

Genetic evaluation of the patients with clinically diagnosed inborn errors of immunity by whole exome sequencing: Results from a specialized research center for immunodeficiency in Türkiye

Journal of Clinical Immunology

Baran Erman^{1,2}, Umran Aba^{2,3}, Canberk Ipsir^{2,3}, Damla Pehlivan², Caner Aytekin⁴, Gökhan Cildir⁵, Begum Cicek¹, Ceren Bozkurt², Sidem Tekeoglu², Melisa Kaya², Ciğdem Aydoğmus⁶, Funda Cipe⁷, Gülsan Sucak⁸, Sevgi Bilgic Eltan⁹, Ahmet Özen⁹, Safa Barış⁹, Elif Karakoç-Aydiner⁹, Ayca Kıyıkım¹⁰, Betul Karaatmaca¹¹, Hulya Kose¹², Dilara Fatma Kocacık Uygun¹³, Fatih Çelmeli¹⁴, Tuğba Arıkoğlu¹⁵, Dilek Özcan¹⁶, Özlem Keskin¹⁷, Elif Arik¹⁷, Elif Soyak Aytekin¹⁸, Mahmut Cesur¹⁷, Ercan Küçükosmanoğlu¹⁷, Mehmet Kılıç¹⁹, Mutlu Yüksek²⁰, Zafer Bışakçı²¹, Saliha Esenboğa²², Deniz Çağdaş Ayvaz^{22,23}, Asena Pınar Sefer²⁴, Sükrü Nail Güner²⁵, Sevgi Keleş²⁵, İsmail Reisli²⁵, Uğur Muşabak²⁶, Nazlı Deveci Demirbas²⁷, Şule Haskoloğlu²⁷, Sara Sebnem Kılıç^{28,29}, Ayşe Metin¹¹, Figen Doğu²⁷, Aydan İkincioğulları^{27*}, İlhan Tezcan^{30*}

¹ Institute of Child Health, Hacettepe University, Ankara, Türkiye

² Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye

³ Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye

⁴ Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Türkiye

⁵ Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia

⁶ Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Türkiye

⁷ Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Türkiye

⁸ Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Türkiye

⁹ Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, İstanbul, Türkiye

¹⁰ Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, İstanbul University-Cerrahpasa, İstanbul, Türkiye

¹¹ Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye

¹² Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Türkiye

¹³ Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Türkiye

¹⁴ Republic of Türkiye Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Türkiye

¹⁵ Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Türkiye

¹⁶ Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Türkiye

¹⁷ Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye

¹⁸ Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Türkiye

¹⁹ Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Türkiye

²⁰ Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Türkiye

²¹ Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Türkiye

²² Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Türkiye

²³ Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye

²⁴ Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Türkiye

²⁵ Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Türkiye

²⁶ Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Ankara, Türkiye

²⁷ Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye

²⁸ Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye

²⁹ Translational Medicine, Bursa Uludag University, Translational Medicine, Bursa, Türkiye

³⁰ Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Türkiye

*These authors contributed equally to this work

Correspondence: Baran Erman, baranerman@gmail.com

Keywords: Inborn errors of immunity, next generation sequencing, whole exome sequencing, genetic diagnosis

Supplementary Table 1: Detailed evaluation of possible disease-causing monoallelic variants

Patient no	Gene	Variant	CADD	ACMG criteria	Associated features	Novelty	Reporting status	Functional demonstration
P19	<i>SAMD9L</i>	c.A2639C p.His880Pro	27.6	VUS	Dandy Walker malformation, low B cells	Novel	-	Aplastic anemia in bone marrow examination
P42	<i>CTLA4</i>	c.118G>A p.Val40Met	24.3	VUS	AIHA, enteropathy, reduced T and B cells	rs155365737 8	[1-4]	-
P43	<i>JAK1</i>	c.2485A>G p.Asn829Asp	23.7	VUS	IBD, lymphopenia, vitiligo	Novel	-	Increased phosphorylation of JAK1 and STAT1
P53	<i>ELANE</i>	c.703delG p.Val235TrpfsTer5	-	VUS	Recurrent bacterial infections, severe congenital neutropenia	Novel	-	Congenital neutropenia
P54	<i>HCK</i>	c.135_136delinsTG p.Pro46Ala	-	VUS	Nodulocystic acnes, cutaneous vasculitis, HSM	Novel	-	Increased phosphorylation of STAT5, high levels of inflammatory cytokines
P70	<i>FAS</i>	c.361C>T p.Arg121Trp	22.1	Pathogenic/ Likely Pathogenic	Splenomegaly, lymphadenopathy, ITP	rs121913078	[5]	-
P74	<i>CTLA4</i>	c.151C>T p.Arg51Ter	34	Pathogenic	Lymphadenopathy, lymphopenia, hypogammaglobulinemia, reduced switched memory B cells	rs606231417	[4, 6]	-
P82	<i>ELANE</i>	c.367-8C>A	-	VUS	Early onset IBD, oral aphthosis, recurrent gastrointestinal infections, severe congenital neutropenia	novel	-	Reduced/absence expression of ELANE by western blot
P85	<i>FAS</i>	c.772A>AG p.Lys258Glu	23.6	VUS	Lymphoproliferation, elevated DNT	novel	-	Aberrant lymphocyte apoptosis
P88	<i>BACH2</i>	c.745del p.Ser249ValfsTer93	-	Likely Pathogenic	IBD, pancreatitis, hypogammaglobulinemia	novel	-	Reduced/absence expression of BACH2 by western blot
P93	<i>CHD7</i>	c.1904A>T p.Asp635Val	27	VUS	Facial dysmorphic features, recurrent pulmonary infections, chronic severe diarrhea, reduced CD3 lymphocytes	rs752468864	-	Poor proliferative T cell response, fulfilling criteria for CHARGE syndrome [7]
P96	<i>TBK1</i>	c.1055T>C p.Leu352Pro	26.1	VUS	Enteroviral meningitis, recurrent sinopulmonary infections, failure to thrive	novel	-	Impaired immune response to TLR3-dependent viruses
P101	<i>PIK3CD</i>	c.1573G>A p.Glu525Lys	24.8	Pathogenic/ Likely Pathogenic	Lichen planus, fulminant hepatic failure, granuloma, ITP,	rs587777389	[8, 9]	-

					lymphoproliferation, reduced switched memory B cells			
P102	<i>FAS</i>	c.340G>A p.Glu114Lys	26.5	VUS	Missense	rs773565107	-	Aberrant lymphocyte apoptosis
P103	<i>STAT1</i>	c.1192G>A p.Gly397Ser	28.9	VUS	Recurrent pulmonary infections, bronchiectasis, CMC, nail dystrophy, severe growth retardation, hypothyroidism, hypergammaglobulinemia, CD4+ T cel lymphopenia	novel	-	
P104	<i>IL6ST</i>	c.2093C>A p.Ala698Glu	23.3	VUS	Recurrent pulmonary infections, bronchiectasis, severe eczema, hypogammaglobulinemia, elevated IgE, lymphopenia	rs745818447	-	
P122	<i>PIK3CD</i>	c.1573G>A p.Glu525Lys	29.6	Pathogenic/ Likely Pathogenic	EBV infection, lymphadenopathy, reduced IgA and IgG	rs587777389	[8, 9]	-

CADD: Combined Annotation Dependent Depletion ACMG: American College of Medical Genetics and Genomics VUS: Variant of Uncertain Significance

AIHA: Autoimmune hemolytic anemia HSM: Hepatosplenomegaly IBD: Inflammatory bowel disease ITP: Immune thrombocytopenic purpura DNT: Double negative T cells

References

1. Egg D, Rump IC, Mitsuiki N, Rojas-Restrepo J, Maccari ME, Schwab C, et al. Therapeutic options for CTLA-4 insufficiency. *J Allergy Clin Immunol.* 2022;149(2):736-46.
2. Hoshino A, Tanita K, Kanda K, Imadome KI, Shikama Y, Yasumi T, et al. High frequencies of asymptomatic Epstein-Barr virus viremia in affected and unaffected individuals with CTLA4 mutations. *Clin Immunol.* 2018;195:45-8.
3. Rae W, Ward D, Mattocks C, Pengelly RJ, Eren E, Patel SV, et al. Clinical efficacy of a next-generation sequencing gene panel for primary immunodeficiency diagnostics. *Clin Genet.* 2018;93(3):647-55.
4. Schwab C, Gabrysch A, Olbrich P, Patino V, Warnatz K, Wolff D, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. *J Allergy Clin Immunol.* 2018;142(6):1932-46.
5. Bettinardi A, Brugnoni D, Quiros-Roldan E, Malagoli A, La Grutta S, Correra A, Notarangelo LD. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. *Blood.* 1997;89(3):902-9.
6. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. *Science.* 2014;345(6204):1623-7.

7. Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. *Am J Med Genet A*. 2005;133A(3):306-8.
8. Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Scream N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: A large patient cohort study. *J Allergy Clin Immunol*. 2017;139(2):597-606 e4.
9. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. *Nat Immunol*. 2014;15(1):88-97.