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Appendix A Supplement to the arithmetic climate
model

In Eq. (3), we attempted to model the annual average temperature y of a location
on Earth purely based on its latitude coordinate q. We are aware that, in doing so,
we neglect many thermodynamic processes crucial to explaining a phenomenon as
complex as Earth’s climate. The assumption that the average temperature should be
approximately proportional to the local intensity of sunlight mainly motivates our
model and lies at our model’s core. By averaging over all seasons and neglecting
diffusion and transport phenomena, this again is proportional to the cosine of the
location’s latitude. Together with the estimated temperatures of 30◦C at the equator
and −30◦C close to the poles, the named assumptions lead to the defined model

s : [0◦, 90◦]→ [−30, 30], q 7→ y = s(q) := 60 · cos (q)− 30. (A1)

Petty [1] proposes a similar yet different model. He especially considers Earth’s
black-body radiation and formulates a thermodynamic equilibrium that dictates a
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Fig. A1 True and inferred latitude distribution align closely for model (3). a. KDE of the
true and inferred latitude parameter sample depicted in b. The true sample and KDE approximation
are visualised in grey, while the EPI reconstruction is given in blue.

temperature roughly proportional to the fourth root of the irradiation intensity. Sim-
ilar to our approach, this intensity is approximately proportional to the cosine of the
location’s latitude. Consequently, their model reads

s : [0◦, 90◦]→ [−30, 30], q 7→ y = s(q) := 60 · 4
√

cos (q)− 30. (A2)

Both model formulations yield inferred EPI latitude distributions. Given the avail-
ability of true latitude coordinates for all average temperature data points in this
example, we can choose the model whose inferred latitude distribution Φ̂Q best aligns
with the true latitude samples q(i). This comparison clearly favoured the model defined
by Eq. (3), for which true and inferred latitudes are depicted in Figure A1. This accu-
rate fit confirms the proper functioning of our inference scheme and the ability of
simulation model (3) to explain the data effectively.

A.1 Data acquisition and setup of the SIP

For the annual average temperature data, we used the meteostat Python library [2]
(Source: Meteostat) to extract the monthly average temperatures of all available
weather stations for the years 2020 − 2022. We only considered stations with 36
reported monthly temperatures and agglomerated the corresponding data to calcu-
late a 3-year average temperature for each station. The data used in this paper were
downloaded on 02.07.2023. This led to 3 168 data points for which we obtained the
3-year average temperature and the true latitudinal coordinate.
The eulerpi parameter estimation used MCMC sampling with an ensemble of 50
walkers that performed 1 250 steps each. From each resulting sampling trajectory, we
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discarded the initial 250 samples as a burn-in. We only used every 10th sample to
obtain a result of 5 000 relatively uncorrelated samples from the underlying parameter
distribution Φ̂Q. All sampling parameters are summarised in Table A1.

Parameter Value

Number of sampling walkers 50
Number of sampling steps per walker 1 250
Number of burn-in sampling steps 250
Thinning factor 10

Table A1 Sampling parameters for results related to the annual
average temperature and COVID-19 infection model.

Appendix B Derivation of the change of variables
formula

The following derivation is adapted from Rezende et al. in the appendix of [3]. We
provide a version of their proof adapted to the EPI setting of the following assertion:
Let ΩQ = RN , and ΩY = s(ΩQ) ⊂ RM , and let s : ΩQ → ΩY be a diffeomorphism.
Assume that s can be extended to a smooth map between open neighbourhoods in
RN and RM , and choose this extension. Then, it holds that

ΦQ(q) = ΦY(s(q)) ·

√
det

(
ds

dq
(q)

ᵀ ds

dq
(q)

)
(B3)

where ds
dq (q) is the Jacobian of said extension of s evaluated in q.

Proof. First, note that for a set of vectors y1, . . . , yN ∈ RM , the volume spanned
by those vectors is given by

√
det(YᵀY), where Y denotes the matrix with column

vectors y1, . . . , yN . Now, let e1, . . . , eN denote the canonical basis vectors of RN =
ΩQ. For given parameters q, the pushforward maps each basis vector ei to ds

dq (q)ei.
Collecting all transformed vectors as columns of a matrix yields(

ds

dq
(q)ei

)
i=1,...,N

=
ds

dq
(q)IN =

ds

dq
(q) (B4)

where IN is the N -dimensional identity matrix. The volume spanned by the trans-

formed vector is thus given by

√
det
(

ds
dq (q)

ᵀ ds
dq (q)

)
. Hence, the transformed density

is given by

ΦY(s(q)) =
ΦQ(q)√

det
(

ds
dq (q)

ᵀ ds
dq (q)

) (B5)
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Multiplying Eq. (B5) by

√
det
(

ds
dq (q)

ᵀ ds
dq (q)

)
yields the claim.

Note that in case N = M , Eq. (7) can be simplified to the well-known version of
the change of variables formula

ΦQ(q) = ΦY(s(q)) · det

(
ds

dq
(q)

)
. (B6)

Appendix C Theoretical considerations when
evaluating the data density estimate
in general dimensions

Since s has generally more output dimensions than input dimensions and under the
assumptions imposed by EPI, the image ΩY of s is a manifold in the data space. For
Eq. (6) to be valid, Φ̂Y would now have to be a density estimator on this manifold – in
general, a challenging task. We propose to calculate a KDE in the higher-dimensional
embedding space RM and then use the restriction on ΩY as Φ̂Y instead. The resulting
estimator looses the normalisation property of probability densities needed – hence,
Φ̂Q must be normalised. This can be done either by using MCMC sampling or by
numerical integration. The described data density evaluation is visualised in Figure C2.

We have not yet been able to derive any guarantees for consistency and con-
vergence of this type of density estimation – in particular, it is easy to construct
pathological cases in which this method will certainly fail. However, if the curvature
of ΩY is small compared to the bandwidth of the density estimator and there are no
points where the manifold almost intersects itself, this choice of estimator intuitively
makes a lot of sense: points close to the image of s get assigned high probability den-
sity values, while points further away from ΩY are associated with low values. This
is likely the reason why we have always obtained good results with this estimator in
practice. For an illustration of a potentially problematic scenario, consider Figure C2,
where ΩY indeed nearly intersects with itself. The influence of data points close to
the critical point will influence the density estimation of both close parts of ΩY .

Appendix D Supplement to the COVID-19
SEIR-model

COVID-19 infection data were taken from the publicly available file of the
RKI on 02.07.2023 [4]. We filtered the 7-day incidence data for the dates
09.03.2020, 16.03.2020, 06.04.2020, 11.05.2020, and 15.06.2020. All of the dates are
Mondays and approximate the time points corresponding to 1, 2, 5, 10, and 15 weeks
after the beginning of the first COVID-19 wave in Germany. This led to 5 incidence
values for 411 German districts (or Landkreise), each. During parameter inference,
we used MCMC sampling in eulerpi with the same hyperparameters already used
for the climate model. They are summarised in Table A1. The data and comparable
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Fig. C2 Visualisation of the data density evaluation on a manifold. a. The two-dimensional
data points y(i) are depicted as orange dots with black outline and lie close to the image ΩY of s
(grey curve). Exemplary model evaluations s(q̂(i)) are given as red dots and lie on ΩY by definition.

The KDE Φ̂Y is presented as an orange surface and can readily be evaluated at any point in R2. b.

By evaluating the data KDE Φ̂Y only in simulation results from the image of s, we effectively project

Φ̂Y to the 1D manifold ΩY . Orange and red dots are identical in both graphs.

simulation results are reported in Figure 3c. Please note that the axis of the graph is
non-linearly scaled so that the time points 1, 2, 5, 10, and 15 are equidistantly dis-
tributed over the width of the figure. The scaled time t is obtained by transforming
the linear time tref using the polynomial

t : [0, 1]→ [0.703125, 16.3281],

tref 7→ t(tref) =
45

64
+

25

6
tref −

475

24
t2ref +

500

6
t3ref −

625

12
t4ref.

(D7)

This transformation is used to plot s(q̂(i)) over a continuous time t and was derived
as the analytical, polynomial interceptor for the points

(tref, t) = (0.1, 1), (0.3, 2), (0.5, 5), (0.7, 10), (0.9, 15). (D8)

5



Appendix E Supplement to the anisotropic heat
model

Formally, we consider the following initial boundary value problem (IBVP): Let U :=
[0, 1] × [0, 1] and let T ∈ R+. Find u : U × [0, T ] → R, u : (x, t) 7→ u(x, t) with
u ∈ C2 ((U \ ∂U)×]0, T [→ R) ∩ C ((U × [0, T ]→ R)) such that

∂tu(x, t) = div(K · ∇u(x, t)) on U × [0, T ]

u(x, 0) = f(x) on U × {0}
u(x, t) = g(x) on ∂U×]0, T ]

(E9)

for f, g continuously differentiable outside a nullset.

E.1 Numerical solution

To keep the numerical solution method as simple as possible, solutions to Eq. (E9) are
approximated using the Method of Lines. This approach is adapted from Schiesser [5];
refer to him for a detailed analysis of the method. Spatial discretisation of Eq. (E9)
is performed using second-order central differences. The spatial domain is discretised
on a regular grid, i.e.

xi,j =

(
i · h1
j · h2

)
for i = 0, . . . , n1 and j = 0, . . . , n2 (E10)

where h1 = 1
n1

and h2 = 1
n2

are the grid widths in x1 and x2 direction, respectively.
Then, ui,j(t) is an approximation to the solution at time t:

ui,j(t) ≈ u(xi,j , t) (E11)

The right-hand side of Eq. (E9) can be reorganised as

div (K · ∇u(x, t)) = κ11
∂u2

∂x21
(x, t) + 2κ12

∂u2

∂x1∂x2
(x, t) + κ22

∂u2

∂x22
(x, t) (E12)

using u ∈ C2 for the third identity. The terms on the right-hand side of Eq. (E12) can
be approximated using standard second-order central differences:

∂u2

∂x21
(xi,j , t) ≈

ui+1,j(t) − 2ui,j(t) + ui−1,j(t)

h21

∂u2

∂x1∂x2
(xi,j , t) ≈

ui−1,j−1(t) − ui+1,j−1(t) − ui−1,j+1(t) + ui+1,j+1(t)

4h1h2

∂u2

∂x22
(xi,j , t) ≈

ui,j+1(t) − 2ui,j(t) + ui,j−1(t)

h22

(E13)
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for i = 1, . . . , ni − 1 and j = 1, . . . , nj − 1. By substituting Eq. (E13) into Eq. (E12)
and the result into Eq. (E9) yields

∂tui,j(t) ≈ κ11
ui+1,j(t) − 2ui,j(t) + ui−1,j(t)

h21

+ 2κ12
ui−1,j−1(t) − ui+1,j−1(t) − ui−1,j+1(t) + ui+1,j+1(t)

4h1h2

+ κ22
ui,j+1(t) − 2ui,j(t) + ui,j−1(t)

h22
.

(E14)

This system of ODEs can now be solved by an ODE solver.
For time integration, Heun’s method is used. Heun’s method is a two-stage Runge-
Kutta method of second order. The following description of the method is adapted
from [6]. For this, the time axis is discretised too: let the time step width ht = T

nt
for

some number of time steps nt ∈ N. Then, the discrete time points are given as

tk := k · ht for 0 = 1, . . . , nt (E15)

Then, uk(·) is an approximation of the solution at time tk:

uk(·) ≈ u(·, tk) (E16)

Heun’s method computes approximate solutions to ODEs with the form

∂tu(t) = f(u, t) (E17)

and is given as

uk+1 = uk +
1

2
ht
(
f(uk, tk) + f(uk + htf(uk, tk), tk + ht)

)
(E18)

First, the following notation for the full discretisation is useful:

uki,j ≈ u(xi,j , tk) (E19)

For the initial values, set
u0i,j := f(xi,j) (E20)

For the Dirichlet boundaries, analogously set

uki,j := g(xi,j) for (i, j) ∈ {0, n1} × {0, n2} and k = 1, . . . , nt (E21)

Substituting the right-hand side of Eq. (E14) for f in Eq. (E18) yields the overall
numerical scheme: first, the preliminary time step ũki,j for i = 1, . . . , n1 − 1, j =
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1, . . . , n2 − 1 is computed:

ũk+1
i,j = uki,j + ht

(
κ11

uki+1,j − 2uki,j + uki−1,j
h21

+ 2κ12
uki−1,j−1 − uki+1,j−1 − uki−1,j+1 + uki+1,j+1

4h1h2

+κ22
uki,j+1 − 2uki,j + uki,j−1

h22

) (E22)

Then, the next time step is given as:

uk+1
i,j = uki,j

+
1

2
ht

(
κ11
h21

(
uki+1,j − 2uki,j + uki−1,j + ũk+1

i+1,j − 2ũk+1
i,j + ũk+1

i−1,j

)
+

2κ12
4h1h2

(
uki−1,j−1 − uki+1,j−1 − uki−1,j+1 + uki+1,j+1

+ ũk+1
i−1,j−1 − ũk+1

i+1,j−1 − ũk+1
i−1,j+1 + ũk+1

i+1,j+1

)
+
κ22
h22

(
uki,j+1 − 2uki,j + uki,j−1 + ũk+1

i,j+1 − 2ũk+1
i,j + ũk+1

i,j−1

))
(E23)

for i = 1, . . . , n1−1, j = 1, . . . , n2−1 and k = 1 . . . , nt. The Method of Lines imposes
a time step condition for the method to be numerically stable - see Schiesser [5] for
details. The constraint is given by

ht <
(min(h1, h2))

2

4κmax
(E24)

where κmax is the largest eigenvalue of K. An overview of the actual values used in
the following investigation can be found in Table E2.

ParameterDescription Value

T =
tend

Simulation end time 0.1

n1 + 1 Number of spatial points in x1
direction

21

n2 + 1 Number of spatial points in x2
direction

21

h1 Grid width in x1 direction 0.05
h2 Grid width in x2 direction 0.05
ht Time step width < 0.5 ·

10−3κ−1
max

Table E2 Parameters for the numerical solution of the
two-dimensional anisotropic IBVP arising from Eq. (8).
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Parameter Description Value

Q1 = κ11 Random thermal conductivity in x1
direction

1.2 +
0.6X1

Q2 = κ22 Random thermal conductivity in x2
direction

1.2 +
0.6X2

Q3 = κ12 Random thermal conductivity diago-
nal to x1 and x2

0.2 +
0.6X3

X1, X2, X3 Random parameter variables
i.i.d.∼
Beta(α, β)

(α, β) Shape parameters of beta distribution (2, 5)

Table E3 Setup of the SIP for the head diffusion model.

E.2 Setup of the SIP

To control the underlying assumptions and to be able to make statements about
the quality of the inference in the parameter space, an entirely artificial setting was
chosen for the third model problem. As parameters to be inferred, the entries of the
conductivity matrix K were chosen, i.e.

Q1 := κ11, Q2 := κ22, Q3 := κ12 (E25)

To apply marginal EPI, the parameters must be stochastically independent. At the
same time, the criterion (11) must always be fulfilled. This is achieved by choosing

Q1 = 1.2 + 0.6B1
Q2 = 1.2 + 0.6B2
Q3 = 0.2 + 0.6B3

with B1,B2,B3
i.i.d.∼ Beta(α, β)

(E26)

An overview of the choices discussed above can be found in Table E3. Figure E3 shows
a sample from the chosen parameter distribution.
As discussed in the article, the time of the evaluations is restricted to the endpoint

of the simulation, i.e. all evaluations are done at tend = T = 0.1. Spatially, we use
five evaluation points arranged as on a die: X = (( 0.25

0.25 ) , ( 0.75
0.25 ) , ( 0.5

0.5 ) , ( 0.75
0.75 ) , ( 0.25

0.75 )).
This yields the following model s used for inference:

s : R3 ⊇ ΩQ → ΩY ⊆ R5,

(κ11, κ22, κ12)
ᵀ

=: q 7→ y = s(q) := (u(X1, tend), . . . , u(X5, tend))
ᵀ (E27)

We evaluated the three marginal parameter densities φ̂Qj
, j = 1, 2, 3 over an

equidistant grid of 100 points, each. Please refer to Supplementary Section F for
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Fig. E3 A sample of size n = 5 000 from the parameter distribution ΦQ that we use as true
underlying parameters for the heat diffusion model in this work. Steps 1 and 2 in Figure 2 visualise
this sample’s creation.

details. Specifically, we chose the central parameter point c = (1.5, 1.5, 0.5)ᵀ and the
array of grid points defined by

qi =

{
i

100 + 1 for j = 1, 2
i

100 for j = 3
(E28)

for i = 0, . . . , 100. For MCMC sampling, the pushforward s(q̂(i)) of the inferred
parameter sample q̂(i) is generated on the fly, as each parameter sample is simulated
anyway and each simulation result represents one sample of the random variable s(Q).
However, the grid-based evaluation in parameter point qi only produces the associ-
ated densities φ̂Qj

(q(i)) and no sample from s(Q). From these independent marginal

parameter densities, we therefore subsequently sampled 2 500 parameter samples q̂(i),
from which the pushforward could then be computed. All distribution approxima-
tions depicted in Figure 4 are obtained through KDEs. This indirectly ensures the
normalisation of all φ̂Qi .

Appendix F Direct evaluation of marginal
distributions

Here, we prove an even stronger version of Eq. (12). Formally, let RN 3 Q :=
(Q1, . . . ,QL) be a random parameter vector with Qi ∈ Rni∀i = 1, . . . , L, such that∑L

i=1 ni = N . Furthermore, let ΦQ(q) = ΦQ(q1, . . . , qL) denote the probability den-
sity function of Q and φQi

(qi) denote the corresponding marginal distributions. For
j ∈ {1, . . . , L}, choose fixed ci ∈ Rni for i = 1, . . . , L with i 6= j in the support of each

φQi
, that is, φQi

(ci) 6= 0. If all Qi are independent, i.e. ΦQ(q1, . . . , qL) =
∏L

i=1 φQi
(qi),

it holds that

φQj (qj) = Cj · ΦY
(
s(q̃)

)√
det

(
ds

dq
(q̃)

ᵀ ds

dq
(q̃)

)
(F29)
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with RN 3 q̃ := (c1, . . . , cj−1, qj , cj+1, . . . , cL), where Cj ∈ R only depends on
c1, . . . , cj−1, cj+1, . . . , cL.

Proof. Using the independence of Q1, . . . ,QL and φQi
(ci) 6= 0, it holds that

ΦQ(q1, . . . , qL)

ΦQ(q̃)
=

ΦQ(q1, . . . , qL)

ΦQ(c1, . . . , cj−1, qj , cj+1, cL)

=
φQj (qj)

φQj
(qj)

L∏
i=1,i6=j

φQi(qi)

φQi
(ci)

⇒ ΦQ(q1, . . . , qL) =

L∏
i=1,i6=j

φQi
(qi)

φQi(ci)
ΦQ(q̃)

(F30)

Note the second identity also holds for φQj
(qj) = 0: If φQj

(qj) = 0, then
ΦQ(q1, . . . , qL) = ΦQ(c1, . . . , cj−1, qj , cj+1, cL) = 0 holds almost everywhere and, since
the prerequisites for EPI imply ΦQ ∈ C1, this is true even point-wise. Integrating out
the marginal distribution of Qj yields

φQj
(qj) =

∫
R

· · ·
∫
R

ΦQ(q1, . . . , qL)dq1 · · · dqj−1dqj+1 · · · dqL

(F30)
=

∫
R

· · ·
∫
R

L∏
i=1,i6=j

φQi
(qi)

φQi
(ci)

ΦQ(q̃)dq1 · · · dqj−1dqj+1 · · · dqL

=

 L∏
i=1,i6=j

1

φQi
(ci)

ΦQ(q̃)

·
∫
R

· · ·
∫
R

L∏
i=1,i6=j

φQi
(qi)dq1 · · · dqj−1dqj+1 · · · dqL

=

 L∏
i=1,i6=j

1

φQi
(ci)

ΦQ(q̃)

L∏
i=1,i6=j

∫
R

φQi
(qi)dqi

︸ ︷︷ ︸
=1

=

 L∏
i=1,i6=j

1

φQi
(ci)

ΦQ(q̃)

(F31)

where the linearity of the integral was used to obtain the third and fourth identities.
Setting

Cj :=

L∏
i=1,i6=j

1

φQi
(ci)

(F32)
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one obtains

φQj
(qj)

(F31)
= Cj · ΦQ(q̃)

(7)
= Cj · ΦY

(
s(q̃)

)√
det

(
ds

dq
(q̃)

ᵀ ds

dq
(q̃)

) (F33)

where the transformation fundamental to EPI was used for the last identity.

The corresponding marginal EPI is given by replacing ΦY(s(q̃)) by Φ̂Y(s(q̃)) in
Eq. (12):

φ̂Qj
(qi) = Cj · Φ̂Y

(
s(q̃)

)√
det

(
ds

dq
(q̃)

ᵀ ds

dq
(q̃)

)
(F34)

Note that this result also allows for the assumption of independent parameter vectors.
This can be used, for example, to test pairwise correlations by evaluating the marginal
parameter distribution for all pairs (Qi,Qj) for i = 1, . . . , N and j = 1, . . . , i − 1.
Although Eq. (12) is exact, direct evaluation of the marginal parameter distribu-
tions may be less accurate in practice than evaluation of the entire distribution with
subsequent marginalisation. This is because marginalising the estimate increases its
robustness to inaccuracies in the multidimensional KDE. Hence, for finite data and
when evaluating a single slice, the estimator’s variance is higher than evaluating
the whole space followed by marginalisation. Therefore, which of the two options is
preferable depends on the available computation time and data.
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