 | AlexNet Cancer Imaging 4069 91.16 213122435 Healthy, Low-High grade
Archive Glioma
14| 2022 | ResNet50-CNN Chengetal and 3064 + 99.10 25600000 Glioma, Meningioma, Pituitary
BMIDS 253 (CV)
VGG-16-CNN 96.78 138400000 Glioma, Meningioma, Pituitary
Inception V3-CNN 97.00 138400000 Glioma, Meningioma, Pituitary
DenseNet201-CNB 97.00 20200000 Glioma, Meningioma, Pituitary
Xception-CNN 98.20 22900000 Glioma, Meningioma, Pituitary
MobilleNet-CNN 98.08 4300000 Glioma, Meningioma, Pituitary
151 2018 | CNN BraTsS 2017 NA 92.98 281541 Glioma ROI segmentation
CNN NA 89.50 164525 Low-High grade Glioma
16| 2023 | ResNext101 and Kaggle Brain Tumor | 1800 99.98, 2325568 Glioma, Pituitary
VGG19 Datasets 100.00
17| 2022 | ResNet-50 BraTS 2019 NA 98.62 2097922 Low grade, High grade
and BraTS 2021
3D DeepSeg NA 84.10,87.33 | 25617539 Segmentation : Whole,
92.00 (Dice) Enhancing and Core tumor
18| 2022 | SCENIC: CNN BraTS 2017 4053 98.30 168414 Tumor vs Non-tumor
Non-Brain Tumor based MRI imaging application models
Year Model type Metric: Trainable Tasks
Accuracy | Parameters
19 2015 Hierarchical Feature Representation AD vs. healthy Normal Control (NC),
and Multimodal Fusion with Deep 95.35, 85.67, 2003000 MCI vs. NC, and MCI converter vs. MCI
Learning 74.58 non-converter
20 2022 VGG-16+ALFB 97.12 4096000 Alzheimer’s Multiclassification of
dementia stages
VGG-19+ALFB 98.47 144000000 Alzheimer’s Multiclassification of
dementia stages
21 2021 CNN 95.52 3245860 COVID-19 severity: Mild, Moderate,
Severe, Critical
22 2020 CNN 99.57 408194 COVID-19 detection




CNN 98.27 677507 Normal, COVID-19. Pneumonia
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