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I. OVERVIEW

The theoretical considerations in the main paper start from a tight-binding model which

captures the coupling of states from the CuO2 layer with those of the nano-facets (or steps) on

the substrate. In Sec. II we detail how within this model a nematic electronic structure can

be obtained, based on the coherent potential approximation (CPA). The resulting nematic

Fermi surface can be well described by an anisotropic tight-binding model [see Fig. 2(c)

of the main paper] which is the basis for the investigation of CDW formation within the

frustrated phase separation scenario in a nematic system. The details of the corresponding

calculation are given in Sec. III.

II. CPA CALCULATION OF THE FERMI SURFACE

Our effective model reads

H =
∑
ij,σ

tijc
†
i,σcj,σ + t⊥

∑
n,σ

L∑
m=1

[
c†Rn+mb,σdRn+mb,σ + h.c.

]
+ Vsub

∑
n,σ

L∑
m=1

d†Rn+mb,σdRn+mb,σ

(S1)

where c
(†)
i,σ and d

(†)
i,σ denote annihilation (creation) operators for the electronic states in the

CuO2 layers and undercoordinated facet (or step) states on the substrate, respectively. Rn

denotes the starting sites of the latter 1-D structures with length L and local potentials

−Vsub (see Fig. S1). The hopping term ti,j will be considered below only at the level of

nearest (∼ t) and next-nearest neighbor (∼ t′) .

In a first step we eliminate the hopping t⊥ between layer and undercoordinated substrate

states by diagonalizing the corresponding local coupling hamiltonian

Hcoup
n,m,σ =

 c†i,σ

d†i,σ

 0 t⊥

t⊥ −Vsub

 ci,σ

di,σ

 (S2)

so that the coupled layer states are renormalized by an effective local chemical potential

Veff =
1

2

[√
V 2
sub + 4t2⊥ − Vsub

]
. (S3)

As a result we obtain an effective hamiltonian for the coupled layer system [Eq. (1) in the

main paper] which reads

H =
∑
ij,σ

tijc
†
i,σcj,σ + Veff

∑
n,σ

L∑
m=1

c†Rn+mb,σcRn+mb,σ . (S4)
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FIG. S1. Schematic view of the planar tight-binding model with the CuO2 layer (atoms, red dots)

effectively coupled by the perpendicular hopping t⊥ to the substrate facets or steps (blue dots).

Moreover, due to the very anisotropic shape of the nanofacets (or steps) we can take the

limit L → ∞ so that our model corresponds to charge carriers in the CuO2 layer which are

subject to infinitely extended one-dimensional potentials along the b-direction and randomly

distributed with an area fraction of nanofacets (steps) given by the parameter ‘f ’.

The resulting electronic structure can be most conveniently obtained from the coherent-

potential approximation (CPA) [1] with a self-energy

Σ(kb, ω) =
fV0

1− (V0 − Σ(kb, ω))Ḡ(kb, ω − Σ(kb, ω))
(S5)

with

Ḡ(kb, ω) =
1

N

∑
ka

1

ω + 2t cos(kb) + γ(kb) cos(ka)
(S6)

=
1√

[ω + 2t cos(kb)]
2 − γ2(kb)

(S7)

γ(kb) = −2t− 4t′ cos(kb) . (S8)

Fig. S2 shows the real- and imaginary part of the resulting self-energy which both display

a dispersing behavior with ω ∼ cos(kb) and Σ′ > 0. At the Fermi energy (dashed line in
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Fig. S2a) the real part is essentially zero at kb = 0 but gradually increases towards larger

momenta where it thus adds an additional contribution to the hopping along kb. As a

consequence the kinetic energy along the kb-direction becomes enhanced and results in a

nematic Fermi surface which is shown in Fig. 3 of the main paper. The enhancement of the

imaginary part of the self-energy for small kb at the Fermi energy is then responsible for the

blurred feature around the (±π, 0) regions in Fig. 3(c).

This Fermi surface can also be modeled [see Fig. 2(c) of the main paper] within an

effective one-band model where the nearest-neighbor hopping is enlarged (reduced) along

the orthorhombic b- (a-) direction i.e.

ε0k = −2t(1 + α) cos(kb)− 2t(1− α) cos(ka)

− 4t′ cos(kb) cos(ka) (S9)

with α denoting the anisotropy parameter.

FIG. S2. Real- (a) and imaginary (b) part of the CPA self-energy for a disordered array of ‘defect

lines’ (f = 0.15) as a function of ω and ky. The horizontal dashed line indicates the location of

the Fermi energy. Here t′/t = −0.17 and Veff = 1, while the doping is p = 0.15,.

III. TIME-DEPENDENT SLAVE-BOSON THEORY

Our model is based on the slave-boson approach for the U → ∞ Hubbard model [2] where

the Hilbert space is enlarged by auxiliary bosons b
(†)
i . The resulting hamiltonian reads

H =
∑
ijσ

tijbib
†
jf

†
iσfjσ (S10)
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where in addition at each site the constraint∑
σ

f †
iσfiσ + b†ibi = 1 (S11)

has to be fulfilled. This constraint guarantees that the site occupation of the quasiparticles∑
σ ni,σ ≤ 1 and simultaneously restricts the Hilbert space to the correct physical sector.

The mean-field energy functional reads

E0 =
∑
ijσ

√
1− ⟨ni⟩

√
1− ⟨nj⟩⟨f †

iσfjσ⟩ (S12)

where we have set bi → ⟨bi⟩ =
√

1− ⟨ni⟩ with ⟨ni⟩ =
∑

σ⟨f
†
iσfiσ⟩.

We now expand the functional Eq. (S12) up to second order in the density fluctuations√
1− ⟨ni⟩ ≈

√
1− ⟨n⟩ − 1

2
√

1− ⟨n⟩
δ⟨ni⟩

− 1

8

1

(1− ⟨n⟩)3/2
(δ⟨ni⟩)2

⟨f †
iσfjσ⟩ = ⟨f †

iσfjσ⟩0 + δ⟨f †
iσfjσ⟩

where ⟨n⟩ ≡ ⟨ni⟩0 is the saddle-point value for the charge density for the homogeneous

system.

The second order contribution reads

δ(2)E =
∑
ijσ

tij

[
⟨f †

iσfjσ⟩0
(

1

4(1− ⟨n⟩)
δ⟨ni⟩δ⟨nj⟩

− 1

8

1

1− ⟨n⟩
[
(δ⟨ni⟩)2 + (δ⟨nj⟩)2

])
− 1

2
(δ⟨ni⟩+ δ⟨nj⟩)δ⟨f †

iσfjσ⟩
]
.

We now define the Fourier transformed fluctuations

δρq =
∑
kσ

δ⟨f †
k+q,σfk,σ⟩

δTq =
1

2

∑
kσ

(ε0k+q + ε0k)δ⟨f
†
k+q,σfk,σ⟩

so that the second order expansion can be written as

δ(2)E =
1

2N

∑
q

 δρq

δTq

 Vres(q) −1

−1 0


︸ ︷︷ ︸

≡Mq

 δρ−q

δT−q

 (S13)
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with

Vres(q) =
1

2 (1− ⟨n⟩)

[
−e0 +

1

N

∑
kσ

ε0k+qnkσ

]
(S14)

and e0 is the unrenormalized ground state energy. Upon including long-range Coulomb and

electron-phonon interaction, V coul(q) and V ph(q), the residual repulsion Vres(q) in Eq. (S13)

should be replaced by

Vtot(q) = Vres(q) + V ph(q) + V coul(q) . (S15)

The present approach differs from that in Ref. 3 which uses the radial gauge and therefore

considers fluctuations in the boson amplitude and the Lagrange multiplier λi. Here we have

fluctuations in the local and transitive densities which, however, lead to the same results for

the correlations of physical quantities.

By defining the susceptibility matrix

χq =

 χρρ
q χρT

q

χTρ
q χTT

q

 =

 ⟨ρqρ−q⟩ ⟨ρqT−q⟩

⟨Tqρ−q⟩ ⟨TqT−q⟩


one can perform a RPA resummation

χq = χ0
q + χ0

qMqχq

and the non-interacting susceptibities can be evaluated from

χ0
q =

1

N

∑
kσ

 1 1
2
(ε0k + ε0k+q)

1
2
(ε0k + ε0k+q)

1
4
(ε0k + ε0k+q)

2

 nk+q,σ − nk,σ

εk+q − εk
.

Here εk ≡ (1− ⟨n⟩)ε0k is the renormalized dispersion.

In particular the dressed susceptibility for the local fluctuations is given by

χρρ
q =

χρρ,0
q

Det|1−Mqχq|

from which one can define an effective interaction according to

χρρ
q ≡

χρρ,0
q

1− V eff
q χρρ,0

q

with

Veff(q) =
1−Det|1−Mqχq|

χρρ
0

. (S16)

For not too large momenta this effective interaction differs from Vq just by a constant offset,

i.e. Veff(q) ≈ Vq + V0.
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IV. ANISOTROPY OF THE INTERACTIONS ENTERING THE FRUSTRATED

PHASE SEPARATION SCENARIO

A. Anisotropy of the residual repulsion

For the dispersion Eq. (S9) and small momenta the residual repulsion Eq. (S14) takes

the form

Vres(q) =
1

2δ

[
(1 + α)txq

2
x + (1− α)tyq

2
y + txy(q

2
x + q2y)

]
(S17)

with tx/y = t/N
∑

kσ cos(kx/y)nkσ and txy = 2t′/N
∑

kσ cos(kx) cos(ky)nkσ. Since for small

(positive) α, tx/y increases / decreases with α the residual repulsion is larger in the direction

of enhanced kinetic energy, i.e. along the b-direction.
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FIG. S3. Residual repulsion Vres (solid line) along the momentum cut shown in the inset which

also displays the Fermi surface for the considered parameters: δ = 0.13, t′/t = −0.15, α = 0.015.

The dashed line includes the long range Coulomb interaction, cf. Sec. IVB.

Fig. S3 shows Vres from Eq. (S14) along the momentum cut (0, 0) → (0.5, 0) →

(0.5, 0.5) → (0, 0.5) → (0, 0). Clearly, the anisotropy in the electronic structure α = 0.015

(cf. inset for the corresponding Fermi surface) leads to an enhanced repulsion along the

b-direction.
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B. Anisotropy of the long-range Coulomb interaction

Analogous to the approach in Ref. 3 we can evaluate the long-range Coulomb interaction

for a single orthorhombic layer (lattice constants a,b) embedded into a 3D system with layer

stacking and distance d between layers. The result for this Coulombic interaction is

Hcoul =
Vcoul

2N

∑
q

1

A2(q)− 1
δρqδρ−q (S18)

with

Aq =
ε∥
ε⊥

d2

a2

[
cos(aqx)− 1 +

a2

b2
(cos(bqy)− 1)

]
− 1 .

Taking the same values as in Ref. 3 ε∥ ≈ 30, ε⊥ ≈ 5, d/a ≈ 3 yields
ε∥
ε⊥

d2

a2
= 54. For the

strained films of YBCO grown on MgO one finds [7] a/b = 3.82/3.89 ≈ 0.98.
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FIG. S4. Difference between Coulomb interactions along b- and a-direction for different orthorhom-

bicities a/b. Vcoul/t = 0.5.

Fig. S4 shows the difference between the Coulomb interaction along the b-axis and the a-

axis. Obviously the orthorhombicity makes the system more repulsive along a, in particular

at small transferred momenta. However, as compared to the residual repulsion Vres, the

long-range Coulomb interaction has only a minor influence on the anisotropy of the CDW.
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C. Anisotropy of the bare charge susceptibility

Fig. S5 shows the momentum dependence of the static bare local charge susceptibility

χ0
ρρ(q, ω = 0) as obtained from the dispersion Eq. (S9). Four peaks are visible in the local

charge correlations which are associated with the scattering vectors indicated in the inset

to Fig. S5. The two nesting vectors (red) which connect the tips at (0.5, 0) and (0, 0.5),

respectively, are visible as peaks in χ0
ρρ(q) along the b-direction (qb, 0) (indicated by the red

dashed circle) whereas the scan along the a-direction (0, qa) is featureless with a concomitant

reduction of the (local) charge correlations. The larger charge correlations around (0.5, 0.5)

(blue dashed circle) are due to the scattering from one tip at (0.5, 0) to the other at (0, 0.5)

(blue arrows in the inset). However, as we discuss in the main paper this latter scattering

will be suppressed due to the residual repulsion which is also large for large momentum

transfers, cf. Fig. S3, so that only the scattering along the b-direction survives. Therefore

an appropriate treatment of strong correlations is inevitable in order to properly account for

the experimentally observed orientation of CDW in cuprates along the Cu-O bond direction.
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FIG. S5. Local charge correlations for ω = 0 along the momentum cut indicated in the inset to Fig.

S3. The arrows in the inset report the dominant scattering vectors along the horizontal (red) and

diagonal (blue) directions (for clarity the Fermi surface has been drawn for a larger anisotropy).

Parameters: n = 0.87, t′/t = −0.15, α = 0.015.
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