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I. OVERVIEW

The theoretical considerations in the main paper start from a tight-binding model which
captures the coupling of states from the CuOs layer with those of the nano-facets (or steps) on
the substrate. In Sec. II we detail how within this model a nematic electronic structure can
be obtained, based on the coherent potential approximation (CPA). The resulting nematic
Fermi surface can be well described by an anisotropic tight-binding model [see Fig. 2(c)
of the main paper| which is the basis for the investigation of CDW formation within the
frustrated phase separation scenario in a nematic system. The details of the corresponding

calculation are given in Sec. III.

II. CPA CALCULATION OF THE FERMI SURFACE

Our effective model reads
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(1) and df? denote annihilation (creation) operators for the electronic states in the

where ¢;
CuO, layers and undercoordinated facet (or step) states on the substrate, respectively. R,
denotes the starting sites of the latter 1-D structures with length L and local potentials
—Viub (see Fig. S1). The hopping term ¢;; will be considered below only at the level of
nearest (~ t) and next-nearest neighbor (~ t') .

In a first step we eliminate the hopping ¢, between layer and undercoordinated substrate

states by diagonalizing the corresponding local coupling hamiltonian

T
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so that the coupled layer states are renormalized by an effective local chemical potential

1
Verr = 3 [\/ Vi, + 4t — Vsub] : (S3)

As a result we obtain an effective hamiltonian for the coupled layer system [Eq. (1) in the

main paper| which reads

L
H= Z tijcz,acj,a + Vers Z Z CTRn+mb,chRn+mb»U : (54)
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FIG. S1. Schematic view of the planar tight-binding model with the CuOg layer (atoms, red dots)

effectively coupled by the perpendicular hopping ¢, to the substrate facets or steps (blue dots).

Moreover, due to the very anisotropic shape of the nanofacets (or steps) we can take the
limit L — oo so that our model corresponds to charge carriers in the CuO, layer which are
subject to infinitely extended one-dimensional potentials along the b-direction and randomly
distributed with an area fraction of nanofacets (steps) given by the parameter ‘f’.

The resulting electronic structure can be most conveniently obtained from the coherent-

potential approximation (CPA) [1] with a self-energy
fVo
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Fig. S2 shows the real- and imaginary part of the resulting self-energy which both display
a dispersing behavior with w ~ cos(k) and ¥ > 0. At the Fermi energy (dashed line in
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Fig. S2a) the real part is essentially zero at k, = 0 but gradually increases towards larger
momenta where it thus adds an additional contribution to the hopping along k;,. As a
consequence the kinetic energy along the kj-direction becomes enhanced and results in a
nematic Fermi surface which is shown in Fig. 3 of the main paper. The enhancement of the
imaginary part of the self-energy for small k; at the Fermi energy is then responsible for the
blurred feature around the (£m,0) regions in Fig. 3(c).

This Fermi surface can also be modeled [see Fig. 2(c) of the main paper| within an
effective one-band model where the nearest-neighbor hopping is enlarged (reduced) along

the orthorhombic - (a-) direction i.e.

e) = —2t(1 + a)cos(ky) — 2t(1 — a) cos(kq)
— 4t cos(ky) cos(k,) (S9)

with a denoting the anisotropy parameter.
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FIG. S2. Real- (a) and imaginary (b) part of the CPA self-energy for a disordered array of ‘defect
lines’ (f = 0.15) as a function of w and k,. The horizontal dashed line indicates the location of

the Fermi energy. Here ¢'/t = —0.17 and V¢ = 1, while the doping is p = 0.15,.

III. TIME-DEPENDENT SLAVE-BOSON THEORY

Our model is based on the slave-boson approach for the U — oo Hubbard model [2] where
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the Hilbert space is enlarged by auxiliary bosons b;'’. The resulting hamiltonian reads

H=> tbb 1, fio (S10)
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where in addition at each site the constraint
> Lt +bbi =1 (S11)

has to be fulfilled. This constraint guarantees that the site occupation of the quasiparticles
> Nie < 1 and simultaneously restricts the Hilbert space to the correct physical sector.

The mean-field energy functional reads

Ey =Y /1= {nij/1 = (n)){f] fio) (S12)
ijo

where we have set b; — (b;) = \/1 — (n;) with (n;) =>"_ (L fin).

We now expand the functional Eq. (S12) up to second order in the density fluctuations

\/1—<ni> \/1— 1_( >5<n,>
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where (n) = (n;)o is the saddle-point value for the charge density for the homogeneous
system.

The second order contribution reads
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We now define the Fourier transformed fluctuations

0pg = > 6(fligotra)
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so that the second order expansion can be written as
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with
1 1« o
_ = 14
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and eq is the unrenormalized ground state energy. Upon including long-range Coulomb and

V;es (Q) =

electron-phonon interaction, V<% (q) and V?"(q), the residual repulsion V,e(q) in Eq. (S13)
should be replaced by
Vior(q) = Vies(q) + VP (q) + V"(q). (S15)

The present approach differs from that in Ref. 3 which uses the radial gauge and therefore
considers fluctuations in the boson amplitude and the Lagrange multiplier \;. Here we have
fluctuations in the local and transitive densities which, however, lead to the same results for
the correlations of physical quantities.

By defining the susceptibility matrix

X xoT (Pap—q) (PgT-g)

Xq — —
- Xqu XqTT (Typ—q) (T41-q)

one can perform a RPA resummation

Xq = X_g + X_quXq

and the non-interacting susceptibities can be evaluated from

1/.0 0
0 1 1 Q(Ek + €k+q) Nk+q,o0 — Nk,
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Here g, = (1 — (n))e? is the renormalized dispersion.
k

In particular the dressed susceptibility for the local fluctuations is given by

Xme
pr — q
! Det|1 — Mqyxq|

from which one can define an effective interaction according to

0
= X" :
q 1 — V;@ffxgp,
with
1 — Det|l — M,
Vi) = ~— 2L~ Moxal. (516)
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For not too large momenta this effective interaction differs from V, just by a constant offset,

i.e. ‘/eﬁ‘(q) ~ ‘/:] + VE)



IV. ANISOTROPY OF THE INTERACTIONS ENTERING THE FRUSTRATED
PHASE SEPARATION SCENARIO

A. Anisotropy of the residual repulsion

For the dispersion Eq. (S9) and small momenta the residual repulsion Eq. (S14) takes

the form

1
Vies(@) = o5 [(1+ a)tags + (1 = @)tyg, + Ly 0z + 4;)] (S17)
with t,/, = t/N >, cos(ky/y)nke and ty, = 2t'/N ", cos(k;) cos(ky)ni,. Since for small
(positive) «, t,/, increases / decreases with « the residual repulsion is larger in the direction

of enhanced kinetic energy, i.e. along the b-direction.
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FIG. S3. Residual repulsion V;es (solid line) along the momentum cut shown in the inset which
also displays the Fermi surface for the considered parameters: § = 0.13, t'/t = —0.15, a = 0.015.

The dashed line includes the long range Coulomb interaction, cf. Sec. IV B.

Fig. S3 shows Ve from Eq. (S14) along the momentum cut (0,0) — (0.5,0) —
(0.5,0.5) — (0,0.5) — (0,0). Clearly, the anisotropy in the electronic structure a = 0.015
(cf. inset for the corresponding Fermi surface) leads to an enhanced repulsion along the

b-direction.



B. Anisotropy of the long-range Coulomb interaction

Analogous to the approach in Ref. 3 we can evaluate the long-range Coulomb interaction
for a single orthorhombic layer (lattice constants a,b) embedded into a 3D system with layer

stacking and distance d between layers. The result for this Coulombic interaction is

Veou 1
Feot — Lo 5pa0p- 1
with
e d? a?
A, = iﬁ {cos(aqx) -1+ b—z(cos(bqy) —1)| —1.

Taking the same values as in Ref. 3 ¢ = 30, e, = 5, d/a ~ 3 yields j—'ifll—z = 54. For the
strained films of YBCO grown on MgO one finds [7] a/b = 3.82/3.89 ~ 0.98.
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FIG. S4. Difference between Coulomb interactions along b- and a-direction for different orthorhom-

bicities a/b. Ve /t = 0.5.

Fig. S4 shows the difference between the Coulomb interaction along the b-axis and the a-
axis. Obviously the orthorhombicity makes the system more repulsive along a, in particular
at small transferred momenta. However, as compared to the residual repulsion V., the

long-range Coulomb interaction has only a minor influence on the anisotropy of the CDW.



C. Anisotropy of the bare charge susceptibility

Fig. S5 shows the momentum dependence of the static bare local charge susceptibility
Xgp(q, w = 0) as obtained from the dispersion Eq. (S9). Four peaks are visible in the local
charge correlations which are associated with the scattering vectors indicated in the inset
to Fig. S5. The two nesting vectors (red) which connect the tips at (0.5,0) and (0,0.5),
respectively, are visible as peaks in XS ,(q) along the b-direction (g,0) (indicated by the red
dashed circle) whereas the scan along the a-direction (0, ¢,) is featureless with a concomitant
reduction of the (local) charge correlations. The larger charge correlations around (0.5,0.5)
(blue dashed circle) are due to the scattering from one tip at (0.5,0) to the other at (0, 0.5)
(blue arrows in the inset). However, as we discuss in the main paper this latter scattering
will be suppressed due to the residual repulsion which is also large for large momentum
transfers, cf. Fig. S3, so that only the scattering along the b-direction survives. Therefore
an appropriate treatment of strong correlations is inevitable in order to properly account for

the experimentally observed orientation of CDW in cuprates along the Cu-O bond direction.
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FIG. S5. Local charge correlations for w = 0 along the momentum cut indicated in the inset to Fig.
S3. The arrows in the inset report the dominant scattering vectors along the horizontal (red) and
diagonal (blue) directions (for clarity the Fermi surface has been drawn for a larger anisotropy).

Parameters: n = 0.87, ¢/t = —0.15, a = 0.015.
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