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Figure S1. (a) Two TSRs coupled by capacitor with capacitance Cr: The blue solid curves on the TSR

represent the s-mode with eigenvector
(
1/
√
6, 1/

√
6,−2/

√
6
)
, while the red solid curves denote the p-

mode with eigenvector
(
1/
√
2,−1/

√
2, 0
)
. (b) A lumped circuit model for the left TSR: imα indicates the

current through the m-th inductor with inductance l at the α-th leg and qmα denotes the charge on the m-th

capacitor with capacitance c at the α-th leg.

S1. DERIVATION OF THE TIGHT BINDING HAMILTONIAN FOR THE PHOTONIC HEXAG-

ONAL LATTICE WITH TSRS

Distinctly from conventional linear stripline resonator in circuit quantum electrodynamics

(QED) system [1], a triple-leg stripline resonator (TSR) features a three-legged design as illus-

trated Fig. S1. Using the lumped element circuit model, the Lagrangian of the system can be

written by

L [{qnα}] =
3∑

α=1

N∑

n=1

[
l

2
i2nα − 1

2c
q2nα

]
− 1

2c0
q20

where qnα represents the charge on the capacitor at position n of the α-th leg, inα denotes the

current on the inductor at the position n of the α-th leg, and q0 is the charge on the central capacitor

with capacitance c0 [2]. Applying the Kirchhoff rules, we introduce the nonlocal variable ϑmα =
∑N

n=m qα. By using the variable ϑmα, one can express the Lagrangian of a single TSR as follows

L [{ϑmα}] =
3∑

α=1

N∑

n=1

[
l

2
ϑ̇2nα − 1

2c
(ϑnα − ϑn+1α)

2

]
− 1

2c0
ϑ21α. (S1)
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By solving the Euler-Lagrange equation in the continuum limit and imposing the charge neutrality

condition for x 6= 0, the spatial part of ϑα(x, t) can be obtained to be χα(x) = Aα sin k(x− L)

with k = ω
√
lc by imposing boundary condition that ϑα(x = L) = 0. The equation of motion for

χα at x = 0 yields the following equations
(
k

c
cos kL− lω2 sin kL

)
Aα +

1

c0
sin kL

3∑

β=1

Aβ = 0. (S2)

The above equations yield the following two solutions: A single symmetric mode and two-fold

degenerate modes. The symmetric spatial mode is described by Aα = 1/
√
3 for all α with

k ∼= nπ/L. The two-fold degenerate mode satisfies the following condition
∑3

αAα = 0 with

k ∼= (n − 1/2)π/L. Hence the ground states are two-fold degenerate states. Here we have

chosen the following two orthonormal eigenvectors: As =
(
1/
√
6, 1/

√
6,−2/

√
6
)

and Ap =

(1/
√
2,−1/

√
2, 0) as demonstrated on the left TSR in Fig. S1.

Next, we place a TSR to the right, which is coupled by capacitor located at end of the third leg

as shown in Fig. S1. The Lagrangian of two coupled TSR system in terms of the variable ϑ(x, t)

can be written by

L =
3∑

α=1

∫ L

0

dxα

[
l

2
ϑ̇αl −

1

2c

(
∂ϑαl
∂xα

)2
]
− 1

2c0

(
3∑

α=1

ϑαl (0)

)2

+

3∑

α=1

∫ L

0

dyα

[
l

2
ϑ̇αr −

1

2c

(
∂ϑαr
∂yα

)2
]
− 1

2c0

(
3∑

α=1

ϑαr (0)

)2

− Cr

2c2

(
∂ϑ3l (L)

∂x3
− ∂ϑ3r (L)

∂y3

)2

(S3)

where xα and yα denote coordinates on the α-th leg of the left and right TSR and α indicates

the legs of the two TSRs. ϑαl, ϑαr represent the nonlocal variable for the left and right TSR

respectively. In the Lagrangian S3, the first and second terms describe the Lagrangian of the left

TSR, the third and fourth terms describe the right TSR, and the last term represents the capacitative

coupling of two TSRs. Assuming a weak coupling between two TSRs with Cr ≪ 3Lc, the

frequency shift of each TSR can be considered to be negligible. The voltage operator at the end of

the third leg of the left TSR can be written by

V̂ (L) =
1

c

∂ϑ3l (L)

∂x3
∼=
∑

µ=s,p

A3µ

√
~ω

3Lc

(
âµ + â†µ

)
. (S4)

Hence the Hamiltonian for the two coupled TSR system can be written by

Ĥ2 =
∑

µ=s,p

~ωâ†µâµ +
∑

ν=s′,p′

~ωâ†νâν +
∑

µ,ν

AlµArν
~ωCr

3LC
â†µâν + h.c. (S5)
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Hence the hopping strength tµν can be written by

tµν = ~ω
Cr

Cg
AlµArν

where Cg(= 3Lc) represents the capacitance to the ground plane of a TSR. The hopping strength

depends on the coupling between two specific spatial modes of each TSR, which is proportional

to the multiple of two amplitudes.

The Hamiltonian for the photonic hexagonal lattice system with TSRs can be written by

Ĥ =
∑

i,µ

~ωâ†i,µâi,µ +
∑

j,ν

~ωâ†j,νâj,ν +
∑

〈i,j〉

∑

µ,ν

tµν â
†
i,µâj,ν + h.c., (S6)

where the indices i(j) denotes the sites of sublattice A(B) as defined in the main text. Due to the

two-fold degeneracy, any two orthonormal bases can be chosen to represent the Hamiltonian of the

system. By taking ψ̂(k) = (âAs(k), âAp(k), âBs(k), âBp(k))
T

, one can describe the Hamiltonian

of the system as follows

H(k) =




0 0 Tss′ Tsp′

0 0 Tps′ Tpp′

T ∗
ss′ T

∗
ps′ 0 0

T ∗
sp′ T

∗
pp′ 0 0




(S7)

where Tss′ = tss2 + tss1(e
ik1 + eik2), Tsp′ = Tps′ = tsp(−eik1 + eik2), Tpp′ = tpp(e

ik1 + eik2)

with the coefficients tss2 = 4tpp/3, tss1 = tpp/3, tsp = tpp/
√
3. The momenta k1 and k2 is given

by
(
kx +

√
3ky
)
/2 and

(
−kx +

√
3ky
)
/2, respectively. Hence, the energy eigenvalues can be

obtained by

E = ±2tpp,±
2tpp
3

√
3 + 2 (cos k1 + cos k2 + cos(k1 − k2)) (S8)

which exhibits the top and bottom flat bands and the dispersive Dirac nodes at k = (kx, ky) =

(±4π/3, 0). One can notice that the dispersive band quadratically touches to the top and bottom

flat bands.

S2. EFFECT OF LENGTH VARIATIONS OF THREE LEGS IN TSR

We now demonstrate that variation in leg length of TSR does not disrupt the degeneracy of the

system significantly. Suppose that the length of three legs in a TSR is slightly different from each

other as shown in Fig. S2. We will take the length difference of the α-th leg from L to be dLα

4
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Figure S2. An illustrative schematic depicting length variations within a TSR, where each leg undergoes a

slight change in length, denoted as dLα for α = 1, 2, 3.

with α = 1, 2, 3 and assume that dLα ≪ L. From Eq. S1, the equation of motion of the TSR with

leg length Lα can be written by

(a0
c
k cos kLα − lω2 sin kLα

)
Aα +

1

c0
sin kLα

3∑

β=1

Aβ = 0

where Lα is the length of the α-th leg defined to be Lα = L + dLα. By introducing the average

length of three legs L̃ = L +
∑

α dLα/3, one can rewrite the length as Lα = L̃ + dL̃α, which

satisfies
∑

α dL̃α = 0. Then the eigenvalue equations for the spatial modes can be written by




d1(k) h2(k) + s(k) h3(k) + s(k)

h1(k) + s(k) d2(k) h3(k) + s(k)

h1(k) + s(k) h2(k) + s(k) d3(k)


 ·




A1

A2

A3


 = 0 (S9)

where dα(k) = f(k) + gα(k) + hα(k) + s(k), f(k) = (k/c) cos kL̃ + (k2/c) sin kL̃, gα(k) =

(dL̃α/3)((k/2L̃) cos kL̃−k2 sin kL̃+(k2/2L̃) sin kL̃−k3 cos kL̃), hα(k) = (dL̃α/c0)((1/2L̃) sin kL̃−
k cos kL̃)), s(k) = (1/c0) sin kL̃. By neglecting the higher order terms than O(dL̃α/L̃), the de-

terminant of the matrix can be simplified to f 2(k)(f(k) + 3s(k)). For f(k) = 0, the relation

1/k = − tan kL̃ holds, which implies that k ∼= (n − 1/2)π/L̃. This manifests that the system

supports a two-fold degenerate mode up to order O(dL̃α/L̃)
2. For f(k) = −3s(k), the relation
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Figure S3. Schematic representation of zigzag TSR lattice coupled to superconducting qubits laterally along

the top and bottom zigzag edges of the lattice.

tan kL̃ = k/[(k)2−3c/c0] leads to k ∼= nπL̃ exhibiting the non-degenerate symmetric mode. One

can notice that the degeneracy of the ground state persists quite strongly against length variations

of TSR.

S3. DERIVATION OF EDGE MODE CONTROLLED BY COUPLING TO THE SUPERCON-

DUCTING QUBIT

As shown in Fig. S3, superconducting qubit arrays are placed laterally to the outermost legs of

TSRs. The lateral coupling of qubits to the resonator influences the energy levels of the edge states

depending on the qubit states. According to [1], in a disperisve regime, an effective Hamiltonian

of single TSR coupled to a qubit can be written by

Ĥeff = ~ω0

(
â†sâs + â†pâp

)
+ χâ†sâsσz +

1

2
(E + χ) σz (S10)

where E denotes the resonance frequency of a qubit and gs represents the coupling strength be-

tween TSR and a qubit with χ = g2s/∆ and ∆ = E−~ω0. One can see that only s-mode couples to

superconducting qubits and the frequency of a s-mode is shifted by χσz/~. We will first consider

the zigzag nanoribbon made of TSR lattice without qubit coupling. By solving the Heisenberg

6



equation of motion, we derive the recurrence relations to obtain the eigenfunction for the edge

state, which can be written by

ǫψsm = tss2ψs′m+1 + 2tss1 cos
k

2
ψs′m − 2itsp sin

k

2
ψp′m

ǫψpm = −2itsp sin
k

2
ψs′m + 2tpp cos

k

2
ψp′m

ǫψs′m = tss2ψsm+1 + 2tss1 cos
k

2
ψsm + 2itsp sin

k

2
ψpm

ǫψp′m = 2itsp sin
k

2
ψsm + 2tpp cos

k

2
ψpm

where ǫ is the energy eigenvalue and ψαm refers to the α-th component of the eigenvector at po-

sition m(= 1, · · · , N) of TSR zigzag nanoribbon. First, we will consider the flat edge modes

at ǫ = 0. The recurrence relations divide into two parts at each site as follows. ψsm+1 =

−(1/2) sec(k/2)ψsm for site A and ψs′m+1 = −(1/2) sec(k/2)ψs′m for site B. One can obtain

the following two edge-localized states, which can be written by

ψedge = |{ψs}, {ψp}, {ψs′}, {ψp′}〉

=





ζ |{1, µ, . . . , µN−1}, {β, βµ, . . . , βµN−1}, {0, . . . , 0}, {0, . . . , 0}〉

ζ |{0, . . . , 0}, {0, . . . , 0}, {µN−1, . . . , µ, 1}, {βµN−1, . . . , βµ, β}〉

where µ = −(1/2) sec (k/2), β = −(i/
√
3) tan (k/2), and the normalization factor ζ = [(1 +

|β|2)(1 − µ2N)/(1 − µ2)]−1/2. The two edge-localized states ψedge represent the top and bottom

localized states respectively. Now we will consider the lateral coupling to qubit arrays. We will

assume that the qubit states are uniformly controlled by input microwave pulse. Since only the

s-mode couples to the outermost qubits and the overlap between two edge states localized to

the opposite edges is negligible, the energy shift due to the coupling can be easily obtained by

calculating 〈ψedge| V̂ |ψedge〉 = |ζ |2 for individual edge state. Here V̂ represents the coupling

Hamiltonian between the outermost legs of TSRs and qubits, which can be written by

V̂ =




{χσz, 0, . . . , 0} {0, . . . , 0} {0, . . . , 0} {0, . . . , 0}
{0, . . . , 0} {0, . . . , 0} {0, . . . , 0} {0, . . . , 0}
{0, . . . , 0} {0, . . . , 0} {0, . . . , 0, χσz} {0, . . . , 0}
{0, . . . , 0} {0, . . . , 0} {0, . . . , 0} {0, . . . , 0}



.

At the most localized point (k = 0), µ ∼= −1/2, β ∼= 0 and hence the energy shift is given by

3χσz/4. At the vicinity of the Dirac point (k = ±2π/3), µ→ 1−(
√
3/2)∆k with ∆k = k∓2π/3.
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For semi-infinite zigzag nanoribbon with N → ∞, ζ → ((1 + |β|2)/(1 − µ2))−1/2 and hence the

slope of the energy dispersion near Dirac point is given by
√
3χσz/2. Next, we investigate the

dispersive bands, which touch the top or bottom flat bands at k = 0. Since the edge state localized

at one edge remains unaffected by coupling to the opposite edge for TSR zigzag nanoribbon, one

can take ψs = 0 (or ψs′ = 0). From the recurrence relations, the eigen-energies of the dispersive

edge states can be obtained to be ǫ = ±
√

(2/3) sin2(k/2) + 4 cos2(k/2) in unit of tpp and the

wavefunction of the dispersive edge states are given by

ψedge = |{ψs}, {ψp}, {ψs′}, {ψp′}〉

=





ξ |{1, ν, . . . , νN−1}, {β, βν, . . . , βνN−1}, {0, . . . , 0}, {γ, γν, . . . , γνN−1}〉

ξ |{0, . . . , 0}, {γνN−1, . . . , γν, γ}, {νN−1, . . . , ν, 1}, {βνN−1, . . . , βν, β}〉

where ν = cos(k/2), β = (
√
3/2)ǫ cot(k/2), γ = i(

√
3/2)ǫ csc(k/2) and the normalization

constant ξ = ((1+|β|2+|γ|2)(1−ν2N )/(1−ν2))−1/2. At the maximum localized point (k = ±π),

the energy shift is given by 3χσz/4. Our theoretical analysis clearly demonstrates the tunability of

the edge-localized states by coupling to superconducting qubits.
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