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Supplementary Methods
[bookmark: _Toc156909144]1 Model construction details
[bookmark: _Toc156909145][bookmark: _Hlk134299504]1.1 Algorithm construction
In this research project, CAD risk prediction is approached as a binary classification problem, and a deep classification model has been constructed, with a focus on its characteristic features. Based on analyzing input fundus images, the model extracts information that is directly related to CAD and renders corresponding classification predictions. The model is an end-to-end one, exclusively taking fundus images as input. During the training phase, we have employed a multi-task learning approach whereby the model simultaneously predicts both the main task (CAD) and the auxiliary tasks (age, gender, body mass index (BMI), smoking, drinking, hypertension, diabetes and total cholesterol) through the fundus image. This training strategy significantly enhances the model's ability to effectively extract pertinent information pertaining to CAD by sharing parameters.
Each auxiliary branch is defined as follows: (i) Age: provided according to the hospital records; (ii) Sex: according to the hospital file, female was recorded as 0, male was recorded as 1; (iii) BMI value: calculated according to the height and weight value in the hospital file; (iv) Smoking: patients with no smoking history were marked as 0, and those who smoked or who had a smoking history but had since quit were marked as 1; (v) Drinking: patients with no drinking history were recorded as 0, and those who drank alcohol or who had a history of drinking but had since stopped drinking were recorded as 1; (vi) Hypertension: according to the medical history provided by the hospital, no hypertension was recorded as 0, hypertension was recorded as 1; (vii) Diabetes: according to the medical history provided by the hospital, no diabetes was marked as 0, diabetes was marked as 1; (viii) Hypercholesterolemia: according to the total cholesterol value provided by the hospital, patients with total cholesterol < 5.20 mmol/L were denoted as 0, and patients with total cholesterol ≥ 5.20 mmol/L were denoted as 1. A small number of samples had missing data (e.g., height and weight). In such cases, we first classified them by sex and then took the average value to fill in the missing data.
Our algorithm has been constructed using deep convolutional neural networks (CNN). The network structure consists primarily of convolutional layers, pooling layers, fully connected layers, and other related layers. The convolutional layer is primarily responsible for extracting image features, while the pooling layer is used for down-sampling purposes. Finally, the fully connected layer delivers the ultimate classification predictions. In comparison to traditional neural networks, CNN boasts significant advantages when processing two-dimensional data such as images, owing to its ability to utilize convolution kernels or filters in reducing the number of parameters for efficient image processing computations.
Furthermore, we have utilized the network architecture of InceptionResnetV2. This particular model is an efficient convolutional neural network structure that is essentially a fusion between two distinct models, namely InceptionV4 and ResNet. It addresses the problem of gradient disappearance encountered during the training process of deep neural networks by incorporating ResNet technology. Additionally, Inception modules have been introduced to widen the model and enhance its feature extraction ability. The InceptionResnetV2 architecture comprises several Inception Resnet Blocks, each containing multiple convolutional networks with differing branches. These branches' outputs are merged to obtain the final feature representation. When compared to other models, InceptionResnetV2 delivers superior accuracy, lower computational complexity, fewer parameters, and faster operating speeds.
[bookmark: _Toc156909146][bookmark: _Hlk134301708]1.2 Model pre-training
Before the model training phase, we commenced by pre-training the model using 3,926 fundus images from 2,139 participants, encompassing 1,777 CAD patients. Pre-training the model produces several benefits, including the ability to:
(a) Enhance the model's generalization: By pre-training with large-scale datasets, the model can develop a stronger ability to generalize and perform more effectively on new data.
(b) Reduce training time: Employing a pre-trained model can significantly reduce training time and computational resources since pre-training has already learned common features, reducing the network's reliance on original data and making training more efficient.
(c) Mitigate overfitting: Pre-training can prevent overfitting by enabling the network to learn more robust features, consequently reducing overfitting to training data.
(d) Facilitate small sample learning: Through pre-training, the network can learn more advanced features on smaller datasets, improving the model's overall performance.
By pre-training, we are leveraging the collected fundus image data more effectively and enabling the model to learn some preliminary feature information related to CAD beforehand. This significantly enhances the model's ability to converge better and avoid overfitting during subsequent training phases. Figure show the regular training and pre-trained model training.
[image: ]
Figure | Regular model training.
[image: 背景图案
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Figure | Pre-training model training.
[bookmark: _Toc156909147][bookmark: _Hlk134309046]1.3 Model training

In the model training phase, we introduce different loss functions for different tasks. For the main task of CAD recognition, we construct a new loss function,  (Eq. 1).

		(1)





While  is the true label,  is the prediction label,  is the number of samples,  is the number of categories,  is the class balance coefficient.




The class balance coefficient  is inspired by the focal loss2. Focal loss is a loss function aimed at addressing the challenge of data imbalance. This loss function specifically tackles the issue whereby traditional cross-entropy loss poorly learns minority class samples when class imbalance occurs. The underlying principle behind focal loss involves assigning smaller weights to easily classified samples and larger weights to hard-to-classify samples. By doing so, the model prioritizes hard-to-classify samples and improves classification accuracy on the minority class. In this experiment, the proportion of negative and positive samples of CAD patients is quite different, so we introduce the class balance coefficient  to balance the quantitative differences between positive and negative samples, thus mitigating the impact of data imbalance. The value of  in the experiment is .

For the branch tasks including gender, smoking, drinking, hypertension, diabetes and total cholesterol, we use the binary cross-entropy loss,  (Eq. 2)

		(2)




While  is the true label of the -th sample,  is the probability of predicting the positive class and  is the total number of the sample.

For the branch tasks including age and BMI, we use the mean absolute percentage error (MAPE) loss3,  (Eq. 3)

		(3)





While  is the true value of the -th sample,  is the prediction value of the -th sample and  is the total number of the sample.
In addition, we set different weights for different loss functions, the specific weight values are as follows:


We use the backpropagation algorithm to calculate and update the gradient values of all weights and biases in the neural network.










Assuming that  is the input vector,  is the output vector,  is the weight connecting the -th neuron in -th layer to the -th neuron in -th layer,  is the bias of the -th neuron in -th layer,

(a) For each neuron  in the output layer:

		(4)






while  is loss function,  is the activation value of the -th neuron in the output layer,  is the derivative of the activation function  at .


(b) For each hidden layer  starting from the hidden layer and each neuron  in it:

		(5)

while nl+1 is the number of neuron in the -th layer.
(c) For each weight and bias, the gradient value is updated as follows:

		(6)

		(7)
In experiments, we used Stochastic Gradient Descent (SGD) algorithm with learning rate 0.0001 for optimization. The number of training epochs was 100 and the batch size was 24.
Figure S2.3 shows the change of train loss value during training process.
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Figure | Change of train loss value during training process.
From the Figure , we can find that with the progress of training, the value of loss gradually becomes smaller and finally converges to a stable value, which indicates that our model has learned the feature information related to CAD.
Here are the hyperparameters involved in the training process. The learning rate is 0.0001, the max epoch is 100 and the batch size is 24. The details of the loss function during the training process have been described in detail in section 2.3.
[bookmark: _Toc156909148]1.4 Related technologies
[bookmark: _Toc156909149][bookmark: _Hlk134376520](a) Data augmentation
In the experiments, we use multi-class data augmentation to improve the recognition ability and robustness of the model.






Specifically, we generate a random change matrix , which represents the rotation, translation and other transformation processes, and then use the transformation function  combined with the random change matrix to randomly transform the original image  to obtain a new image. Next, a random number  is generated as the variance of the Gaussian noise, and we can obtain a noisy image by the Gaussian noise function . The standard deviation of the Gaussian distribution is then calculated based on this variance. Afterwards, a two-dimensional Gaussian distribution matrix, with the same dimensions as the original image, is generated. This matrix is added to the previously generated image, resulting in a new image with added Gaussian noise. Finally, the obtained image is normalized and converted to produce the noisy image . The whole process can be represented by Eq. 8.

		(8)
[bookmark: _Toc156909150](b) Other techniques
Some architectures that help to improve network performance and mitigate overfitting (e.g. batch normalization) are also used in our network framework.
[bookmark: _Toc156909151]2 Experiments with model interpretability
Considering the actual application scenario, the input of our model is only the fundus image and we have built a multi-task learning framework. The main task is the prediction of CAD, and the branch task is the prediction of other indicators (including age, gender, BMI, smoking, drinking, hypertension, diabetes and total cholesterol). In order to explore the relationship between different tasks, we additionally constructed a multimodal framework for CAD prediction.
Specifically, we first split the image and other data into two separate input streams. The image part used resnet50, and the other data part used a multi-layer perceptron that includes two linear transformations. Then we used a fully-connected layer to concatenate the final feature vectors, and a linear layer to output predictions. The performance of the multimodal framework is shown in Table S3.1.
[bookmark: _Toc156909152]Table | Performance of multimodal framework
	[bookmark: _Hlk131015904]
	AUC
	Sensitivity
	Specificity
	Accuracy

	Multimodal framework
	0.819
	0.818
	0.725
	0.807


AUC, area under the receiver operating characteristic curve.
From Table , we can find that both the multimodal framework and the multi-task framework can achieve relatively good performance. Comparing the two, the performance of the multi-task framework is better. The reason may be that there is a correlation between different indicators in the data. In the multi-task method, different tasks will share the same features, which can improve the performance of the model. Generalization ability to reduce overfitting. Whereas in multimodal approaches, overfitting may occur due to the relationship between different data sources.
[bookmark: _Toc156909153]2.1 Performance of branch tasks
Previous studies have shown a strong correlation between traditional CAD risk factors (including age, sex, BMI, smoking, alcohol consumption, hypertension, diabetes, and hypercholesterolemia) and CAD. Therefore, we hypothesized that our model could achieve better performance in predicting these risk factors, and it could also demonstrate the predictive ability of our model for CAD to some extent. Therefore, to speculate on the working mechanisms of the algorithm to identify CAD, we trained the algorithm performance to predict each of the above eight CAD risk factors based on fundus photographs in the test group.
We next tested the ability of our models to predict a variety of cardiovascular risk factors from fundus photographs. For categorical risk factors, the algorithm achieved an AUC of 0.759 (95% CI: 0.729–0.789) for sex, 0.642 (95% CI: 0.606–0.678) for smoking, 0.546 for dyslipidemia, 0.580 for diabetes, and 0.533 for hypertension (Table S3.2). In the internal test dataset, the mean absolute error (MAE) for predicting the patient’s age was 13.642 (95% CI: 12.698, 13.819), while that for predicting BMI was 2.667 (95% CI: 2.649, 2.996). The R2 of the model to predict age and BMI from the test set of fundus photographs was 0.931 and 0.938, respectively.
Table | Predicting risk factors of coronary artery disease using the algorithm.
	Branch tasks
	AUC
	Sensitivity
	Specificity
	Accuracy

	Sex
	0.759 (0.729–0.789)
	0.798 (0.771, 0.825)
	0.800 (0.773, 0.827)
	0.798 (0.771, 0.825)

	Smoking
	0.642 (0.606–0.678)
	0.589 (0.551, 0.627)
	0.634 (0.598, 0.670)
	0.615 (0.578, 0.652)

	Drinking
	0.530 (0.491, 0.569)
	0.513 (0.474, 0.552)
	0.505 (0.465, 0.545)
	0.501 (0.461, 0.541)

	Hypertension
	0.533 (0.494, 0.572)
	0.523 (0.484, 0.562)
	0.515 (0.476, 0.554)
	0.520 (0.481, 0.559)

	Diabetes
	0.580 (0.542, 0.618)
	0.581 (0.543,0.619)
	0.550 (0.511, 0.589)
	0.560 (0.522, 0.598)

	Hypercholesterolemia
	0.546 (0.507, 0.585)
	0.600 (0.563, 0.637)
	0.515 (0.476, 0.554)
	0.528 (0.489, 0.567)


AUC, area under the receiver operating characteristic curve.
Table | Predicting risk factors of coronary artery disease using the algorithm.
	Branch tasks
	MAE
	R2

	Age
	13.642 (12.698, 13.819)
	1.615 (1.254, 1.712)

	BMI
	2.667 (2.649, 2.996)
	0.107 (0.057, 0.198)


BMI, body mass index; MAE, mean absolute error.
[bookmark: _Toc156909141][bookmark: _Toc156909154]3 Fundus images quality control and preprocessing
[bookmark: _Hlk134196560][bookmark: _Toc156909142]3.1 Fundus images quality control
In real-world scenarios, the performance of the coronary artery disease (CAD) artificial intelligence model is heavily influenced by image quality. Thus, choosing high-quality images for model training is crucial to enhancing model performance. Consequently, we have implemented a quality control model that evaluates fundus images based on their image quality.
The quality control model used in this paper is the fundus image quality control tool developed by Hu et al.1 of Airdoc in 2019. This particular model can be extensively utilized for numerous fundus image recognition tasks pertaining to various diseases. The model comprises primarily of two steps. Firstly, a generative adversarial network is employed to determine whether the input image is a fundus image, followed by the second step where the probability of the quality level of the fundus image is outputted. Overall, the model produces two metrics relating to the input image. The first one being qc_label with values of (1, 5, 295), where 1 signifies no quality issues with the image, 5 represents mild quality issues with the image, and 295 indicates severe quality issues with the image. For the purpose of this experiment, only fundus images with qc_label=1 were selected. The second metric is qc_prob, with a probability value ranging from (0, 1). The closer the probability value is to 1, the better the image quality. Considering the number of required pictures and overall picture quality, fundus images with different qc_prob were selected for the experiment, and this selection process will be further elaborated upon later.
[bookmark: _Toc156909143]3.2 Fundus images preprocessing
To ensure the consistency of the images fed into the network, we have implemented pre-processing steps which mainly entail the following two operations:
(a) Firstly, utilizing computer software to crop the fundus images and eliminate any extraneous black edges, retaining only the essential section of the fundus.
(b) Secondly, resizing the images to conform with dimensions of 300×300 pixels.


Supplementary Figures
[image: 0709]
Supplementary Fig. 1 Research flowchart. Among the four centers in the test group, two also participated in the training and validation groups. a, Algorithm development stage. b, External testing phase. CAD, coronary artery disease.
[image: ]
[bookmark: _Toc156909155][bookmark: _Hlk138760009]Supplementary Fig. 2. Confusion matrix of model performance.
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Supplementary Fig. 3 Calibration plots. Calibration plots of the predicted probability against the observed proportion of coronary artery disease (≥50% stenosis) of the patients with 95% confidence band: a, Validation group. b, External test group.
[image: CAM]
Supplementary Fig. 4 Different CAM images. a, Right fundus photograph (CAD). b, Left fundus photograph (CAD). c, Left fundus photograph (non-CAD). d, Right fundus photograph (non-CAD). CAD, coronary artery disease; CAM, class activation mapping.
[image: 遮挡]
Supplementary Fig. 5 Different occlusion images. a, Right fundus photograph (CAD). b, Left fundus photograph (CAD). c, Left fundus photograph (non-CAD). d, Right fundus photograph (non-CAD). Origin, original fundus photograph; Artery, occlusion of arteries; Vein, occlusion of veins; Both, occlusion of arteries and veins; CAD, coronary artery disease.


[bookmark: _Toc156909156]Supplementary Tables
[bookmark: _Toc156909157]Supplementary Table 1 | Composition of each dataset in the algorithm development.
	Datasets
	CAD sample
	Healthy sample
	Total

	Pre-training dataset
	3280 (1445)
	646 (271)
	3926 (1716)

	Training dataset
	3275 (1864)
	1060 (609)
	4335 (2473)

	Internal testing dataset
	820 (462)
	272 (157)
	1092 (619)


The data are based on the number of fundus photographs (patients), and after image quality control, some patients may keep only one fundus photograph, so the number of photographs and patients do not correspond exactly.
CAD, coronary artery disease.

Supplementary Table 2 | Description and characteristics of the training, validation, and external testing datasets.
	Characteristic
	Development dataset
	P-valuea
	External dataset
	P-valueb

	
	Training group (n = 4189)c
	Validation group (n = 619)d
	
	Test group (n = 1385)e
	

	Age, year
	59.73 (9.89)
	57.38 (10.16)
	<0.001
	58.80 (9.12)
	<0.001

	Male, n (%)
	2922 (69.8%)
	438 (70.8%)
	0.611
	980 (73.9%)
	0.004

	BMI, kg/m2
	26.20 (3.36)
	26.13 (3.49)
	0.649
	26.28 (3.27)
	0.511

	Cardiovascular risk factors
	
	
	
	
	

	Diabetes, n (%)
	1584 (37.8%)
	218 (35.2%)
	0.213
	454 (32.8%)
	0.001

	Hypertension, n (%)
	2562 (61.2%)
	362 (58.5%)
	0.191
	804 (58.1%)
	0.036

	Hypercholesterolemia, n (%)
	498 (11.9%)
	83 (13.4%)
	0.279
	146 (10.5%)
	0.174

	Stroke, n (%)
	206 (4.9%)
	30 (4.9%)
	0.951
	81 (5.8%)
	0.179

	CKD, n (%)
	64 (1.5%)
	11 (1.8%)
	0.634
	2 (0.1%)
	0.001

	Smoking, n (%)
	1760 (42.0%)
	257 (41.5%)
	0.815
	445 (32.1%)
	<0.001

	Drinking, n (%)
	1376 (32.8%)
	224 (36.2%)
	0.100
	280 (20.7%)
	<0.001

	Biochemical results
	
	
	
	
	

	TG (mmol/L)
	1.78 (1.11)
	1.86 (1.20)
	0.106
	1.78 (1.14)
	0.822

	TC (mmol/L)
	3.41 (1.52)
	3.11 (1.59)
	<0.001
	3.90 (1.31)
	<0.001

	HDL (mmol/L)
	1.12 (0.30)
	1.09 (0.39)
	0.134
	1.06 (1.34)
	<0.001

	LDL (mmol/L)
	2.28 (0.82)
	2.33 (0.84)
	0.144
	2.22 (0.92)
	0.038

	WBC (×109 /L)
	6.81 (1.64)
	6.79 (1.80)
	0.785
	6.63 (1.84)
	0.001

	HGB (g/L)
	144.28 (12.77)
	144.78 (13.20)
	0.458
	137.32 (29.68)
	<0.001

	RBC (×1012 /L)
	4.65 (0.49)
	4.82 (0.83)
	<0.001
	4.66 (0.74)
	0.509

	Platelet (×109 /L)
	219.69 (46.14)
	225.47 (55.75)
	0.016
	223.99 (56.51)
	0.011

	Creatinine (μmol/L)
	78.70 (13.53)
	74.42 (15.48)
	<0.001
	74.23 (19.64)
	<0.001

	BUN (mmol/L)
	5.56 (1.37)
	6.31 (2.37)
	<0.001
	5.97 (3.82)
	<0.001

	Uric acid (μmol/L)
	
	
	
	
	

	CRP (mg/L)
	2.37 (3.42)
	2.42 (4.10)
	0.773
	2.56 (3.22)
	0.075

	Fasting glucose
	6.78 (2.43)
	6.68 (2.31)
	0.307
	6.74 (2.56)
	0.614

	HCY (μmol/L)
	14.48 (5.57)
	15.44 (8.06)
	<0.001
	15.86 (6.90)
	<0.001

	Ejection fraction (%)
	62.74 (5.14)
	62.82 (5.12)
	0.820
	62.23 (6.51)
	0.622

	Lesion severity, n (%)
	
	
	0.016
	
	<0.001

	No CAD
	880 (21.0%)
	158 (25.5%)
	
	381 (27.5%)
	

	Single-vessel
	1382 (33.2%)
	136 (31.0%)
	
	459 (33.1%)
	

	Multi-vessels
	1927 (45.8%)
	325 (52.5%)
	
	545 (39.3%)
	


Data are presented as the mean ± standard deviation or n (%).
aP-value was obtained by comparison of the training and validation groups.
bP-value was obtained by comparison of the training and external test groups.
cPrevalence of CAD (one coronary lesion ≥50%) in the training group was 78.9% (3309/4189).
dPrevalence of CAD (one coronary lesion ≥50%) in the validation group was 74.4% (461/619).
ePrevalence of CAD (one coronary lesion ≥50%) in the external test group was 85.6% (1185/1385).
BMI, body mass index; BUN, blood urea nitrogen; CAD, coronary artery disease; CKD, chronic kidney disease; CRP, C-reactive protein; HCY, homocysteine; HDL, high-density lipoprotein; HGB, hemoglobin; LDL, low-density lipoprotein; RBC, red blood cells; TC, total cholesterol; TG, triglycerides; WBC, white blood cells.

Supplementary Table 3 | Algorithm performance in the subgroups of the test group.
	Validation datasets
	AUC
	Sensitivity
	Specificity
	Accuracy
	P-value

	Age (year)
	
	
	
	
	

	>65
	0.875 (0.814–0.935)
	0.838 (0.769–0.906)
	0.816 (0.693–0.939)
	0.832 (0.830–0.834)
	0.143

	≤65
	0.823 (0.780–0.866)
	0.823 (0.783–0.863)
	0.692 (0.609–0.744)
	0.789 (0.788–0.790)
	

	Sex
	
	
	
	
	

	Male
	0.824 (0.774–0.874)
	0.744 (0.699–0.790)
	0.780 (0.691–0.870)
	0.751 (0.750–0.752)
	0.710

	Female
	0.803 (0.739–0.866)
	0.743 (0.659–0.826)
	0.750 (0.653–0.847)
	0.746 (0.744–0.748)
	

	Smoking
	
	
	
	
	

	Yes
	0.842 (0.786–0.899)
	0.820 (0.768–0.873)
	0.765 (0.648–0.881)
	0.809 (0.808–0.811)
	0.746

	No
	0.833 (0.787–0.878)
	0.804 (0.755–0.853)
	0.710 (0.624–0.796)
	0.776 (0.775–0.777)
	

	Diabetes
	
	
	
	
	

	Yes
	0.863 (0.808–0.917)
	0.835 (0.778–0.893)
	0.800 (0.699–0.901)
	0.826 (0.824–0.827)
	0.201

	No
	0.818 (0.771–0.864)
	0.822 (0.779–0.865)
	0.673 (0.581–0.766)
	0.786 (0.785–0.787)
	

	Symptoms
	
	
	
	
	

	Typical angina
	0.820 (0.771–0.868)
	0.614 (0.565–0.662)
	0.890 (0.823–0.958)
	0.662 (0.661–0.663)
	0.392

	Non-angina
	0.786 (0.712–0.859)
	0.731 (0.632–0.829)
	0.816 (0.729–0.903)
	0.773 (0.770–0.775)
	

	Lesion severity
	
	
	
	
	

	Single-vessel
	0.814 (0.764–0.863)
	0.676 (0.598–0.755)
	0.823 (0.763–0.882)
	0.755 (0.754–0.756)
	0.025

	Multi-vessels
	0.881 (0.843–0.920)
	0.873 (0.817–0.929)
	0.728 (0.658–0.797)
	0.795 (0.793–0.796)
	


P-value was obtained by comparison of the AUC value.
AUC, area under the receiver operating characteristic curve.

[bookmark: _Toc156909158]Supplementary Table 4 | Multivariable logistic regression results for the clinical model to predict coronary artery disease.
	
	OR (95% CI)
	P-value

	Age, year
	1.023 (1.002, 1.044)
	0.030

	Male, n (%)
	3.743 (2.301, 6.087)
	<0.001

	BMI, kg/m2
	1.023 (0.986, 1.132)
	0.397

	Diabetes, n (%)
	1.598 (1.031, 2.476)
	0.036

	Hypertension, n (%)
	1.057 (0.733, 1.525)
	0.765

	Dyslipidemia, n (%)
	1.698 (1.163, 2.480)
	0.006

	Smoking, n (%)
	0.837 (0.491, 1.428)
	0.514

	Drinking, n (%)
	0.621 (0.355, 1.086)
	0.095

	HDL (mmol/L)
	0.586 (0.323, 1.062)
	0.078

	LDL (mmol/L)
	0.691 (0.486, 0.983)
	0.040

	TG (mmol/L)
	0.903 (0.752, 1.084)
	0.273

	TC (mmol/L)
	1.022 (0.764, 1.366)
	0.884

	WBC (× 109 /L)
	1.004 (0.912, 1.104)
	0.942

	RBC (× 1012 /L)
	0.862 (0.707, 1.052)
	0.144

	Platelet (× 109 /L)
	1.010 (1.001, 1.020)
	0.034

	Creatinine (μmol/L)
	1.002 (0.991, 1.013)
	0.685

	CRP (mg/L)
	1.010 (0.976, 1.044)
	0.573

	Blood glucose
	1.065 (0.074, 1.164)
	0.166

	HCY (μmol/L)
	0.994 (0.976, 1.013)
	0.543

	Ejection fraction (%)
	0.970 (0.944, 0.997)
	0.030


BMI, body mass index; CI, confidence interval; CRP, C-reactive protein; HCY, homocysteine; HDL, high-density lipoprotein; LDL, low-density lipoprotein; OR, odds ratio; RBC, red blood cells; TC, total cholesterol; TG, triglycerides; WBC, white blood cells.


1
[bookmark: _Toc156909159]Supplementary Table 5 | The 95% confidence interval of all diagnostic measurements.
	Models
	AUC
	Sensitivity
	Specificity
	PPV
	NPV
	Accuracy
	P–value

	Validation dataset 
	
	
	
	
	
	
	

	Algorithm
	0.833 (0.786–0.864)
	0.807 (0.771–0.843)
	0.726 (0.656–0.796)
	0.897 (0.867–0.892)
	0.567 (0.498–0.635)
	0.787 (0.786–0.789)
	Ref

	UDFM Model
	[bookmark: OLE_LINK10]0.608 (0.554–0.662)
	0.709 (0.667–0.750)
	0.523 (0.444–0.601)
	0.815 (0.777–0.853)
	0.381 (0.316–0.446)
	0.662 (0.661–0.663)
	<0.001

	CAD Duke clinical score 
	0.601 (0.546–0.652)
	0.650 (0.605–0.692)
	0.587 (0.508–0.662)
	0.599 (0.520–0.674)
	0.199 (0.163–0.289)
	0.648 (0.646–0.649)
	<0.001

	Logistic regression model 
	0.736 (0.683–0.784)
	0.777 (0.738–0.815)
	0.585 (0.503–0.666)
	0.855 (0.821–0.889)
	0.459 (0.387–0.531)
	0.731 (0.730–0.732)
	<0.001

	Algorithm + UDFM model
	0.832 (0.796–0.868)
	0.672 (0.629–0.715)
	0.852 (0.796–0.908)
	0.895 (0.866–0.925)
	0.554 (0.486–0.622)
	0.717 (0.716–0.718)
	0.188

	Algorithm + Duke clinical score
	0.821 (0.784–0.865)
	0.807 (0.770–0.843)
	0.729 (0.659–0.799)
	0.898 (0.869–0.927)
	0.564 (0.496–0.633)
	0.787 (0.786–0.788)
	0.447

	Algorithm + logistic regression model
	0.852 (0.817–0.886)
	0.723 (0.682–0.765)
	0.831 (0.769–0.893)
	0.931 (0.904– 0.958)
	0.492 (0.429–0.555)
	0.749 (0.748–0.750)
	0.042

	External test dataset
	
	
	
	
	
	
	

	Algorithm
	0.751 (0.713–0.790)
	0.857 (0.837–0.877)
	0.540 (0.471–0.609)
	0.917 (0.901–0.933)
	0.390 (0.332–0.447)
	0.812 (0.811–0.813)
	Ref

	UDFM model
	0.631 (0.589–0.673)
	0.725 (0.699–0.750)
	0.555 (0.486–0.624)
	0.906 (0.888–0.925)
	0.254 (0.213–0.295)
	0.700 (0.695–0.701)
	0.001

	CAD Duke clinical score 
	0.590 (0.545–0.632)
	0.673 (0.645–0.699)
	0.510 (0.441–0.578)
	0.793 (0.754–0.828)
	0.111 (0.091–0.133)
	0.649 (0.647–0.649)
	<0.001

	Logistic regression model 
	0.726 (0.684–0.769)
	0.657 (0.628–0.686)
	0.693 (0.622–0.764)
	0.933 (0.915–0.951)
	0.237 (0.199–0.276)
	0.662 (0.771–0.663)
	0.400

	Algorithm + UDFM model
	0.765 (0.727–0.802)
	0.828 (0.806–0.849)
	0.580 (0.512–0.648)
	0.921 (0.905–0.937)
	0.362 (0.310–0.415)
	0.792 (0.791–0.793)
	0.224

	Algorithm + Duke clinical score
	0.741 (0.701–0.782)
	0.723 (0.698–0.749)
	0.675 (0.610–0.740)
	0.943 (0.927–0.959)
	0.303 (0.256–0.349)
	0.716 (0.716–0.717)
	0.226

	Algorithm + logistic regression model
	0.799 (0.762–0.835)
	0.750 (0.723–0.776)
	0.706 (0.636–0.775)
	0.943 (0.927–0.959)
	0.303 (0.256–0.349)
	0.744 (0.743–0.744)
	<0.001


The logistic regression model included the following baseline variables: age, gender, smoking, drinking, body mass index, hypertension, hyperlipidaemia, diabetes, creatinine, C-reactive protein, red blood cells, homocysteine, white blood cells, platelets, serum glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, left ventricular end-diastolic volume, and ejection fraction.
AUC, area under the receiver operating characteristic curve; CAD, coronary artery disease; NPV, negative predictive value; PPV, positive predictive value; UDFM, updated Diamond-Forrester method.
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Igorithm Development & Validation

5583 participants’ data including fundus images
and CAD labels were collected from 2 hospitals

between July 2021 and October 2022

5021 participants with fundus images and CAD
labels were considered for internal experiment

562 participants whose fundus

images failed to pass the
quality control model were
discarded

Algorithm External Test

1571 participants’ data including

fundus images and CAD labels were

collected from 4 hospitals between
November 2022 and May 2023

4808 participants with fundus images and
comprehensive labels were used for model
training and internal test

213 participants without
auxiliary task labels (age,
gender, etc.) were discarded

180 participants whose
fundus images failed to pass
the quality control model
were discarded

{'was ensured that fundus images from the same pariicipant did not appear
in raining (both pre-training and training) and testing at the same time

l

1716 participants were
used for model pre-
training

2473 participants were
used to train the network
model (80%)

619 participants were used
for internal test (20%)

1391 participants with fundus
images and CAD labels were used
for external experiment

6 participants without
auxiliary task labels(age,
gender, etc.) were
discarded

1385 participants with fundus
images and comprehensive CAD
labels were used for external test
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