Left atrioventricular valve regurgitation after complete atrioventricular septal defect repair

Takumi Kawase

Nagoya City University Graduate School of Medical Sciences

t.kawase0528@gmail.com

Keiichi Itatani

Nagoya City University Graduate School of Medical Sciences

Jiryo Haibara

Nagoya City University Graduate School of Medical Sciences

Shota Masaki

Nagoya City University Graduate School of Medical Sciences

Hisao Suda

Nagoya City University Graduate School of Medical Sciences

Case Report

Keywords: complete atrioventricular septal defect, atrioventricular valve regurgitation, left ventricular outflow tract stenosis

Posted Date: March 15th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4081618/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: No competing interests reported.
Abstract

Background:

Left ventricular outflow tract stenosis and atrioventricular valve regurgitation are often problems encountered in adulthood after complete atrioventricular septal defect repair.

The surgical approach and indications for managing long-term outcomes such as left atrioventricular valve regurgitation and left ventricular outflow tract stenosis after complete atrioventricular septal defect repair have been discussed.

Case presentation:

A 23-year-old woman with intellectual disability was diagnosed with complete atrioventricular septal defect and underwent two-patch repair without cleft closure in childhood. Follow-up examination in adulthood demonstrated moderate left-sided atrioventricular valve regurgitation and left ventricular outflow tract stenosis with a circumferential ridge (peak velocity, 3.7 m/s; pressure gradient, 54 mmHg). Intraoperative findings showed a circumferential ridge under the aortic valve, and we removed the ridge. In addition, a cleft was present at the anterior leaflet, and we completely closed the cleft. Anticoagulation therapy was not initiated, and no embolic complications occurred. Follow-up echocardiography demonstrated no ridge under the aortic valve and only mild-range left AVVR.

Conclusions:

We successfully performed surgical treatment without valve replacement or anticoagulation therapy in a patient with poor medical compliance. Delayed reoperation leads to degeneration of the valve structure and makes more difficult to repair. Clinicians must evaluate atrioventricular valve regurgitation in combination with the dilatation annulus, cleft size, and depth of the leaflet coaptation area.

Background

The surgical approach and indications for managing long-term outcomes such as left atrioventricular valve regurgitation (AVVR) and left ventricular outflow tract stenosis (LVOTS) after complete atrioventricular septal defect (AVSD) repair have been discussed [1, 2].

Case presentation

A 23-year-old woman who had undergone two-patch repair with a TISSUE-GUARD patch (Baxter, Deerfield, IL, USA) for Rastelli type A complete AVSD in childhood was referred to our department because of left AVVR and LVOTS. Asymptomatic mild AVVR and LVOTS were noted after the intracardiac repair in childhood. Follow-up echocardiography showed progression of the AVVR and LVOTS.
Electrocardiogram showed complete right bundle branch block and QRS width of 0.128 seconds. Three-dimensional transesophageal echocardiography showed a completely open cleft of the left atrioventricular valve leaflet (Fig. 1A) and a moderate-range regurgitation jet (vena contracta = 3.8 mm) (Fig. 1B). Additionally, a circumferential ridge was present under the aortic valve (Fig. 1C). The peak velocity through the LVOT was 3.7 m/s with a pressure gradient of 54 mmHg. Enhanced computed tomography demonstrated a ridge of the LVOT 10 mm beneath the aortic valve (Fig. 1D). No restriction of aortic valve motion or calcification was present.

Cardiopulmonary bypass was established with aortic perfusion and right internal jugular and inferior vena cava drainage. The aortic valve had no degeneration, but a circumferential ridge without calcification was found approximately 10 mm beneath the aortic valve, without continuity to the left atrioventricular valve annulus (Fig. 2A). We circumferentially removed the ridge. When approaching the left atrioventricular valve through the atrial septum, a large cleft at the middle of the anterior leaflet caused regurgitation from the cleft without annular dilatation (Fig. 2B). The total length of the cleft was examined by attaching a thread to the tip of the cleft and pulling it forward. We then completely closed the cleft, and a saline test showed no leakage (Video 1). Ring annuloplasty was not performed because of its potential to cause outflow stenosis.

The postoperative course was uneventful, and the patient was discharged on postoperative day 11. Anticoagulation therapy was not initiated, and no embolic complications occurred. Follow-up echocardiography demonstrated no ridge under the aortic valve and only mild-range left AVVR.

Discussion and Conclusions

Left AVVR and LVOTS are common long-term problems after AVSD repair. An unclosed cleft is a well-known cause of left AVVR [1, 2]. Stulak et al. [1] reported that the most common indication for reoperation in AVSD was left AVVR, partly caused by an unclosed cleft and previous cleft repair dehiscence. They found no differences in outcomes between valve repair and replacement.

Alexi-Meskishvili et al. [2] demonstrated that valve anomalies, including dysplastic valvular tissue and fibrotic leaflets, can lead to recurrent regurgitation or valve replacement. We speculate that delayed reoperation leads to degeneration of the valve structure. However, quantitative evaluation of AVVR is difficult because of the eccentric regurgitation jet, and the optimal timing for reoperation might be missed. The surgical indication should not be based only on the regurgitation grade. Clinicians must evaluate AVVR in combination with the dilatation annulus, cleft size, and depth of the leaflet coaptation area.

In terms of repair techniques, complete cleft closure is required for long-term durability, and ring annuloplasty might be useful [1, 2]. When performing annuloplasty in AVVR repair, care should be taken to avoid creating postoperative LVOTS. Foker [3] reported that discrete subaortic stenosis has a circular fibromuscular rim of tissue and is an acquired lesion. The author also stated that discrete subaortic stenosis is generated by shear forces and is associated with cardiac structural abnormalities [3]. Leichter
et al. [4] described 35 patients with subaortic valvular stenosis, 2 of whom had an AVSD anatomy. The authors speculated that anatomical outflow narrowing in AVSD leads to development of subaortic valvular stenosis [4]. In our case, left AVVR secondary to a large cleft could be controlled by cleft closure alone; ring annuloplasty was unnecessary.

Abbreviations

AVVR: atrioventricular valve regurgitation

LVOTS: left ventricular outflow tract stenosis

AVSD: complete atrioventricular septal defect

Declarations

Ethics approval and consent to participate:

Informed consent was obtained from patient using our institutional consent form and an opt-out method.

Consent for publication / Consent for publication:

Informed consent was obtained from patient using our institutional consent form and an opt-out method.

Data Availability:

The data underlying this article will be shared on reasonable request to the corresponding author.

Competing interests:

Keiichi Itatani has a stock option in Cardio Flow Design Inc.

Funding:

None

Authors’ contributions:

Takumi Kawase: Data curation; Writing-original draft, Keiichi Itatani: Conceptualization; Writing-review & editing, Haibara Jiryo: Data curation, Shota Masaki: Data curation, Hisao Suda: Supervision

Acknowledgment:

Not applicable

References

Figures

Figure 1
Preoperative examinations

A: Completely opened cleft.

B: Severe regurgitation from a cleft.

C: Abnormal ridge of the LVOT.

D: Ridge of the LVOT 10 mm beneath the aortic valve.

Figure 2

Intraoperative findings

A: Abnormal ridge of the LVOT was located 10 mm beneath the aortic valve.

B: Completely opened cleft of left atrioventricular valve leaflet.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- videodata.mp4