Supporting information for

Electrolytic Mineralization of CO₂

Gaopeng Jiang¹, Douglas J.D. Pimlott¹, Samuel J. Weiss¹, Siwei Ma¹, Christopher E. B. Waizenegger¹, Yongwook Kim¹, Yumeng Yang², Tengxiao Ji¹, Shaoxuan Ren¹, and Curtis P. Berlinguette^{1,2,3,4,*}

¹Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.

²Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.

³ Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada.

⁴ Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada.

*Corresponding author: Curtis P. Berlinguette (cberling@chem.ubc.ca)

The PDF file includes:

Supplementary Calculation Supplementary Table 1 Supplementary Figures 1 to 8 References

Supplementary Calculations.

For this section, we provide the reader with a glossary of terms and variables (Supplementary Table 1).

Supplementary Table 1: Glossary of terms and variables used to express metrics in this study.

Variable	Symbol	Meaning
Calcium transference efficiency	η _{Ca, transfer}	$\eta_{Ca, transfer} = n_{Ca^{2+}, catholyte} / n_{Ca^{2+}, chemolyte} \times 100\%$
		Ratio of mol $Ca^{2+}_{(aq)}$ ions in the catholyte, $n_{Ca^{2+}, catholyte}$, to mol Ca^{2+} liberated from silicates (e.g., $CaSiO_3$) in the chemical chamber, $n_{Ca^{2+}, chemolyte}$, times 100%.
Calcium carbonation efficiency	$\eta_{\it Ca, carbonation}$	$\eta_{Ca, carbonation} = n_{CaCO_3} / n_{Ca^{2+}, chemolyte} \times 100\%$
		Ratio of number of moles of CaCO ₃ that precipitated in the cathode chamber after
		electrolysis, n_{CaCO_3} to $n_{Ca^{2+}, chemolyte}$, times 100%.
CO ₂ mineralization efficiency	$\eta_{mineralization}$	$\eta_{mineralization} = n_{CaCO_3} / n_{CO_2} \times 100\%$
		Ratio between moles of CaCO ₃ that precipitated in the cathode chamber after electrolysis (
		n_{CaCO_3}), and the total moles of CO ₂ purged into the cathode chamber during electrolysis (n_{CO_2})
CO ₂ mineralization rate	r	Tons of mineralized CO ₂ per tons of silicate minerals per year, where r_{CaSiO_3} represents
		wollastonite (CaSiO ₃), $r_{Mg_2SiO_4}$ represents
		forsterite (Mg ₂ SiO ₄).

n Ca ²⁺ , chemolyte	Moles of soluble Ca ²⁺ in the chemolyte sourced from solid CaSiO ₃ .
n_{CaCO_3}	Moles of CaCO ₃ that precipitated in the cathode chamber after electrolysis. This white solid is primarily CaCO ₃ , but may contain trace quantities of Ca(OH) ₂ .
n _{Ca²⁺, catholyte}	Moles of soluble Ca ²⁺ _(aq) ions in the catholyte.
n_{e^-}	Moles of electrons used for electrolysis.
n_{CO_2}	Moles of CO ₂ purged into the catholyte during electrolysis.
m_{CaCO_3}	Mass of CaCO ₃ precipitated in the cathode chamber.
m_{CO_2}	Mass of CO ₂ captured and converted into CaCO ₃ in the weathering electrolyzer.
$m_{{\it CaSiO}_3}$	Mass of CaSiO ₃ dissolved in the chemical chamber during electrolysis.
$V_{\it catholyte}$	Volume of catholyte for calcium transference efficiency determination test (i.e., 0.5 L).
V_{CO_2}	Total volume of CO ₂ purged into the catholyte during electrolysis.
V_{m}	Molar volume at operating temperature (24.055 L mol ⁻¹ at 20 °C).
t	Duration of electrolysis (i.e., 1 hour).
t_W	Duration of weathering (i.e., 1 yr)
$[Ca^{2+}_{(aq)}]_{chemolyte}$	Ca ²⁺ concentration in the chemolyte at any point in time during electrolysis.
$[Ca^{2+}_{(aq)}]_{catholyte}$	Ca ²⁺ concentration in the catholyte at any point in time during electrolysis.

F	Faraday constant: 96485 C mol^{-1} , where $C = A \cdot s$.
i	Applied current density (i.e., 0.1 A cm ⁻²).
k	Slope of [Ca ²⁺ _(aq)] versus time (see Fig. 2B).
Q	Flow rate of gas
SA	Geometric surface area of electrodes (i.e., 4 cm ²).
χ_{CO_2}	Molar fraction of CO ₂ in the purged gas.

Calcium transference efficiency ($\eta_{Ca, transfer}$)

We set out to quantify the amount of Ca^{2+} liberated from the silicate that passed through the Ca^{2+} -exchanged CEM into the catholyte. We define this term as the "calcium transference efficiency" ($\eta_{Ca, transfer}$).

$$\eta_{Ca, transfer} = \frac{n_{Ca^{2+}, catholyte}}{n_{Ca^{2+}, chemolyte}} \times 100\%$$

where $n_{Ca^{2+},\,catholyte}$ was measured by ICP-OES, and it was determined indirectly from the Ca²⁺ concentration in the catholyte at any point in time during electrolysis (Fig. 2). The $n_{Ca^{2+},chemolyte}$ was calculated based on the number of moles of electrons used for electrolysis (n_e^-) and Faraday's law.

$$n_{Ca^{2+}, catholyte} = [Ca_{(aq)}^{2+}]_{catholyte} \cdot V_{catholyte}$$
 $n_{Ca^{2+}, chemolyte} = \frac{n_{e^-}}{N} = \frac{it}{NF} SA$
 $n_{Ca^{2+}, chemolyte} = \frac{n_{e^-}}{N} = \frac{iAt/F}{N}$

where, i is the applied current density (i.e., 100 mA cm⁻²); SA is the geometric surface area of electrodes (i.e. 4 cm²); t is the duration of electrolysis (i.e. 1 h); F is Faraday constant (96485 C mol⁻¹), N is the number of transferred electrons per dissolved Ca²⁺ (i.e., 2). The volume of catholyte for calcium transference efficiency determination test ($V_{catholyte}$ i.e. 0.5 L). Substitution yields:

$$\eta_{Ca,transfer} = \frac{[Ca_{(aq)}^{2+}]_{catholyte}}{t} \frac{NFV_{catholyte}}{iSA} \times 100\%$$

The slope of $[Ca^{2+}]$ versus time in Fig. 2, k, was expressed:

$$k = \frac{\left[Ca_{(aq)}^{2+}\right]_{catholyte}}{t}$$

Thus, substitution yields:

$$\eta_{Ca, transfer} = k \frac{NFV_{catholyte}}{i SA} \times 100\%$$

Sample calculation:

The slope obtained from Fig. 2 is $0.246 \text{ mmol L}^{-1} \text{ min}^{-1}$, or $4.10 \times 10^{-6} \text{mol L}^{-1} \text{ s}^{-1}$ in SI units.

$$\eta_{Ca, transfer} = k \frac{NFV_{catholyte}}{i \, SA} \times 100\%$$

$$= 4.10 \times 10^{-6} mol \, L^{-1} s^{-1} \times \frac{0.5 \, L \times 2 \times 96485 \, C \, mol^{-1}}{0.1 \, A \, cm^{-2} \times 4 \, cm^{2}} \times 100\%$$

$$= 4.10 \times 10^{-6} mol \, L^{-1} s^{-1} \times 2.41 \times 10^{5} \frac{L \, (A \, s) \, mol^{-1}}{A} \times 100\% = 98.9\%$$

This high calcium transference efficiency shows effectively quantitative permeance of dissolved Ca^{2+} through the Ca-CEM into the cathode chamber. We note that in order to determine $\eta_{Ca, transfer}$, we performed electrolysis without supplying any CO_2 supplied to the cathode, and ensured that all of the Ca^{2+} that passed through the membrane remained soluble in the catholyte by adding 20 mM of ethylenediaminetetracetic acid disodium (EDTA-2Na, Sigma Aldrich) the catholyte, and using a larger catholyte recirculating volume of 500 mL. During electrolysis, 2 mL of chemolyte and catholyte were taken out by a syringe at variable time periods and filtered with a member filter unit (Millipore, 0.22 μ m). A volume of 1 mL of the filtered solutions were diluted with 3% nitric acid (10 times for catholyte and 100 times for chemolyte). The acidic dilute solutions were tested by inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine $[Ca^{2+}_{(aa)}]$.

Calcium carbonation efficiency ($\eta_{Ca, carbonation}$)

We define the calcium carbonation efficiency $(\eta_{\textit{Ca, carbonation}})$ as:

$$\eta_{Ca, carbonation} (\%) = \frac{n_{CaCO_3}}{n_{Ca^{2+}, chemolyte}} \times 100\%$$

where $n_{{\it CaCO}_2}$ was calculated using the following equation.

$$n_{CaCO_3} = \frac{m_{CaCO_3}}{M_{CaCO_3}}$$

where m_{CaCO_3} is the mass of CaCO₃ that precipitated in the cathode chamber after electrolysis and M_{CaCO_3} is the molar mass of CaCO₃. Substitution yields:

$$\eta_{Ca, carbonation} (\%) = \frac{\frac{m_{CaCO_3}}{M_{CaCO_3}}}{\frac{it}{NF} SA} \times 100\% = \frac{NFm_{CaCO_3}}{it SA M_{CaCO_3}} \times 100\%$$

Sample calculation:

For example, when simulated flue gas was purged into the catholyte over 1 h of electrolysis, the obtained $CaCO_3$ in the cathode chamber was 0.4992 g. Thus, $\eta_{Ca, carbonation}$ can be calculated as follows:

$$\eta_{Ca, carbonation} (\%) = \frac{NFm_{CaCO_3}}{it SAM_{CaCO_3}} \times 100\%$$

$$= \frac{2 \times 96485 C mol^{-1} \times 0.4992 g}{0.1 A cm^{-2} \times 4 cm^2 \times 1 h \times 100.09 g mol^{-1}} = \frac{2 \times 96485 A s mol^{-1} \times 0.4992 g}{0.4 A \times 3600 s \times 100.09 g mol^{-1}}$$

$$= \frac{96330 A s g mol^{-1}}{144130 A s g mol^{-1}} \times 100\% = 67\%$$

CO₂ mineralization efficiency ($\eta_{\text{mineralization}}$)

We define the CO₂ mineralization efficiency as:

$$\eta_{mineralization}$$
 (%) = $\frac{n_{CaCO_3}}{n_{CO_2}} \times 100\%$

The n_{CO_2} is calculated on the basis of the total volume of CO_2 purged into the catholyte during electrolysis (V_{CO_2}) and the molar volume at operating temperature (V_m) , which is calculated as 24.055 L mol⁻¹ at 20 °C.

$$n_{CO_2} = \frac{V_{CO_2}}{V_m} = \frac{\chi_{CO_2}Qt}{V_m}$$

where χ_{CO_2} is a molar fraction of CO₂ in the purged gas (i.e., 0.04% for air and 10% for flue gas); Q is the flow rate of gas. Substitution yields:

$$\eta_{mineralization} (\%) = \frac{m_{CaCO_3} V_m}{\chi_{CO_2} Q t M_{CaCO_3}} \times 100\%$$

Sample calculation:

For example, with 0.2 L min⁻¹ simulated flue gas (10% CO₂) flowing into catholyte, we collected 0.4992 g CaCO₃ in the cathode chamber and we calculated $\eta_{\text{mineralization}}$.

$$\eta_{mineralization} (\%) = \frac{m_{caco_3} V_m}{\chi_{co_2} Q t M_{caco_3}} \times 100\%$$

$$= \frac{0.4992 g \times 24.055 L mol^{-1}}{10\% \times 0.2 L min^{-1} \times 1 h \times 100.09 g mol^{-1}} = \frac{0.4992 g \times 24.055 L mol^{-1}}{10\% \times 0.2 L min^{-1} \times 60 min \times 100.09 g mol^{-1}}$$

$$= \frac{12.008 \, g \, L \, mol^{-1}}{120.108 \, L \, a \, mol^{-1}} \times 100\% = 10\%$$

CO₂ mineralization rate of natural rock weathering

It has been estimated that 0.127 Gt of CO₂ is removed annually by the natural weathering of silicates.¹ For this exercise, we assumed that all of this CO₂ is mineralized by a single silicate mineral, either wollastonite (CaSiO₃) or forsterite (Mg₂SiO₄). We can then express the CO₂ mineralization rate of natural weathering by the mass of CO₂ being mineralized to the mass of silicate minerals per year.

For example, the natural weathering of CaSiO₃ is expressed as.

$$CaSiO_{3(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)} + SiO_{2(s)}$$

Thus, the CO_2 mineralization rate of natural weathering with wollastonite (r_{CaSiO_3}) can be calculated as follows:

$$r_{CaSiO_{3}} = \frac{m_{CO_{2},W}}{m_{CaSiO_{3},W}t_{W}} = \frac{m_{CO_{2},W}}{m_{CO_{2},W}t_{W} \frac{N_{CaSiO_{3}/CO_{2}}M_{CaSiO_{3}}}{M_{CO}}} = \frac{M_{CO_{2}}}{M_{CaSiO_{3}}N_{CaSiO_{3}/CO_{2}}t_{W}}$$

where $m_{CO_2,W}$ is the mass of CO₂ removed per year through natural weathering (0.127 Gt), $m_{CaSiO_3,W}$ is the mass of wollastonite needed to remove all this CO₂ through natural weathering (i.e., 0.335 Gt); t_W is the duration of weathering (i.e., 1 yr); M_{CO_2} and M_{CaSiO_3} are the molar masses of CO₂ (44.01 g mol⁻¹) and CaSiO₃ (116.16 g mol⁻¹), respectively; N_{CaSiO_3/CO_2} is the stoichiometric ratio of Ca to CO₂ (*i.e.*, 1).

Using these assumptions, the CO₂ mineralization rate of natural weathering with wollastonite is estimated as follows:

$$r_{CaSiO_3} = \frac{M_{CO_2}}{M_{CaSiO_3}N_{CaSiO_3/CO_2}t_W} = \frac{44.01 \, g \, mol^{-1}}{116.16 \, g \, mol^{-1} \times 1 \times 1 \, yr}$$

$$= 0.379 \, g_{CO_2} g_{CaSiO_3}^{-1} yr^{-1} = 0.379 \, ton_{CO_2} ton_{CaSiO_3}^{-1} yr^{-1}$$

The same procedure can be used to estimate the ${\rm CO_2}$ mineralization rate of natural weathering with forsterite ($r_{{\rm Mg}_{\rm o}SiO_{\rm o}}$).

$$Mg_{2}SiO_{4(s)} + 2 CO_{2(g)} \rightarrow 2 MgCO_{3(s)} + SiO_{2(s)}$$

$$r_{Mg_{2}SiO_{4}} = \frac{m_{co_{2}W}}{m_{Mg_{2}SiO_{4}W}t_{W}} = \frac{m_{co_{2}W}}{m_{co_{2}W}t_{W}} = \frac{m_{co_{2}W}}{m_{co_{2}W}t_{W}} = \frac{m_{co_{2}W}}{m_{Mg_{2}SiO_{4}Co_{2}}M_{Mg_{2}SiO_{4}}N_{Mg_{2}SiO_{4}/CO_{2}}t_{W}}$$

where $m_{Mg_2SiO_4,W}$ is the mass of forsterite needed to remove all this CO₂ through natural weathering, i.e. 0.203 Gt; $M_{Mg_2SiO_4}$ the molar mass of Mg₂SiO₄ (140.69 g mol⁻¹); $N_{Mg_2SiO_4/CO_2}$ is the stoichiometric ratio of Mg₂SiO₄ to CO₂ (i.e., 0.5).

Using these assumptions, r_{Mg,SiO_A} is estimated as follows:

$$r_{Mg_2SiO_4} = \frac{{}^{M_{CO_2}}}{{}^{M_{Mg_2SiO_4}N_{Mg_2SiO_4/CO_2}t_W}} = \frac{44.01 \text{ g mol}^{-1}}{140.69 \text{ g mol}^{-1} \times 0.5 \times 1 \text{ yr}}$$
$$= 0.626 \text{ g}_{CO_2} \text{ g}_{Mg_2SiO_4}^{-1} \text{yr}^{-1} = 0.626 \text{ ton}_{CO_2} \text{ ton}_{Mg_2SiO_4}^{-1} \text{yr}^{-1}$$

CO₂ mineralization rate of weathering electrolyzer

Our study centered on $CaSiO_3$, and thus the weathering reaction for wollastonite was used to calculate the CO_2 mineralization rate of our electrolyzer, i.e., r_{caSiO_3} . We take the calculation of r_{caSiO_3} for our weathering electrolyser purged with simulated flue gas as an example.

Given that 0.4992 g of $CaCO_3$ precipitated in the cathode chamber, the mass of CO_2 captured and converted into $CaCO_3$ in the weathering electrolyzer (m_{CO_2}) was calculated based on the following equation,

$$m_{CO_{2}}^{} = \frac{m_{CaCO_{3}}^{} M_{CO_{2}}^{}}{N_{CaCO_{3}/CO_{2}}^{} M_{CaCO_{3}}^{}}$$

$$m_{CO_{2}} = \frac{0.4992 \, g \times 44.01 \, g \, mol^{-1}}{1 \times 100.09 \, g \, mol^{-1}} = 0.2195 \, g_{CO_{2}}$$

where N_{CaCO_3/CO_2} is the stoichiometric ratio of CaCO₃ to CO₂ (i.e., 1).

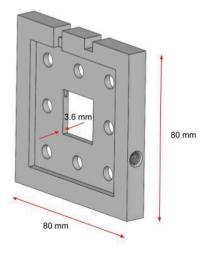
Then, the mass of dissolved $CaSiO_3$ during electrolysis (m_{CaSiO_3}) was calculated in the following equation.

$$\begin{split} m_{\text{CaSiO}_3} &= \frac{\text{it SAM}_{\text{CaSiO}_3}}{N_{e/\text{CaSiO}_3}F} \\ m_{\text{CaSiO}_3} &= \frac{0.1\,\text{A cm}^{-2} \times 4\,\text{cm}^2 \times 1h \times 116.16\,\,g\,\,\text{mol}^{-1}}{2 \times 96485\,\,C\,\,\text{mol}^{-1}} = \frac{0.4\,\text{A} \times 3600\,\,\text{s} \times 116.16\,\,g\,\,\text{mol}^{-1}}{2 \times 96485\,\,\text{A s mol}^{-1}} \\ &= \frac{167270\,\,\text{A s g mol}^{-1}}{192970\,\,\text{A s mol}^{-1}} = 0.\,8668\,\,g_{\text{CaSiO}_3} \end{split}$$

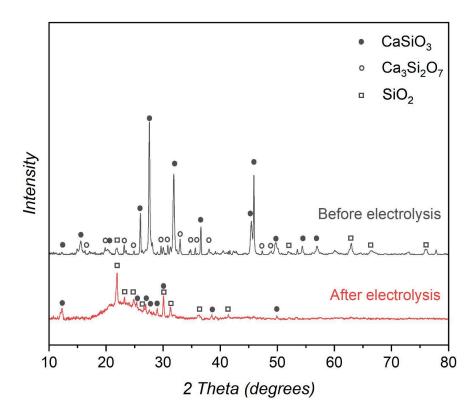
where $N_{e/CaSiO_3}$ is the stoichiometric ratio of electrons to CaSiO₃ in Fig. 1 (i.e., 2).

Thus, the CO₂ mineralization rate of our weathering electrolyser over 1 hour of electrolysis was calculated as follows:

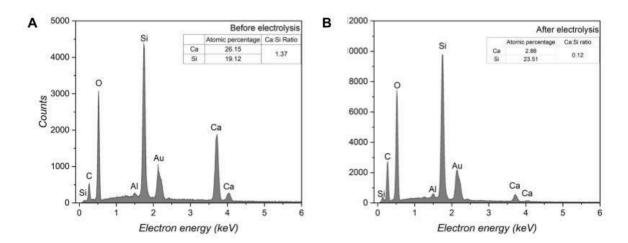
$$r_{CaSiO_3} = \frac{m_{CO_2}}{m_{CaSiO_3}t}$$


$$r_{CaSiO_3} = \frac{0.2195 g_{CO_2}}{0.8668 g_{CaSiO_3} \times 1 h} = 0.2532 g_{CO_2} g_{CaSiO_3}^{-1} h^{-1}$$

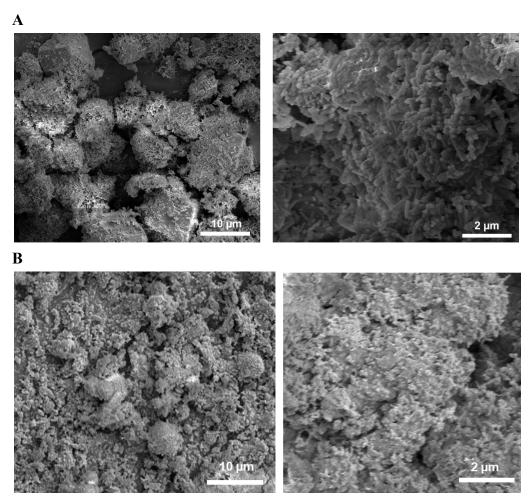
Lastly, to compare to natural weathering, we calculate the yearly CO₂ mineralization rate of our weathering electrolyzer operating at current density of 100 mA cm⁻² with simulated flue gas (10% CO₂) purging into catholyte:

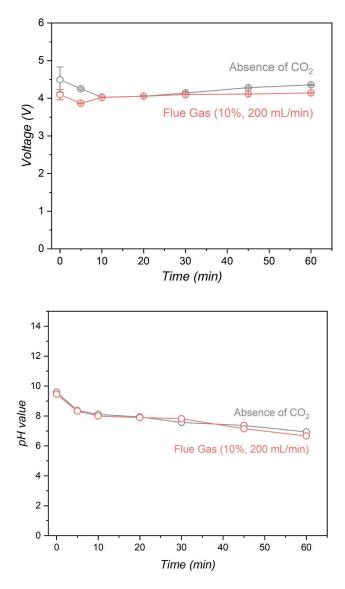

$$\begin{split} r_{\text{CaSiO}_3} &= \frac{0.2532 \, g_{\text{CO}_2}}{g_{\text{CaSiO}_3} h} \times \frac{24 \times 365 h}{yr} \\ &= 2218 \, g_{\text{CO}_2} \, g_{\text{CaSiO}_3}^{-1} yr^{-1} = 2218 \, ton_{\text{CO}_2} \, ton_{\text{CaSiO}_3}^{-1} yr^{-1} \end{split}$$

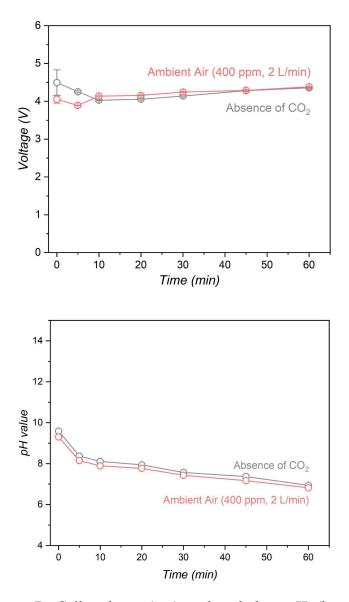
Similarly, the CO₂ mineralization rate of our weathering electrolyser using CaSiO₃ and purging with ambient air is calculated to be 69.32 $ton_{CO_2}^{-1} ton_{CaSiO_3}^{-1} yr^{-1}$.

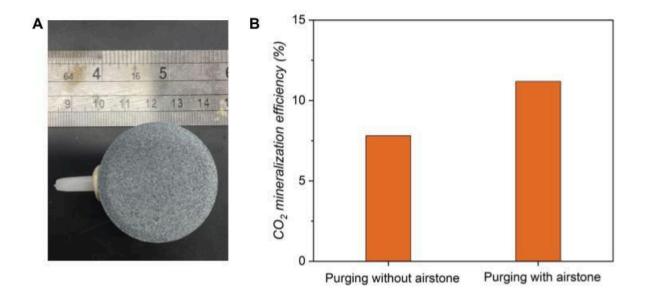

Supplementary Figures

Supplementary Figure 1: Dimensions of the 3D-printed chemical chamber.


Supplementary Figure 2: XRD diffractograms of CaSiO₃ introduced into the chemical chamber before electrolysis, ^{2,3} and the solids collected in the chemical chamber after 1 hour of electrolysis. Note that the CaSiO₃ signals are less prominent after electrolysis, and the onset of the broad signal at 25 degrees is consistent with amorphous SiO₂. ⁴⁻⁶


Supplementary Figure 3: EDX spectra of commercial CaSiO₃ (**A**) before and (**B**) after 60 minutes electrolysis. Gold sputtering was applied for SEM sample preparation. The detection of carbon and aluminum was assigned to conductive tape and aluminum sample stab.


Supplementary Figure 4: Photographs of the catholyte (left) and $CaCO_3$ solid (right) after electrolysis at 100 mA cm⁻² in the presence of the simulated flue gas (10% CO_2 , 90 % N_2) (top panel), and air (bottom panel).


Supplementary Figure 5: SEM images of white solid recorded from the cathode chamber after electrolysis at 100 mA cm^{-2} in the presence of (a) simulated flue gas ($10\% \text{ CO}_2$, $90 \% \text{ N}_2$) and (b) ambient air.

Supplementary Figure 6: Cell voltage (top) and catholyte pH (bottom) versus time for electrolysis at 100 mA cm $^{-2}$ without a CO $_2$ supply, in the presence of the simulated flue gas (10% CO $_2$, 90 % N $_2$).

Supplementary Figure 7: Cell voltage (top) and catholyte pH (bottom) versus time for electrolysis at 100 mA cm^{-2} with and without a CO_2 supply, in the form of air.

Supplementary Figure 8: (A) The commercial airstone (diameter = 4 cm) used to purge ambient air. (B) The CO_2 mineralization efficiency of the weathering electrolyzer at 100 mA cm⁻² supplied with air, with and without the airstone.

References

- 1. Sanna, A., Hall, M. R. & Maroto-Valer, M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. *Energy Environ. Sci.* **5**, 7781–7796 (2012).
- 2. Zhao, H., Park, Y., Lee, D. H. & Park, A.-H. A. Tuning the dissolution kinetics of wollastonite via chelating agents for CO₂ sequestration with integrated synthesis of precipitated calcium carbonates. *Phys. Chem. Chem. Phys.* **15**, 15185–15192 (2013).
- 3. Monasterio-Guillot, L., Di Lorenzo, F., Ruiz-Agudo, E. & Rodriguez-Navarro, C. Reaction of pseudowollastonite with carbonate-bearing fluids: implications for CO₂ mineral sequestration. *Chem. Geol.* **524**, 158–173 (2019).
- 4. Yu, L. Y., Huang, Z. X. & Shi, M. X. Synthesis and characterization of silica by sol-gel method. *Adv. Mat. Res.* **1030**, 189–192 (2014).
- 5. Guo, Q. *et al.* Synthesis of dispersed amorphous SiO₂ nanoparticles via sol–gel process. *Ceram. Int.* **43**, 192–196 (2017).
- 6. Biswas, R. K. *et al.* Study of short range structure of amorphous silica from PDF using Ag radiation in laboratory XRD system, Raman and NEXAFS. *J. Non-Cryst. Solids* **488**, 1–9 (2018).