

1 **SUPPORTING INFORMATION FOR**

2

3 **Robust fossil evidence for Proboscidean frugivory and its lasting impact on South**
4 **American ecosystems**

5

6 Corresponding author. Erwin González Guarda

7

8 Email: erwin.gonzalez@uoh.cl

9

10

11 **Supplementary Methods**

12

13 Materials

14

15 *Molars of Notiomastodon platensis*

16

17 In this study, we used a comprehensive multi-proxy approach involving stable
18 isotope analysis, dental microwear analysis, and analysis of microfossils from dental
19 calculus of 96 *N. platensis* molars. This analysis integrated newly collected samples
20 with previously published data^{1, 2, 3}.

21 The samples were procured from 40 sites, spanning latitudes between 31°S and
22 36°S (North–Central = Mediterranean climate) and between 38°S and 42°S (South–
23 Central = Temperate climate). The chronological range of the selected specimens
24 extends from approximately 30,000 to 12,000 cal yr BP, covering the Pleistocene–
25 Holocene transition. A complete compilation of the selected samples, along with their
26 respective analyses, is provided in Dataset (Supplementary Data).

27 *Stable isotope analysis.* This analytical technique yields data pertinent to the dietary
28 habits and trophic levels of the studied specimens. Additionally, it offers insights into
29 environmental and climatic variability. For this study, stable isotope analysis was
30 conducted on 24 new bioapatite samples extracted from dental enamel (Supplementary
31 Data).

32 *Dental microwear analysis.* This technique offers insights into the dietary habits of
33 mammals over the last days or weeks before their death, achieved through the
34 examination of microscopic features on tooth enamel occlusal surfaces. Specifically,
35 dental microwear sheds light into the available vegetation and habitat, as well as short-
36 term dietary traits^{4,5}. In this study, we used 22 new samples (compared to the study by
37 González-Guarda et al.²) for the analysis of dental microwear (Supplementary Table 6).

38 *Analysis of microfossils from dental calculus.* Plant micro remains found in dental
39 calculus offer direct insights into an animal's diet⁶ and can reflect long-term dietary
40 patterns⁷. However, the specific timeframe represented by dental calculus is uncertain
41 due to variable composition and formation processes among and within individuals⁸.

42 Consequently, pinpointing the exact time particular plant micro remains were
43 consumed is not possible⁹. Notably, older individuals present more microremains⁸,
44 suggesting that dental calculus may represent an average of multiple feeding events
45 throughout an animal's life, assuming no calculus deposits are replaced or removed. Our
46 study includes the analysis of 19 new samples from the occlusal surfaces of dental
47 enamel (Supplementary Table 6)

48

49 *Current samples*

50 We examined eight *Pudu puda* samples from Rivers District (39°48'30"S
51 73°14'30"O) to determine their $\delta^{18}\text{O}$ values (Supplementary Table 3 and Supplementary

52 Data). The $\delta^{13}\text{C}$ values in *P. puda* were obtained from the data published by González-
53 Guarda et al.³ (Supplementary Table 3). Additionally, we collected modern plant
54 samples ($n = 237$) from four locations (Supplementary Data): Tagua Tagua (34°S), Fray
55 Jorge National Park (30°S), and Tantauco Park (43°S). Our analysis also included $\delta^{13}\text{C}$
56 values of plants (from the Rivers District) published in González-Guarda et al.³

57

58 **Methods**

59 *Stable isotopes analysis (bioapatite)*

60 To obtain enamel samples, we used a rotary hand drill with a diamond-tipped
61 dental burr, targeting as large an area as possible to mitigate the seasonal bias at the
62 time of mineralization. Initially, molar surfaces were cleaned using a tungsten abrasive
63 drill bit, followed by drilling with a diamond bit to remove enamel. Each fossil molar
64 provided one sample band for oxygen and carbon isotope analysis. The powdered
65 enamel samples, ranging from 3.5 mg to 9.5 mg, underwent chemical analyses at the
66 Biomolecular Laboratory of the Institut Català de Paleoecología Humana i Evolució
67 Social (IPHES), following modified protocols from Koch et al.¹⁰ and Tornero et al.¹¹.

68 This involved treating the samples with 0.1 M acetic acid [CH_3COOH] (0.1 ml
69 solution/0.1 mg of sample) for four hours, neutralization with distilled water, and
70 freeze-drying. Individual analyses of pretreated powders were conducted using a
71 Thermo Kiel III device interfaced with a MAT Finnigan 253 at the Scientific and
72 Technological Centers of the University of Barcelona (CCiTUB), Spain. The samples
73 reacted in a vacuum with 100% phosphoric acid [H_3PO_4] at 70°C in individual vessels,
74 followed by purification in an automated cryogenic distillation system. Measurement
75 accuracy was ensured using two internal laboratory calcium carbonate standards (RC-1
76 and CECC) normalized to international standards NBS18 and NBS19.

77 A total of 16 RC-1 and CECC samples were measured (RC-1 expected values
78 +2.83‰ for $\delta^{13}\text{C}$; CECC expected values -20.78‰ for $\delta^{13}\text{C}$). The mean analytical
79 precision of RC-1 was +0.01‰ for $\delta^{13}\text{C}$ values and +0.01‰ for CECC. Stable isotope
80 results follow the δ -notation $\delta^H\text{X}_{\text{sample}} = [(R_{\text{sample}} - R_{\text{standard}})/R_{\text{standard}}] \times 1000$, where X is the
81 element, H is the mass of the rare, heavy isotope, and $R = ^{13}\text{C}/^{12}\text{C}$, or $^{18}\text{O}/^{16}\text{O}$. $\delta^{13}\text{C}$ and
82 $\delta^{18}\text{O}$ values are expressed in the Vienna-Pee Dee Belemnite (VPDB) standard, and $\delta^{18}\text{O}$
83 also in terms of the VSMOW standard (Vienna Standard Mean Ocean Water), using the
84 conversion formula: $\delta^{18}\text{O}_{\text{SMOW}} = (1.0309 \times \delta^{18}\text{O}_{\text{VPDB}}) + 30.909$.

85 For this study, we used $\delta^{13}\text{C}_{\text{atmCO}_2} = -6.5\text{\textperthousand}$ because it is an accepted value for
86 late Pleistocene studies¹². Modern vegetation stable isotope data were corrected for the
87 contemporary $^{13}\text{C}_{\text{atmCO}_2}$ composition of -8‰¹³. An Estimated Consumed Plants (ECP)
88 value for the mammals was derived from diet-to-tissue trophic discrimination studies¹¹,
89 comparing it with sampled modern vegetation. We applied the equation $\epsilon^* = 2.4 + 0.034$
90 (bm) to determine the enrichment between bioapatite and the diet of *P. puda* ($\epsilon^*_{\text{diet-}}$
91 bioapatite). Using the $\epsilon^*_{\text{diet-bioapatite}}$ value of *P. puda*'s ($\delta^{13}\text{C} = 12\text{\textperthousand}$), which is contingent on
92 its body mass (9.6 kg), we enhanced the reliability of $\delta^{13}\text{C}_{\text{bioapatite}}$ comparisons across
93 mammals of varying body masses¹⁴. For gomphotheres, we used an enrichment of
94 14.1‰ ($\epsilon^*_{\text{diet-bioapatite}}$)^{15, 16}. However, Acevedo et al.¹⁷ used an enrichment of 15‰ ($\epsilon^*_{\text{diet-}}$
95 bioapatite) based on an estimated body mass of gomphotheres of 6,000 kg. Consequently, a
96 multiproxy approach and consideration of isotopic proxy temporal resolution were
97 necessary to reduce the uncertainty in enrichment values.

98

99 *Stable isotopes analysis (vegetation)*

100 Given the evidence suggesting that *N. platensis* primarily browsed in the North-
101 Central region, we focused on sampling shrubs and trees across various environments

102 between 30°S and 43°S. The plants were collected and pressed and later oven-dried at
103 50°C in the laboratory. Analyses were conducted at the Laboratory for Biogeochemistry
104 and Applied Stable Isotopes (LABASI) of the Departamento de Ecología, Pontificia
105 Universidad Católica de Chile using a Thermo Delta V Advantage IRMS coupled with a
106 Flash2000 Elemental Analyzer. To ensure consistency, cross-lab comparisons were
107 conducted on identical samples, confirming reproducibility within the instruments' error
108 margins ($\pm 0.2\%$).

109

110 *Analysis of microfossils from dental calculus*

111 For calculus extraction, we first used dry cleaning to remove coarse sediment,
112 followed by acetone cleaning to remove any remaining adhered sediment. The calculus
113 was then carefully removed using a dental curette to collect small fragments, ensuring
114 minimal damage to the enamel surface.

115 Microfossils were extracted from the calculus samples using the chemical
116 processing method described by Wesolowski et al.¹⁸. To quantify microfossils in dental
117 calculus, a *Lycopodium* tablet was added to each sample. We then applied a 10%
118 hydrochloric acid solution to fully dissolve the carbonates. Following dissolution, the
119 samples were centrifuged at 1000 RPM for 5 min, and the supernatant was discarded.

120 The samples were then washed with distilled water and centrifuged again. After
121 the final centrifugation, the distilled water was replaced with 96% ethanol.

122 For microscopic examination, three slides per sample were prepared using
123 Entellan ® and analyzed under a polarized light microscope with 400x and 630x
124 magnification. All microfossils, including phytoliths, starch granules, charcoal, and
125 *Lycopodium* spores, were counted and recorded. We employed Maher's¹⁹ method as
126 modified by Wesolowski et al.²⁰, to calculate microfossil concentration.

127 *Dental microwear analysis.*

128 Microphotographs were captured with a Blackfly S digital camera and the Kivy
129 Mic Capture Z software. We used the Helicon Focus 7 software to merge images from
130 different focal planes for a greater depth of field and used ImageJ to add scale bars. To
131 minimize inter-observer error, all specimens were analyzed by two independent
132 observers (IRP and FR).

133

134 **Supplementary Results**

135

136 *Preservation of the isotopic signal in N. platensis*

137

138 The samples analyzed in this study showed an average $\Delta^{18}\text{O}_{\text{CO}_3-\text{PO}_4}$ value of
139 approximately 9.0‰, aligning with the standard $\Delta^{18}\text{O}_{\text{CO}_3-\text{PO}_4}$ range for unaltered
140 bioapatite of present-day mammals (i.e., 8.6 – 9.1‰)²¹. This alignment indicates the
141 preservation of original $\delta^{18}\text{O}_{\text{CO}_3}$ and $\delta^{18}\text{O}_{\text{PO}_4}$ values. The observed high correlation
142 coefficient between these isotopic values ($R = 0.9$, $p < 0.001$) supports the hypothesis
143 that CO_3^{2-} and PO_4^{3-} components in bioapatite are cogenetic precipitated in equilibrium
144 from body water occurring under the relatively invariant mammalian body
145 temperatures.

146

147 **Supplementary Discussion**

148

149 The objective of our study was to present robust evidence of the neotropical
150 anachronism hypothesis of Janzen and Martin²² and, consequently, the risk of extinction
151 of megafaunal fruit plants from Central Chile. Although our evidence is robust, we

152 discuss the paleoenvironmental and paleoclimatic context in which the discovery could
153 have occurred.

154 The finding of frugivory, combined with $\delta^{13}\text{C}_{\text{enamel}}$ values, suggests a large
155 standing biomass of shrubs or trees in central Chile during the late Pleistocene (Fig. 2)³.
156 This finding is consistent with pollen records from north-central^{23, 24}, and south-central
157 Chile²⁵. This correlation supports the hypothesis that the diet of South American
158 gomphotheres, such as *N. platensis*, was more influenced by resource availability than
159 by their potential dietary range^{26, 27, 2, 28, 29}. The presence of woody vegetation (resource
160 availability) in central Chile can likely be attributed to the moisture-retaining Andes and
161 Coastal Range and the Pacific Ocean's thermoregulatory effects³⁰. These environmental
162 factors may have facilitated a solid ecological link between woody vegetation and *N.*
163 *platensis*, increasing the likelihood of recording frugivory in central Chile. This
164 hypothesis also offers a plausible explanation for the lack of evidence for frugivory in
165 other regions of South America since most of the environments where gomphothere
166 fossils have been recorded are open or semi-open^{2, 16}.

167 Therefore, the evidence consistently suggests that gomphotheres were
168 frugivorous under a primarily forested environment. Notably, the discovery of dental
169 calculus evidence of frugivory involving a megafaunal fruit (*Jubaea chilensis*) –
170 currently outside its distribution range – challenges the expected range contraction of a
171 thermophilic species during Pleistocene glaciations. However, frugivory could also
172 represent isolated events, particularly given the presumed hyper-cold and humid late
173 Pleistocene paleoenvironment of central Chile^{3, 4}, which seemingly would not favor
174 megafaunal plant presence, apart from glacial relicts.

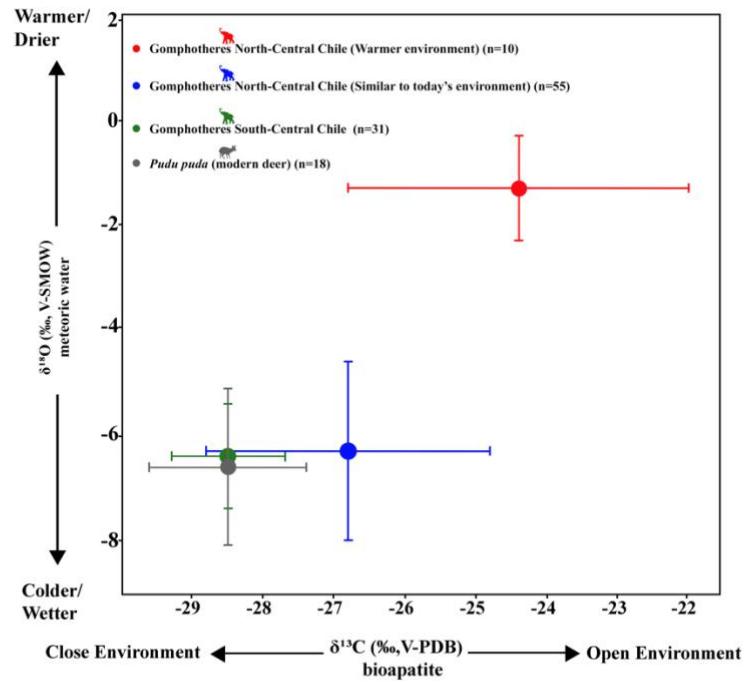
175 Thus, we conducted stable isotopic analyses on both fossils and contemporary
176 plants to determine if the paleoenvironment was conducive to frugivory in *N. platensis*.

177 Our stable isotope results ($\delta^{18}\text{O}_{\text{meteoric water}}$ and $\delta^{13}\text{C}_{\text{enamel}}$; Supplementary Table 3)
178 from *N. platensis*, alongside the modern vegetation baselines ($\delta^{13}\text{C}_{\text{modern vegetation}}$) from
179 central Chile (Supplementary Table 2), indicate significant environmental variability
180 (Fig. 2), differing from the previously interpreted cold and wet conditions (i.e.,
181 conditions akin to Valdivian rainforest or open montane forest in the lowlands)
182 (Supplementary Table 1; Fig. 1). These findings suggest that the landscape inhabited by
183 *N. platensis* was likely suitable for this biogeographic expansion of megafaunal plants.

184 Our interpretations are corroborated by two recent multiproxy studies of the
185 sediments of the ancient Tagua Tagua lake (34°S), such as lipid biomarkers that
186 indicated more arid environments³¹ and the phytoliths of the palm *J. chilensis* indicated
187 warmer environments³². Both studies conclude that the paleoenvironment and
188 paleoclimate of north-central Chile were much drier and warmer than previously
189 established. Nonetheless, the extent of Mediterranean sclerophyllous vegetation in
190 north-central Chile at the end of the Pleistocene is still largely unknown, leaving the
191 role of proboscideans as dispersers of present-day sclerophyllous tree species (many of
192 which lack fleshy fruits) uncertain.

193 Consequently, the finding of frugivory not only proves an ecological hypothesis
194 but will likely have implications in paleoenvironmental and paleoclimatic
195 reconstruction studies of the Southern cone region of South America.

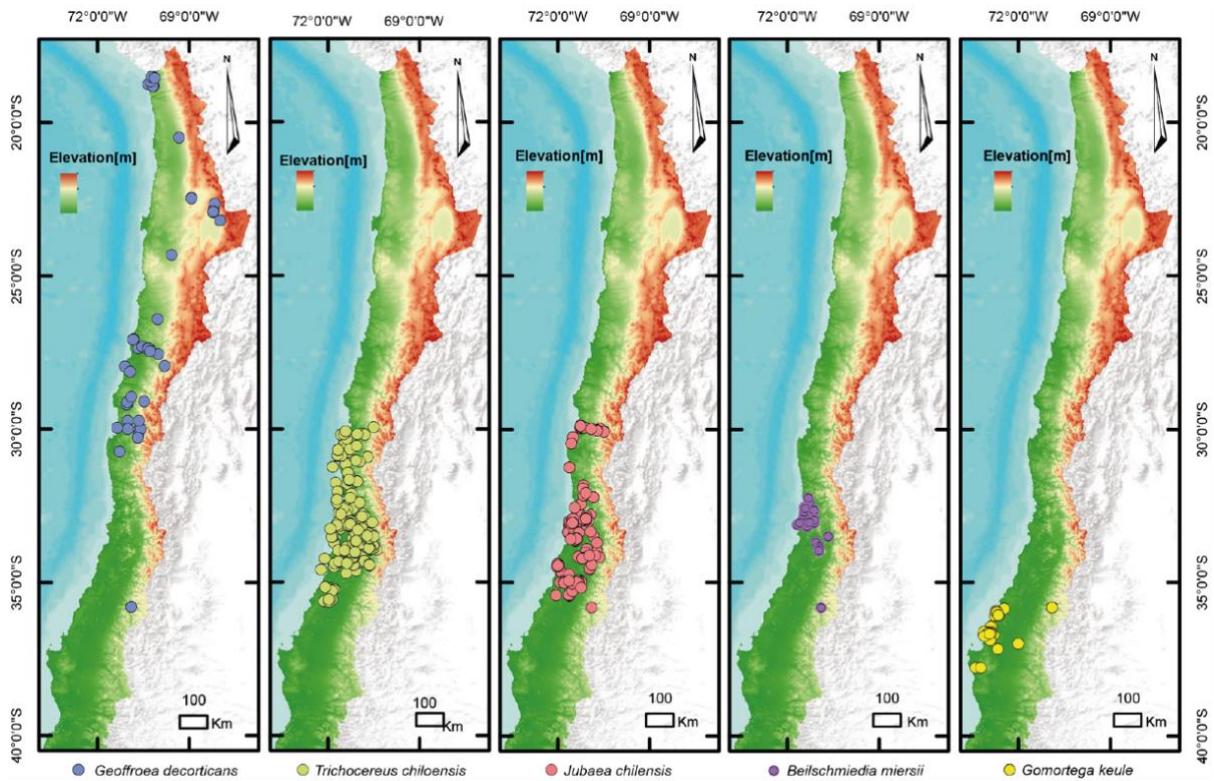
196


197

198

199

200


201

Supplementary Fig. 1 Graphical results of isotopic analyses derived from multiple sources showing the mean values of $\delta^{13}\text{C}$ bioapatite (‰, V-PDB) and $\delta^{18}\text{O}$ meteoric water (‰, V-SMOW) for *Notiomastodon platensis* and *Pudu puda*.

203

204

211 **TABLES**

212 **Supplementary Table 1. Summary data of $\delta^{13}\text{C}_{\text{VPDB}}$ values in dental enamel bioapatite.**

213 Latitude	214 N	215 $\delta^{13}\text{C}$ (‰, V-PDB)				216 piC3				217 piC4				218 Niche breadth (BA)			
		219 Min	220 Max	221 Mean	222 SD	223 Min	224 Max	225 Mean	226 SD	227 Min	228 Max	229 Mean	230 SD	231 Min	232 Max	233 Mean	234 SD
North-Central	64	-15.02	-3.99	-11.40	2.17	0.43	1.00	0.93	0.13	0.00	0.57	0.07	0.13	0.00	0.98	0.16	0.26
(31°–36°S)																	
South-Central	30	-15.23	-11.17	-13.31	0.82	0.98	1.00	1.00	0.00	0.00	0.02	0.00	0.00	0.00	0.04	0.00	0.01
(38°–42°S)																	

219 Note: Proportional contributions of diet sources (piC3 and piC4 plants) and standardized isotopic niche breadth (BA) of *Notiomastodon platensis* from central
220 Chile.

221 **Supplementary Table 2. Summary of stable isotope data ($\delta^{13}\text{C}$, ‰V-PDB) of the modern sample plants collected
222 in central Chile.**

223 $\delta^{13}\text{C}$ (‰V-PDB)						
224 Sites	225	226 n	227 Max	228 Min	229 Mean	230 (σ)
Fray Jorge National Park (Hygrophilous forest) (30° 30' S, 71° 35' W) (wetter area). 1000 mm/yr. 13.7 °C	43	-26	-3	-3	2	
Fray Jorge National Park (Semi-arid scrub) (30° 30' S, 71° 35' W) (arid area) 147 mm/yr. 13.7 °C.	56	21	-31	-26	3	
Tagua Tagua (Sclerophyllous forest) (34° 33' S, 71° 9' W) (wetter area). 800 mm/yr. 15 °C.	60	-24	-33	-29	2	
Tagua Tagua (Sclerophyllous forest) (34° 30' S, 71° 1' W) (more arid area). 800 mm/yr. 15 °C.	33	-23	-2	-25	1	
Tantauco Park (Temperate Rain forest) (43° 12' S, 74° 11' W) (wetter area). 3000 mm/yr. 10 °C.	45	-26	-34	-31	2	

231 Note: Number of samples (n), maximum (Max), minimum (Min), mean values and standard deviation (σ). All raw data presented in this table are normalized
232 based on pre-industrial atmospheric conditions ($\delta^{13}\text{C}_{\text{atmCO}_2}$ = -6.5‰).

233 **Supplementary Table 3. Summary of stable isotope data of the $\delta^{18}\text{O}_{\text{meteoric water}}$ (‰V-SMOW) values.**

234 $\delta^{18}\text{O}$ (‰V-SMOW)						
235 Sites	236	237 n	238 Max	239 Min	240 Mean	241 (σ)
North-Central (warmer environment)		10	0.5	-3	-1.8	1
North-Central (environmental conditions similar to the present)		54	-3	-15	-6.5	2
South-Central (environmental conditions similar to the present)		31	-4	-9	-6.9	1
<i>Pudu puda</i> (current deer)		8	-3.6	-8.2	-6.6	1.5

242 Note: The values were calculated from $\delta^{18}\text{O}_{\text{CO}_2}$ (‰, V-PDB) values of *Notiomastodon platensis* and *Pudu puda* (current deer). Our analysis was based on the
243 $\delta^{18}\text{O}$ values published in González-Guarda et al., (2018) and unpublished values presented in this study. Number of samples (n), maximum (Max), minimum
244 (Min), mean values and standard deviation (σ).

245 **Supplementary Table 4. Concentration of starch, sclereids and phytoliths, expressed in microfossil per gram
246 (mf/g) of dental calculus.**

247 Sample	248 Locality	249 Reserve Starch (mf/g)	250 Transitory Starch (mf/g)	251 Sclereids (mf/g)	252 Raphids (mf/g)	253 References
PV267A	Quereo (31°S)	152711	0	0	0	This study
PV264	Quereo (31°S)	0	0	1587	0	This study
PV235	Catapilco (33°S)	4820	0	2410	0	This study
QUI1	Quilpué (33°S)	4698	9396	0	0	This study
QUI2	Quilpué (33°S)	14094	0	0	0	This study
MHNV1	Casablanca (33°S)	11100	2048	0	342	This study
RMPL05	El Noviciado (33°S)	514	5820	0	0	This study

	Sample	Locality	Reserve Starch (mf/g)	Transitory Starch (mf/g)	Sclereids (mf/g)	Raphids (mf/g)	References
258	354A	Algarrobo (33°S)	422	0	0	0	This study
259	PV22	Lagunillas	1922	0	0	0	This study
260	PV1E	Tagua Tagua (34°S)	5741	0	0	0	This study
261	PV47A	Tagua Tagua (34°S)	799508	0	0	0	This study
262	PV47B	Tagua Tagua (34°S)	992682	0	198536	0	This study
263	PV47C	Tagua Tagua (34°S)	55918	0	0	0	This study
264	PV47F	Tagua Tagua (34°S)	6532	0	129	0	This study
265	PV47G	Tagua Tagua (34°S)	2819	0	0	0	This study
266	PV47K	Tagua Tagua (34°S)	1638	0	0	0	This study
267	PV49	Tagua Tagua (34°S)	3381	0	0	0	This study
268	TT1	Tagua Tagua (34°S)	0	23339	0	0	This study
269	PV15	Parral (36°S)	0	0	0	62367	This study
270	PV19	Parral (36°S)	9287	0	0	0	This study
271	PV55	Parral (36°S)	42342	0	0	0	This study
272	TR1	El Trébol (39°S)	299	0	0	0	This study
273	CHO01	Chorico (40°S)	142	0	0	0	This study
274	LP15	La Plata (40°S)	890	0	445	0	This study
275	LP16	La Plata (40°S)	910	0	0	0	This study
276	PV44	Río Bueno (40°S)	4306	0	0	0	This study
277	PI14	Pilauco (40°S)	0	0	1344	0	This study
278							
279							

280 **Supplementary Table 5. Percentages of the types of diet assigned to each molar studied by analyzing the**
 281 **microfossils of the dental calculus.**

282 **(B = browser diet; M = mixed diet).**

	Code	Site	% HH	% AA	Diet	References
283	PV40	Illapel	0.0%	100.0%	B	González-Guarda et al., (2018)
284	PV267a	Quereo	5.2%	94.8%	B	González-Guarda et al., (2018)
285	PV264	Quereo	15.6%	84.4%	B	This study
286	PV235	Catapilco	31.3%	68.8%	B	This study
287	QUI1	Quilpue	19.4%	80.6%	B	This study
288	QUI2	Quilpue	8.3%	91.7%	B	This study
289	MHNV1	Casablanca	73.3%	26.7%	B	González-Guarda et al., (2018)
290	RMPL05	Noviciado	5.3%	94.7%	B	This study
291	354a	El Quisco	21.6%	78.4%	B	González-Guarda et al., (2018)
292	354b	El Quisco	18.8%	81.3%	B	González-Guarda et al., (2018)
293	PV22	Lagunillas	55.2%	44.8%	B	González-Guarda et al., (2018)
294	1637	Navidad	20.0%	80.0%	B	González-Guarda et al., (2018)
295	PV45	Tagua-Tagua	0.0%	100.0%	B	González-Guarda et al., (2018)
296	PV1E	Tagua-Tagua	5.0%	95.0%	B	This study
297	PV256	Tagua-Tagua	2.5%	97.5%	B	González-Guarda et al., (2018)
298	PV47a	Tagua-Tagua	18.2%	81.8%	B	González-Guarda et al., (2018)
299	PV47b	Tagua-Tagua	23.8%	76.2%	B	González-Guarda et al., (2018)
300	PV47C	Tagua-Tagua	52.0%	48.0%	M	González-Guarda et al., (2018)
301	PV47F	Tagua-Tagua	33.3%	66.7%	B	González-Guarda et al., (2018)
302	PV47G	Tagua-Tagua	33.3%	66.7%	B	González-Guarda et al., (2018)
303	PV47H	Tagua-Tagua	5.8%	94.2%	B	González-Guarda et al., (2018)
304	PV47I	Tagua-Tagua	0.0%	100.0%	B	González-Guarda et al., (2018)
305						
306						
307						

Code	Site	% HH	% AA	Diet	References
PV47J	Tagua-Tagua	29.6%	70.4%	B	González-Guarda et al., (2018)
PV47K	Tagua-Tagua	8.7%	91.3%	B	González-Guarda et al., (2018)
PV47L	Tagua-Tagua	0.0%	100.0%	B	González-Guarda et al., (2018)
PV49	Tagua-Tagua	25.6%	74.4%	B	This study
TT1	Tagua-Tagua	33.0%	67.0%	B	This study
PV15	Parral	19.0%	81.0%	B	This study
PV19	Parral	2.2%	97.8%	B	This study
PV55	Parral	2.9%	97.1%	B	This study
CHA01	Chan-Chan	0.0%	100.0%	B	González-Guarda et al., (2018)
TR1	El Trébol	62.8%	37.2%	B	González-Guarda et al., (2018)
TR18	El Trébol	18.5%	81.5%	B	González-Guarda et al., (2018)
CHO01	Choroico	69.4%	30.6%	B	González-Guarda et al., (2018)
LP13	La Plata	43.7%	56.3%	B	González-Guarda et al., (2018)
LP14	La Plata	37.6%	62.4%	B	González-Guarda et al., (2018)
LP15	La Plata	17.4%	82.6%	B	González-Guarda et al., (2018)
LP16	La Plata	16.7%	83.3%	B	González-Guarda et al., (2018)
PV44	Río Bueno	11.0%	89.0%	B	González-Guarda et al., (2018)
PV43	San Pablo	10.2%	89.8%	B	González-Guarda et al., (2018)
PI14	Pilauco	9.8%	90.2%	B	González-Guarda et al., (2022)
LN8	Los Notros	63.1%	36.9%	M	González-Guarda et al., (2022)
CHI1	Chiloé	0.0%	100.0%	B	González-Guarda et al., (2022)
CHI2	Chiloé	15.5%	84.5%	B	González-Guarda et al., (2022)

Supplementary Table 6. Results of the analysis of dental microwear in *Notiomastodon platensis* from central Chile.

Taxon	n	NS	SD	NP	SD	%PP	%G	SWS	%LP	%XS
Extinct <i>N. platensis</i>	19	13.9	6	21.7	9.2	89.4	73.6	2	84.2	68.4
Extant <i>L. africana</i>	33	17.4	5.3	22.9	3.9	0.5	36.4	2.8	54.6	3
Extant <i>L. cyclotis</i>	6	12.9	5.1	29.8	4	33.3	33.3	3.1	50	66.7
Extant <i>E. maximus</i>	10	18.3	4.3	20.9	3	0	50	3.1	70	80

Note: Number of samples (n); number of scratches (NS); standard deviation (SD); number of pits (NP); puncture pits (PP); gouges (G); scratch width (SWS); large pits (LP); percentage of specimens with cross scratches (XS).

357 **References**

358 1. González-Guarda E, *et al.* Late Pleistocene ecological, environmental and
359 climatic reconstruction based on megafauna stable isotopes from
360 northwestern Chilean Patagonia. *Quaternary Science Reviews* **170**, 188-202
361 (2017).

362

363 2. González-Guarda E, *et al.* Multiproxy evidence for leaf-browsing and closed
364 habitats in extinct proboscideans (Mammalia, Proboscidea) from Central
365 Chile. *Proceedings of the National Academy of Sciences* **115**, 9258-9263
366 (2018).

367

368 3. González-Guarda E, *et al.* Dietary ecological traits of extinct mammalian
369 herbivores from the last glacial termination at the Pilauco Site, Chile.
370 *Quaternary Research* **109**, 141-156 (2022).

371

372 4. Grine FE. Dental evidence for dietary differences in *Australopithecus* and
373 *Paranthropus*: a quantitative analysis of permanent molar microwear.
374 *Journal of human evolution* **15**, 783-822 (1986).

375

376 5. Semprebon GM, Rivals F, Solounias N, Hulbert Jr RC. Paleodietary
377 reconstruction of fossil horses from the Eocene through Pleistocene of
378 North America. *Palaeogeography, Palaeoclimatology, Palaeoecology* **442**,
379 110-127 (2016).

380

381 6. Cordova C, Avery G. African savanna elephants and their vegetation
382 associations in the Cape Region, South Africa: Opal phytoliths from dental
383 calculus on prehistoric, historic and reserve elephants. *Quaternary
384 International* **443**, 189-211 (2017).

385

386 7. Weyrich LS, *et al.* Neanderthal behaviour, diet, and disease inferred from
387 ancient DNA in dental calculus. *Nature* **544**, 357-361 (2017).

388

389 8. Power RC, Salazar-García DC, Wittig RM, Freiberg M, Henry AG. Dental
390 calculus evidence of Taï Forest Chimpanzee plant consumption and life
391 history transitions. *Scientific Reports* **5**, 15161 (2015).

392

393 9. Weber S, Price MD. What the pig ate: A microbotanical study of pig dental
394 calculus from 10th–3rd millennium BC northern Mesopotamia. *Journal of
395 Archaeological Science: Reports* **6**, 819-827 (2016).

396

397 10. Koch PL, Tuross N, Fogel ML. The effects of sample treatment and
398 diagenesis on the isotopic integrity of carbonate in biogenic
399 hydroxylapatite. *Journal of Archaeological Science* **24**, 417-429 (1997).

400

401 11. Koch PL. Isotopic study of the biology of modern and fossil vertebrates.
402 *Stable isotopes in ecology and environmental science*, 99-154 (2007).

403

404 12. Tipple BJ, Meyers SR, Pagani M. Carbon isotope ratio of Cenozoic CO₂: A
405 comparative evaluation of available geochemical proxies. *Paleoceanography*
406 **25**, (2010).

407

408 13. Marino BD, McElroy MB. Isotopic composition of atmospheric CO₂ inferred
409 from carbon in C₄ plant cellulose. *Nature* **349**, 127-131 (1991).

410

411 14. Tejada-Lara JV, MacFadden BJ, Bermudez L, Rojas G, Salas-Gismondi R,
412 Flynn JJ. Body mass predicts isotope enrichment in herbivorous mammals.
413 *Proceedings of the Royal Society B* **285**, 20181020 (2018).

414

415 15. Cerling TE, Harris JM. Carbon isotope fractionation between diet and
416 bioapatite in ungulate mammals and implications for ecological and
417 paleoecological studies. *Oecologia* **120**, 347-363 (1999).

418

419 16. Domingo L, Prado JL, Alberdi MT. The effect of paleoecology and
420 paleobiogeography on stable isotopes of Quaternary mammals from South
421 America. *Quaternary Science Reviews* **55**, 103-113 (2012).

422

423 17. Asevedo L, *et al.* Isotopic paleoecology ($\delta^{13}\text{C}$, $\delta^{18}\text{O}$) of late Quaternary
424 herbivorous mammal assemblages from southwestern Amazon. *Quaternary*
425 *Science Reviews* **251**, 106700 (2021).

426

427 18. Wesolowski V, de Souza SMFM, Reinhard K, Ceccantini G. Grânulos de
428 amido e fitólitos em cálculos dentários humanos: contribuição ao estudo do
429 modo de vida e subsistência de grupos sambaquianos do litoral sul do
430 Brasil. *Revista do Museu de Arqueologia e Etnologia*, 191-210 (2007).

431

432 19. Maher Jr LJ. Statistics for microfossil concentration measurements
433 employing samples spiked with marker grains. *Review of Palaeobotany and*
434 *Palynology* **32**, 153-191 (1981).

435

436 20. Wesolowski V, de Souza SMFM, Reinhard KJ, Ceccantini G. Evaluating
437 microfossil content of dental calculus from Brazilian sambaquis. *Journal of*
438 *Archaeological Science* **37**, 1326-1338 (2010).

439

440 21. Iacumin P, Bocherens H, Mariotti A, Longinelli A. Oxygen isotope analyses of
441 co-existing carbonate and phosphate in biogenic apatite: a way to monitor
442 diagenetic alteration of bone phosphate? *Earth and Planetary Science*
443 *Letters* **142**, 1-6 (1996).

444

445 22. Janzen DH, Martin PS. Neotropical anachronisms: the fruits the
446 gomphotheres ate. *Science* **215**, 19-27 (1982).

447

448 23. Heusser CJ. Quaternary pollen record from laguna de Tagua Tagua, Chile.
449 *Science* **219**, 1429-1432 (1983).

450

451 24. Valero - Garcés BL, *et al.* Palaeohydrology of Laguna de Tagua Tagua (34 30
452 ' S) and moisture fluctuations in Central Chile for the last 46 000 yr.

453 *Journal of Quaternary Science: Published for the Quaternary Research*
454 Association **20**, 625-641 (2005).

455

456 25. Moreno PI, Denton GH, Moreno H, Lowell TV, Putnam AE, Kaplan MR.
457 Radiocarbon chronology of the last glacial maximum and its termination in
458 northwestern Patagonia. *Quaternary Science Reviews* **122**, 233-249 (2015).
459

460 26. Asevedo L, D'Apolito C, Misumi SY, de Barros MA, Barth OM, dos Santos
461 Avilla L. Palynological analysis of dental calculus from Pleistocene
462 proboscideans of southern Brazil: A new approach for paleodiet and
463 paleoenvironmental reconstructions. *Palaeogeography, Palaeoclimatology,*
464 *Palaeoecology* **540**, 109523 (2020).
465

466 27. Dantas MAT, Liparini A, Asevedo L, de Melo Fran  a L, Cherkinsky A. Annual
467 isotopic diet ($\delta^{13}\text{C}$, $\delta^{18}\text{O}$) of *Notiomastodon platensis* (Ameghino, 1888)
468 from Brazilian Intertropical Region. *Quaternary International* **610**, 38-43
469 (2022).
470

471 28. Rivals F, Semprebon GM, Lister AM. Feeding traits and dietary variation in
472 Pleistocene proboscideans: A tooth microwear review. *Quaternary Science*
473 *Reviews* **219**, 145-153 (2019).
474

475 29. Ara  o T, Machado H, Moth   D, dos Santos Avilla L. Species distribution
476 modeling reveals the ecological niche of extinct megafauna from South
477 America. *Quaternary Research* **104**, 151-158 (2021).
478

479 30. Villagr  n Moraga C, Hinojosa Opazo L. Esquema biogeogr  fico de Chile.
480 (2005).
481

482 31. Frugone Alvarez M, *et al.* Climate changes inferred from sedimentary
483 biomarkers during the Pleistocene-Holocene transition in central Chile
484 ($\sim 34^\circ\text{S}$). In: *XXI INQUA Meeting*) (2023).
485

486 32. Godoy-Aguirre C., *et al.* First evidence of plant use in Tagua Tagua 3, a Late
487 Pleistocene site in central Chile: Cultural and environmental implications.
488 In: *XXI INQUA Meeting*) (2023).
489

490