Mesoscopic elasticity controls dynamin-driven fission of lipid tubules
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Construction of the mesoscopic pressure field for dynamin

In order to construct a mesoscale interpretation of the dynamin action on axisymmetric lipid tubules, eventually
defining p(r, z) of the main text, we ought to start from the structure of the polymer and the molecular level activities
characterizing the GTP-consuming conformational changes. The prototypical dynamin monomer comprises five do-
mains [IH4] organized as follows. A rigid stalk connects to the membrane-binding pleckstrin homology domain (PH)
via flexible linkers and to the outwards-facing GTPase domain (G) through a bundle signaling element (BSE). The
latter links to the stalk and G domains via the flexible joints hinge 1 and hinge 2, respectively, while an unstructured
C-terminal, the proline-rich domain (PRD), interacts with endocytic recruiting proteins. Stalks are found to crisscross
associate via interfaces 2 in an anti-parallel dimer, itself constituting the building block of the helix, and consequently
tetramerize via interfaces 1 and 3 [3 5], these being associated to relatively soft bending modes [I], [6]. The geometry
and associated mechanics of the resultant helix are therefore defined by these interfaces and oligomerization may only
take place on compliant, high-curvature, and quasi-cylindrical lipid substrates.

Supposing the helix to be initially preassembled on the cylindrical substrate in the absence of GTP, we may model
the dynamin polymer as a chain, where each link stands for one anti-parallel stalk dimer. The PH domains of each
link are thence anchored to the underlying bilayer and are responsible for the force transmission onto the tubule [7].
Concurrently, G domains of adjacent rungs face each other on the outer layer of this chain-like structure while bundle
signaling elements (BSEs) flexibly connect them to the stalk links. Overall, these domains are coherently distributed
in concentric cylinders [§], where the lipid-protein interfaces occupy the innermost layer, oppositely to G domains.
Upon GTP addition, dimerization of apposed G domains is favored and, consequently, GTP hydrolysis triggers the
conformational change consisting in an angular contraction between the BSE and G domains about the flexible hinge
2. Eventually, the hydrolyzed nucleotide is released, thus completing the cycle that determines the GTP-consuming,
ratchet-like power stroke [0, [OHIT]. The latter mechanism results in an attraction force between the interested links of
the adjacent rungs and, given the specific geometry of G domains cross-dimerization, translates into a force component
parallel to the tubule axis, which is readily discharged on the tightly packed helix, and, more interestingly, a force
component tangential to the cylindrical structure and normal to the tubule’s axis. A joint effort of molecular dynamics,
structure-based simulations [I2] and single-molecule FRET observations provided a measure for this latter component,
resulting in a tangential force F, ~ 2.5 to 4pN acting so as to make the dimer slide in a helix-constriction sense [6].
Noteworthy, the elastic response of the helix to changes in curvature and torsion throughout tubule constriction is
found to be subdominant with respect to the energy cost for deforming the membrane [6]. Altogether, these features
substantiate the mesoscale interpretation of the dynamin polymer as a tightly packed helical chain coating the lipid
tubule on a H-wide region, qualitatively depicted in of the main text and here. Defining z
the axial coordinate of the tubule with zero reference at the middle of the coat and r the radial distance from the
latter axis, each element of the chain occupies a width comparable to the helical pitch h ~ 10mm in the z-direction,
rationalized by the strict packing visible in Cryo-EM experiments combined with 3D map reconstructions [2} [7, 13| [14],
whilst having a ~ 15nm thickness on the orthogonal plane spanned by r. Due to the relatively large thickness of the
dynamin coat, the external radii and pitch of the helix as well as the overall height H of the coat experience negligible
deformations for our purposes [15] [16]. Furthermore, the discussed conformational changes come along with a tilting
of the stalk [I1], thus reducing the distance between consecutive motors and keeping unaltered the external geometry
during constriction. As a matter of fact, the number of power stroke units per rung does not change sensibly during
the whole constriction process and assesses on a value of Ny ~ 13 [2] [3, [5] [10], [13], [15] [16].

We introduce a helical curve following the ideal locations of the stalk dimers (black curve in and B).
This is defined by a h & 10 nm pitch and has a R & (r, + 8 nm) radial distance from the z-axis of the tubule, whose
midsurface radius is r,. This curve is parametrized by its arc length s € [0, L] and defines a Frenet-Serret orthonormal
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FIG. 1. The mesoscopic effect of dynamin on the lipid tubule. (A) The dynamin polymer has an helical structure and is
here represented with a (green) chain coiled around the (purple) lipid tubule in the initial, undeformed configuration. The
black helical curve, parametrized by its arc length s, passes through the hypothetical locations of the stalk domains and
defines the Frenet-Serret orthonormal basis shown in white. Each chain link stands for a dynamin dimer and, therefore, two
oppositely oriented G-domains stick out from each. The G-domains of adjacent rungs interact in presence of GTP and produce
an attractive force (the red arrow F') between the interested links (one of which is shown in red). This force is statistically
present in every pair of oppositely facing chain elements of adjacent rungs with the appropriate inclination, see [6] for a detailed
explanation. (B) In order to model the pressure experienced by the lipid bilayer during dynamin constriction, we sketch the
structure of a short (angular span is df and radius R) helix branch where the dynamin chain and the interested membrane
region do balance. Under the hypotheses detailed in the text, each piece of the helical curve (black curve) is subjected to a
tangential tension N (s) and a distributed tangential load f; representing the diffuse action of the power strokes. Finally, the
diffuse chain (shown in green) is balanced via a radial force per unit length exerted by the membrane reaction h py, and thought
of as acting on its rm-radius midsurface. The assumption of quasi-cylindrical structure leads to n ~ —7 and b~ 2, with z and
r the axial and radial coordinates of the axisymmetric system.

basis composed of the tangential 7, normal n, and binormal b unit vectors. The chain is able to bear axial tension
(N(s)7), but no relevant bending response is expected in the range of deformations it experiences [l [6]. Moreover, a
mechanical balance of forces may be assumed since inertial and damping effects are negligible for the chain. Based on
this, we can evaluate the axial load the chain experiences during constriction and to which the enclosed bilayer shall
react through a radial pressure py,. Noticeably, only radial forces are expected from the bilayer since shear stresses
due to viscous effects on the bilayer surface are not included in this analysis, following the remarked [17, 18] time-scale
separation between the fast lateral reorganization of lipids (~ 10ms) and the slow dynamin kinetics (~ 0.1 to 1s
[1]). Under the hypotheses that the tubule is axisymmetric and quasi-cylindrical (i.e. 7y, varies slowly along z) and
recognizing the modest inclination of the helix (h/(2rR) < 1), we approximate each rung as horizontal and enforce
A~ —7 and b ~ 2. All these considerations imply that R only slightly changes along the helix length. The force
F exerted by the power stroke on a single link is depicted by the red arrow in [Figure TA. The first homogenization
step consists of distributing the tangential components F, of these forces as a force per unit length along s, namely
fr = F:N4/(2wR) in [Figure 1B, with Ny the number of dimers per rung. The sketch in assists in the
expression of the mechanical balance for a short branch of the helix (or chain), where 7, and R are essentially
constant. Indicating with df the infinitesimal angular span of this branch and with ds its extension on the arc length,
the balance reads

—N(s)sin — —N(s+ds)sin—+/ hpm(s) rmcosada =0, (S.1)
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We recall that the force component along 2 is straightforwardly balanced by the strict packing of the chain. Since df
is infinitesimal, p(s) and f,(s) vary slowly along s, and ds = Rd#f, at the first order of approximation we get

dN (s)
ds

Noticeably, in the radial force stemming from the axial tension N(s) is balanced by the force per unit
length sustained by the lipid bilayer (here thought of as exerted by the membrane midsurface). This latter consists
of the pressure py, times the height of the contact region of each dimer, approximated as h. Since each chain link
presents two oppositely oriented G domains, the inner turns of long polymers are statistically in balance. As a result,
fr(s) is different from zero only in the rungs at the edge of the helix and these effectively build up the tension that
is thereof maintained constant in the inner branches of the chain. Altogether, we solve for the axial tension and
membrane pressure as

—N(8) +rmhpm(s) =0 and

— fr(s) = 0. (5.3)

NyF, NFr s
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In these expressions, Reyt indicates the radius of the (equal) external rungs of the helix and it is considered constant
therein. Following the above assumptions and enforcing an axisymmetry approximation, it is possible to change the
parametrization from the arc length s to the tubule axial coordinate z = s h/(2rR) — H/2 and radius r,. Eventually,
we obtain the z-dependence shown in the red graph of and reading

NuF;, h 5
— < H/2—-h
e B 0=l < H/
(T, 2) = { NuF, H/2 — - , ,
hry h
0 otherwise

where h = min(h, H — h) takes into account the case of short dynamins with H < 2h. As reasonable, this expression
is valid for polymers that present at least one full turn, i.e. H > h.

Since the dynamin helix cannot constrict down to a null internal lumen of the PH domains due to its molecular
structure [B] [13], we smoothly fade the pressure to zero between ry, &~ 3nm and r,, = 0, as evidenced in the blue graph
of . The modified mesoscopic pressure acting on the membrane (therefore oppositely oriented with respect
to what shown in ) and entering the mathematical model in of the main text is ultimately

expressed in the cylindrical coordinates r and z as

p(r,2) = (tanh \%)4 Pun(r, 2) . (S.6)

The dynamin is supposed to depolymerize and stop its constricting action whenever the tubule ruptures [19] and we
implement this feature by annihilating the pressure field as soon as the value ¢(r = 0, z) = — tanh(3/1/2) is reached
anywhere on the axis, 7.e. when even the outermost surface of the bilayer is severed. Noticeably, in our model, no
depolymerization energy is deposited on the lipid membrane, in accordance with recent findings [10] [20].

Linearized elasticity predictions

Linearized elasticity is crucial for determining the origin of fission pathway bifurcation in long coats, i.e. the
transition from a single neck to multiple ones, coming along with the formation of an enclosed, constricted, and
cylindrical structure. First, an axisymmetric expression for the perturbed shape equation of the elastic Canham-
Helfrich functional in is retrieved [21] and suitably parametrized in terms of the distance r(z) from the



symmetry axis and the angle 1(z) between the r-axis and the tangent to the midplane profile. This reads
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with s = sin, ¢ = cos ¢, and p the imposed pressure distribution, itself function of r and . This differential equation
is then expanded in a weakly perturbed, nearly cylindrical approximation, where p = ap, r(z) = R+ au(z), ¥ ~ 7/2,

P is O(1), and « is small. In the limit for @« — 0, [Equation S.7|provides R = R, = \/kp/(27). Then, retaining only
the linear terms in «, the above equation greatly simplifies to

4

R:

where the superscript in u(®) refers to the differentiation order with respect to z. The Green’s function of the unforced
equation, p = 0, under the boundary conditions of finite and flat perturbation far from the center of the tubule,
z — £00, is thence

_lz—yl — —
gz —y) = 4\R[i2ne V2Rin <cos L%Ri' + sin |\Z/§Rﬂ> ) (S.9)

with y the position of the disturbance. This equation reveals that g(z —y) is an even function and that the lipid tubule
response to a weak perturbation decays exponentially with an elastic relaxation length v/2R;,, as shown in .
Moreover, the trigonometric functions in provide the oscillations in the membrane deformation which
are are now shown to be at the origin of the fission site splitting.

Indeed, the deformation resulting from a constant, rectangular-windowed pressure, p(z) = —ky/R TI(2/H) with
II(z/H) the rectangular function of width H, may be computed as the convolution

u(z) = /Lg(z —y)p(y)dy . (5.10)

The resulting deformation has infinite stationary points. Analytically finding the maximum constriction sites, namely
the necks, is not an easy task, since one should start from solving

kb H/2 H/2—z
u'(z) = Rt g (z—v) dz:/ gd(@)de=0 = g(H/2—2)=9g(H/2+ z), (S.11)
in J—H/2 —H/2—=2

for z. the stationary points. Nonetheless, we are only interested in predicting the value H, above which the maximum
constriction sites are more than one and located at z # 0. provides some examples of deformed profiles for
different perturbation widths H. As evident from the sequence of green-black-red-blue curves, while increasing H the
minimum of the plot shifts from z = 0 to z > 0. This suggests that there is a smooth transition condition where the
minima are very close to z = 0. Under this hypothesis, we expand the above equation for z. about z = 0 and obtain,
in the limit z. — 0,

m s

H [ H .

is solved at the zeroth order in z. — 0 by all values of H. This is the trivial solution since the
deformation is always an even function and admits a null derivative in z = 0 thereof. When looking for stationary
points close but not equal to zero, we need to solve for the first order in z, — 0. This requires H = 2v/2nRi,k,
with k£ an integer number. The smallest positive value of this set is what we called threshold height for the linearized
elasticity problem, therefore

Hf. =2V2nRi, . (S.13)
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FIG. 2. Linearized elasticity analyses. (A) Graph of the Green function, expressed in for the linearized elastic
problem in (B) Deformations obtained under a squared perturbation of unitary intensity and different widths, see
The green, black, red, and blue curves correspond to perturbation of widths 0, 2Rin, 2v/27 Rin, and 3v/27 Rin,
respectively. The red curve marks the separation between the deformations with a unique maximum constriction site, or neck,
at z = 0 (like the black curve) and those with two distinct necks at z # 0 (like the blue curve). Only the positive semi-axis
z > 0 is shown in the two panels since the problem is symmetric with respect to z = 0.

Lumen conductance

Among the available experimental techniques, measuring the conductance of the inner lumen of a tubule is a well-
known, convenient, and quite precise (in terms of geometry and time resolution) mean to follow real-time constriction
of lipid tubules [19, 22| 23]. In order to estimate the mobility of the evolution dynamics adopted in our numerical
approach and, additionally, propose an explanation for dynamin-driven constriction data, we compute and measure
the lumen conductance in our simulations.

There exist different levels of accuracy in computing the conductance of a channel. In particular, when the cross-
sectional dimensions of the system are in the order of a few nanometers, the accumulation of additional charge carriers
in the Debye layer near the membrane walls influence the electric resistance of the lumen. Following the indications
of [22H24], we compute the Debye corrected lumen conductance as

we? D20y, r? o2
= ———/1 < | .14
¢ kgT L + e2C¢r? (5-14)

Here, D = 2 x 107?m?2s™! is the ion diffusivity, e the elementary charge, C, = 0.15 M/L the bulk charges con-
centration, o, = 0.5enm~2 the charge density on the inner monolayer, r the radius of the inner lumen, and L
the length of the tubule. The first ration in the conductance expression is usually called bulk specific resistivity,




Py = 62]“[’)37271@) ~ 66.7 Ohm cm. The reported values are adopted from the indications of [19, 22] [23]. This expression for
the Debye-corrected conductance was proved to be effective for lumen radii down to ~ 2nm in the case of mean-field
approaches with charged capillary walls [24, 25]. Eventually, the normalized conductance of the numerical tubule

lumen is computed as
L L/2 o2
G,=— 2 ¢ d , S.15
e o N GG B (5.15)

with r9 the initial lumen radius.

Determining the mobility and reference time of the system

Though most of the results discussed in this work pertain to time-independent observables of the system, such
as critical or equilibrium quantities, we are interested in assessing the physical meaning of the dissipative dynamics
imposed to the order parameter. Therefore, we both validate the consistency of with real-time experi-
mental observations as well as estimate the mobility of the system, My¢. The selected benchmark is the time-resolved
normalized conductance of the tubule lumen during constriction induced by osmotic pressure, provided by Bashkirov
et al. in [I9]. We reproduce the same setting by imposing v = 5x 10=* Nm~! (a value taking into account the electric
potential effects on surface tension [23]), k, = 16 kT, and R;, =~ 8 nm thereof. The tubule length is L = 1.4 uym and
the external osmotic pressure is computed as

p(r,z) = —NakpT [(W - 1) A+ ACO] : (S.16)

with Na the Avogadro constant and [,,. the membrane thickness. The initial osmotic concentration inside the tubule
is ¢ and its difference with the external aqueous phase osmolarity is Ac? at the beginning. As shown in [19],
the pressure exerted on the lipid bilayer is proportional to the osmotic concentration difference but, as pointed out
n [26], the inner environment becomes more concentrated the more the tubule is constricted, thereby providing the
dependence on r in By imposing osmotic concentrations analogous to those in [19], i.e. ¢, = 0.220sm
and Ac® = —0.38 Osm, we evolve the system and measure the Debye-corrected and normalized conductance of the
lumen. shows the comparison of the numerical and experimental conductances, GE*™ (blue dots) and G
(black shaded curve), respectively. From these, we are able to estimate the reference time of the numerical solution. In
particular, we first fit the two curves with exponentially decaying functions with the same steady-state conductances
and then match their decay times. Ultimately, we get the reference time 7z = 0.005 s for the numerical results. The
non-dimensional form of provides a relationship between 7r and the phase field mobility, resulting in
My = 4.04 nm?/(skgT). As will be demonstrated later on, this phase field mobility is, in general, linked to the sharp
one, Mgparp, by the specific choice of e.

Estimating the analytical fission time

Under the hypothesis of perfectly cylindrical tubule and related dynamics, with R being the radius of its mid-surface
T, it is possible to explicitly link the order parameter to the geometry of the membrane. In particular, defining n the
signed distance from I', we write

oz, t) = ¢(r, R(t)) = ¢p(n(t)) where n(t) =r — R(t). (5.17)

If the tubule radius varies by a small amount, J R, the corresponding change expected on the order parameter is

6(r R+ 0R) = o(r. R) + 22| oR, (S.18)
OR|, n
__99
OR = ¢ = —7 OR. (S.19)

On the other hand, we know that the free energy functional depending on the phase field, namely the Ginzburg-Landau

free energy in |[Equation 3| converges to the sharp energy (Equation 1|augmented by a proper interaction contribution)
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FIG. 3. Reference time estimation through osmotic pressure constriction. The Debye-corrected and normalized conductance of
the tubule internal lumen is shown during the time evolution of a tubule constricted by a hypertonic solution. Numerical (blue
dots, with numerical time ¢t* on top axis) and experimental [19] (black shaded curve, with actual time on the bottom axis) results
are shown. The same mesoscopic experimental conditions are reproduced in the simulation. Specifically, v = 5 x 1074 Nm ™!,
ky = 16 kT, and Rin =~ 8nm thereof. The osmotic pressure is computed as indicated by in the text, with
d =0.220sm and Ac® = —0.38 Osm, the latter value granting the same steady state conductance. Exponentially decaying
functions are used to fit the data (dashed black line for experimental and dashed red for numerical) in order to retrieve the
ratio of the decay times, b/d = 7r = 0.005 s. For the sake of completeness, the other fitting parameters are a = b ~ 0.51.

in the limit of vanishing e. It is worth noticing that we are referring to a condition where the Canham-Helfrich theory
is expected to hold since the hypothesis of small width-to-radius ratio is satisfied. As also supported by [27], not only
the diffuse interface energy converges to the sharp one, but also its variation as long as it is determined by a suitable
displacement (i.e. following a gradient flow). Defining R;, = 1/ks»/(27) and given a certain 0 R, then

_ stharp (R)

IOR, (S.20)

SF[¢] = / ‘;—Fw AV 50 5 e (R)
o 00

where the sharp free energy function, Hsharp(R), consists in the Canham-Helfrich Hamiltonian augmented with an

interaction term and only accounting for perfectly cylindrical configurations. In particular, the interaction is expressed

by an inward pressure field, p(R), depending on the sole radius, R, of the cylindrical membrane. It is then possible

to write the sharp energy as

R

+y2wRL + 27TL/ p(r)rdr, (S5.21)
Ro

L

Hsharp(R) = kb R



upon exploiting p(r)dV = p(r)2mwrLdr. Now, since

99 SF 9]
T —Mp¢ 56 (S.22)
we can compute
/ 8qb(SquV —M, / 5(;5 dv, (S5.23)
which becomes
e 6¢ stharp( )
27 L — | — —————0R. .24
T /0 T <8n> ORdr IR OR (S5.24)
06\> W
Noticing that 3¢/(2v/2) ((%) — d(n) for €/Ri, — 0, we obtain
2v2 dR _ dHsharp(R)
2m L—RE(SR M, T(SR (S5.25)
and
dR 3eMpr  dHsharp (R )

= = S.26
dt 47r\fLR dR ( )

Ultimately, we retrieve the evolution equation for the tubule radius corresponding to the solution of the phase field
dynamics in reading

dR 3 k 2

i Y Y ( b+”+2(R)) (S.27)

42 R

can also be straightforwardly obtained from the Allen-Cahn dynamics based on the general sharp
energy, Hsharp [U], and reads

8771/ 5Hsharp [’U,]

= 7M§ ar 5 2
ot b T S (5:28)

where
k
Hsharp /f dS / |: b 2M) +'7:| ds+HmteraCt10n[u] (829)

is the general Canham-Helfrich Hamiltonian augmented with the pressure contribution, Hinteraction[t]. Exploiting
dS = jdSp, the functional derivative is

SHanaslu] _ f | 135

du du  jou’ (S.30)

For the particular case of interest here, namely a cylindrical geometry where u = (R cos 8, Rsin 6, z) and Hinteraction U] =
JrdSj—t flfo drp(r)j(r) =2nL f}ii dr p(r)r, [Equation S.30|is

5Hsharp [u} o kb Y
W = | o+ +P(R) (S.31)

with np, now, the outward pointing surface normal. Noticeably, recalling [Equation S.21]and knowing that R = u-nr,
[Equations 5.28 and [S.31] provide the evolution equation for the cylinder radius

dR Msharp stharp (R)

_— . . 2
i~ " 2rLR  dR (5:32)
By comparison with the diffuse and sharp mobilities are related by
3 4
Msharp = ]\4[in6 = 3.57 ﬂ (833)

2\/5 s kT
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where Mpyr = 4.04nm?/(skpT) (see previous sections) and € = 5/6 nm (see main text). [Equation S.33|highlights the
role of €, namely the diffuse interface thickness, in relating the sharp and diffuse mobilities of the system.

Defining p = R/ Ry, , [Equation S.27|reads

dp v p* = 1+p(R)Riny'p?
L 7 A ——— , S.34
dt h PR2 p3 (8:34)
which, in the case of free, unforced tubule (p(R) = 0), is solved by
% +log(|p? — 1)) = 72MshmpRl.2 t + const . (5.35)
For an unforced tubule with p ~ 1 and p # 1, the solution is approximated by
_ 27Mgharp "
pt) =1+ (p(t=0) =D " (S.36)
where the free relaxation time is
R?
T = R ) S . S.37
Three 27Msharp ( )
This same approach might be exploited in order to get an estimate of the fission time in the presence of a dynamin
covering the entire tubule. In this scenario, the pressure is p(R) = N;jg*, and the solution gets
2, 7 2 7 el
p°+ =log(lp® — =|) = —Msharp—=5 — t + const, (S.38)
g g "RY oy

where 5 = v + NgF,/h > . Under the hypotheses of p ~ 1 and p(¢t = 0) = 1, the approximate solution is

2Msharp ’72 )
)~y /11— —— | —— | t. S.39
(2 \/ R?, (v +3 (3:39)

Though it is valid only in the assumption of weak constriction and fully-covering coat, approximates
well enough the dynamics of the central radius obtained from the complete numerical simulations for long dynamins
(H > H*). Moreover, provides the time for reaching p = 0, namely the analytical fission time, which
is expressed as

R v+
= —1 . S.40
f 2]\4shatrp < ’72 > ( )

Despite the good accordance in the constriction phase, once the cylindrical structure approaches the equilibrium
reduced radius, peq = Rc/Rin = \/7/7, fission proceeds through the sole necks located at the edges of the coat. This
complex behavior is not captured by the analytical approximation and we therefore account for it through a fitted
correction

a(Fy) =1-0.302 + (6.821 pN?) F-2, (S.41)
which modifies the fission time as
R? Y+73
tr = (F,)——n . S.42
= o >2Msharp< : (5.42)

On the other hand, short dynamins (H < H*) do not present at all the cylindrical constriction and the above
estimates fail. Still, with the aim of providing a convenient formula valid for all values of H and F’., we fit the fission
times of numerical simulations and obtain the more general correction coefficient

\/ERin > ’

12nm < H < H*(Rin)

a(H,Rin, F,) = H — (11.871nm)

1—0.302 + (6.821 pN?) F2 H > H*(Ry,)

1+ 0.137
+ < : (5.43)
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FIG. 4. Fitted correction of the analytical fission time. [Equation S.40| provides an analytical fission time for perfectly

cylindrical systems. For actual cases, dynamins have a finite length, H, and membranes have a finite thickness, I, requiring a
correction to be introduced therefor. The numerical fission times found in the diffuse interface simulation campaign are shown
as symbols for different elastic parameters. Noticeably, the numerical fission time does not depend on H when H > H* and
the small, fitted correction only depends on F-. In the case of H < H”*, the correction depends both on R;, and H. The solid
lines show the fission time prediction modified by such corrections, see [Equation 5.43|

with H*(Rin) = (25.6nm) + 0.77R;, as found in main text. The rationale behind the fitting function for short
dynamins (H < H*) comes from the fact that edge effects decay as ~ V2R;, (see above sections for details). The
accuracy of the fitted corrections is shown in [Figure 4] against the available numerical fission times for different values
of the mesoscopic parameters. It is worth noticing that the correction is fairly small when dealing with intense
constriction activity, i.e. Fr ~4pN, and long dynamins.
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