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Figure S1. (a) Two TSRs coupled by capacitor with capacitance C,: The blue solid curves on the TSR
represent the s-mode with eigenvector (1 / \/6, 1/ \/6, -2/ \/6), while the red solid curves denote the p-
mode with eigenvector (1 / V2,—1 / V2, O). (b) A lumped circuit model for the left TSR: 4, indicates the
current through the m-th inductor with inductance [ at the a-th leg and ¢, denotes the charge on the m-th

capacitor with capacitance c at the a-th leg.

S1. DERIVATION OF THE TIGHT BINDING HAMILTONIAN FOR THE PHOTONIC HEXAG-
ONAL LATTICE WITH TSRS

Distinctly from conventional linear stripline resonator in circuit quantum electrodynamics
(QED) system [1], a triple-leg stripline resonator (TSR) features a three-legged design as illus-
trated Fig. S1. Using the lumped element circuit model, the Lagrangian of the system can be
written by

L{gna}] = ZZ {2 Ipe, qm] - 2%0613

a=1 n=1
where ¢, represents the charge on the capacitor at position n of the a-th leg, i,, denotes the
current on the inductor at the position n of the a-th leg, and ¢y is the charge on the central capacitor
with capacitance ¢, [2]. Applying the Kirchhoff rules, we introduce the nonlocal variable ,,, =

ij:m Jo- By using the variable 1,,,, one can express the Lagrangian of a single TSR as follows
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By solving the Euler-Lagrange equation in the continuum limit and imposing the charge neutrality
condition for x # 0, the spatial part of ¥,,(z, t) can be obtained to be y,(z) = Aysink(z — L)
with k& = w+/Ic by imposing boundary condition that 1), (x = L) = 0. The equation of motion for
Xa at = 0 yields the following equations
k 1 ’
(— cos kL — lw?sin kL) Ay + —sinkL Z Ag = 0. (S2)
c o =
The above equations yield the following two solutions: A single symmetric mode and two-fold
degenerate modes. The symmetric spatial mode is described by A, = 1/4/3 for all a with
k = nm/L. The two-fold degenerate mode satisfies the following condition Zi A, = 0 with
k = (n — 1/2)r/L. Hence the ground states are two-fold degenerate states. Here we have
chosen the following two orthonormal eigenvectors: A, = (1 /V6,1/4/6, -2/ \/6) and A, =
(1/v/2,—1/+/2,0) as demonstrated on the left TSR in Fig. S1.
Next, we place a TSR to the right, which is coupled by capacitor located at end of the third leg
as shown in Fig. S1. The Lagrangian of two coupled TSR system in terms of the variable ¥(z, t)
can be written by
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where x, and y, denote coordinates on the a-th leg of the left and right TSR and « indicates

(83)

the legs of the two TSRs. ., v,, represent the nonlocal variable for the left and right TSR
respectively. In the Lagrangian S3, the first and second terms describe the Lagrangian of the left
TSR, the third and fourth terms describe the right TSR, and the last term represents the capacitative
coupling of two TSRs. Assuming a weak coupling between two TSRs with C, < 3Lc, the
frequency shift of each TSR can be considered to be negligible. The voltage operator at the end of
the third leg of the left TSR can be written by

c 01'3

3L (4, + a, (S4)

Hence the Hamiltonian for the two coupled TSR system can be written by

=) hwala, + Z hwé al,—i—ZAlu G ity + e (S5)



Hence the hopping strength ¢,,, can be written by

Cr
t“l, - FLW@A[HATV

where C,;(= 3Lc) represents the capacitance to the ground plane of a TSR. The hopping strength
depends on the coupling between two specific spatial modes of each TSR, which is proportional
to the multiple of two amplitudes.

The Hamiltonian for the photonic hexagonal lattice system with TSRs can be written by

H =Y hwal,a;,+ Y hwal aj, +> Y tual,a;,+hc., (S6)
Ty fb YR%
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where the indices i(j) denotes the sites of sublattice A(B) as defined in the main text. Due to the
two-fold degeneracy, any two orthonormal bases can be chosen to represent the Hamiltonian of the
system. By taking ¢)(k) = (ds(K), a4, (K), dps(K), dp,(k))", one can describe the Hamiltonian

of the system as follows

0 0 T Ty
0 0 T Ty

Hk=| 7" (S7)
T5 T 0 0
T T, 0 0

where Ty = ten + tesi (€™ + €®2), Ty = Ty = top(—e™ + e*2), T = t,, (e + e*2)
with the coefficients ¢, = 4t,,/3, tss1 = tpp/3, tsp = tpp/ v/3. The momenta %k, and k; is given
by (/{:m + \/gky) /2 and (—km + \/gky) /2, respectively. Hence, the energy eigenvalues can be
obtained by

2
E = £2t,,, :I:%\/S + 2 (cos ky + cos kg + cos(ky — k2)) (S8)

which exhibits the top and bottom flat bands and the dispersive Dirac nodes at k = (k,, k,) =
(+47/3,0). One can notice that the dispersive band quadratically touches to the top and bottom
flat bands.

S2. EFFECT OF LENGTH VARIATIONS OF THREE LEGS IN TSR

We now demonstrate that variation in leg length of TSR does not disrupt the degeneracy of the
system significantly. Suppose that the length of three legs in a TSR is slightly different from each
other as shown in Fig. S2. We will take the length difference of the a-th leg from L to be dL,
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Figure S2. An illustrative schematic depicting length variations within a TSR, where each leg undergoes a

slight change in length, denoted as d L, for o« = 1,2, 3.

with = 1,2, 3 and assume that dL, < L. From Eq. S1, the equation of motion of the TSR with
leg length L, can be written by

3
1
(Ek cos kL, — lw?sin kLa> Ay + —sinkL, Z Ag =10
c Co
p=1
where L, is the length of the a-th leg defined to be L, = L + dL,. By introducing the average
length of three legs L=1L+ >, dL,/3, one can rewrite the length as L, = L + dL,, which

satisfies ) dL., = 0. Then the eigenvalue equations for the spatial modes can be written by

di(k)  ho(k) + s(k) hs(k) + s(k) Ay
hi(k) +s(k)  dy(k)  hs(k)+s(k) |- |42 ] =0 (59)
hi(k) + s(k) ho(k) +s(k)  ds(k) As

where do(k) = f(k) + ga(k) + ha(k) + s(k), f(k) = (k/c)coskL + (k%/c)sin kL, go(k) =
(dLo/3)((k/2L) cos kL—k?sin kL+ (k2 /2L) sin kL—k3 cos kL), ha (k) = (dLa/co)((1/2L) sin kL—
kcoskL)),s(k) = (1/co)sin kL. By neglecting the higher order terms than O(dL,/L), the de-
terminant of the matrix can be simplified to f?(k)(f(k) + 3s(k)). For f(k) = 0, the relation
1/k = — tan kL holds, which implies that k& 2 (n — 1/2)7/L. This manifests that the system
supports a two-fold degenerate mode up to order O(dL, /L)% For f(k) = —3s(k), the relation
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Figure S3. Schematic representation of zigzag TSR lattice coupled to superconducting qubits laterally along

the top and bottom zigzag edges of the lattice.

tan kL = k/[(k)* —3¢/cq) leads to k = nrL exhibiting the non-degenerate symmetric mode. One
can notice that the degeneracy of the ground state persists quite strongly against length variations

of TSR.

S3. DERIVATION OF EDGE MODE CONTROLLED BY COUPLING TO THE SUPERCON-
DUCTING QUBIT

As shown in Fig. S3, superconducting qubit arrays are placed laterally to the outermost legs of
TSRs. The lateral coupling of qubits to the resonator influences the energy levels of the edge states
depending on the qubit states. According to [1], in a disperisve regime, an effective Hamiltonian

of single TSR coupled to a qubit can be written by

A

1
Heg = hwo (alas + ala,) + xalaso. + = (E + x) 0. (S10)

2
where I denotes the resonance frequency of a qubit and g, represents the coupling strength be-
tween TSR and a qubit with y = ¢?/A and A = E —wy. One can see that only s-mode couples to
superconducting qubits and the frequency of a s-mode is shifted by xo,/h. We will first consider

the zigzag nanoribbon made of TSR lattice without qubit coupling. By solving the Heisenberg
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equation of motion, we derive the recurrence relations to obtain the eigenfunction for the edge

state, which can be written by

k k
Gwsm = tss27~ps’m+1 + 2tssl CcOoSs Ews’m - Qitsp Sil'l Ewp’m
L .k k
€Ypm = —2itg, sin §¢srm + 2t,, cos §¢p/m
k L .k
€¢s’m - t852¢sm+1 + 2t881 COS §¢sm + 2Ztsp S1I1 §wpm
L .k k
€Yprm = 2itg, sin §¢sm + 2t,, cos 51/11,,”

where € is the energy eigenvalue and ), refers to the a-th component of the eigenvector at po-
sition m(= 1,---, N) of TSR zigzag nanoribbon. First, we will consider the flat edge modes
at ¢ = (0. The recurrence relations divide into two parts at each site as follows. ¥g,11 =
—(1/2) sec(k/2)tgy, for site A and g1 = —(1/2) sec(k/2)1)g, for site B. One can obtain

the following two edge-localized states, which can be written by

¢edgo = |{¢s}7 {¢p}7 {¢s’}7 {¢p’}>

CHL gy oo ™5 AB, Buty -, BN 711,{0, ..., 03, {0, ..., 0})
CHO,...,01,40,....00, {p™N=t o, 1 BNt o, B, B))

where 1 = —(1/2)sec (k/2), 3 = —(i/+/3) tan (k/2), and the normalization factor ¢ = [(1 +
1B12)(1 — p®) /(1 — p?)]~1/2. The two edge-localized states toqqe represent the top and bottom
localized states respectively. Now we will consider the lateral coupling to qubit arrays. We will
assume that the qubit states are uniformly controlled by input microwave pulse. Since only the
s-mode couples to the outermost qubits and the overlap between two edge states localized to
the opposite edges is negligible, the energy shift due to the coupling can be easily obtained by
calculating (tegge| V [theage) = [C|? for individual edge state. Here V represents the coupling

Hamiltonian between the outermost legs of TSRs and qubits, which can be written by

{x0.,0,...,0} {0,...,0} {0,...,0} {0,...,0}

{0,...,0} {0,...,0} {0,...,0} {0,...,0}

{0,...,0}  {0,...,0} {0,...,0,x0.} {0,...,0}

{0,...,0} {0,...,0} {0,...,0} {0,...,0}
At the most localized point (k = 0), © = —1/2, 8 = 0 and hence the energy shift is given by
3x0. /4. At the vicinity of the Dirac point (k = +27/3), 1 — 1—(v/3/2) Ak with Ak = k¥27/3.

‘A/:
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For semi-infinite zigzag nanoribbon with N — oo, ¢ — ((1 4 |3|?)/(1 — 1?))~'/? and hence the
slope of the energy dispersion near Dirac point is given by v/3yo./2. Next, we investigate the
dispersive bands, which touch the top or bottom flat bands at k = 0. Since the edge state localized
at one edge remains unaffected by coupling to the opposite edge for TSR zigzag nanoribbon, one
can take ¢ = 0 (or 1)y = 0). From the recurrence relations, the eigen-energies of the dispersive

edge states can be obtained to be ¢ = 4+/(2/3)sin?(k/2) + 4 cos?(k/2) in unit of t,, and the

wavefunction of the dispersive edge states are given by

Vedge = s}, {tp ), {tbs}, {Uw})
WL, v, .. N B, By, BUN {0, 08 {y e, N
EHO, ..., 0% {w Nt A N 1 BN L B, B))
where v = cos(k/2), B = (V/3/2)ecot(k/2), v = i(v/3/2)ecsc(k/2) and the normalization
constant & = ((1+|82+[v%)(1—v*N)/(1—1?))~'/2, At the maximum localized point (k = +7),

the energy shift is given by 3xo, /4. Our theoretical analysis clearly demonstrates the tunability of

the edge-localized states by coupling to superconducting qubits.
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