Fracture toughness of mixed-mode

anticracks in highly porous materials:

supplementary information

Supplementary methods

Field site and snowpack

Our experiments were performed between February 18 and March 10, 2022 on a flat and uniform
site in Fliiela valley near Davos, Switzerland at an altitude of 1640 m (Fig. S1). The site itself was
on the roof of two buildings in a forest opening protected from wind. Most experiments were
performed on the roof of building A (Fig. 3 in the main text), and after it was cleared from snow,
we also carried out experiments on building B (Fig. 3 in the main text). The presence of a nearby
creek, the absence of direct sunlight in winter, and the cold concrete roof (typically below 0°C),
created favorable conditions for the formation and preservation of surface hoar. The weak layer
tested consisted of surface hoar, buried by a snowfall at the beginning of January 2022, with an

average weak layer thickness of 9.02 mm.
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We characterized the snowpack using manual snow profiles! (Fig. 4 in the main text)
Microstructure and density of the weak layer were analyzed using computer-tomography (Fig. S2).
The properties of the layered slab were characterized using density measurements. For this
purpose, we used a cylindrical density cutter with 50cm® volume and 23 mm inner diameter
(Fig. S3b). Each 120mm thick slab was resolved in with four density measurements (Fig. S3a),
accounting for temporal evolution of density-dependent slab properties. For our calculations, we
used the arithmetic mean density per layer per experimental day (Fig. S3a).

For successful experiments, specific snowpack properties were necessary, in particular sur-
rounding the weak layer. The substratum needed a certain minimum stiffness to support the
snow block during tilting of experimental rig and the slab needed to support added weights. We

met these conditions with dense layers of rounded grains both above and right below the weak

layer of interest between mid February and mid March of 2022 (Fig. 3 in the main text).

Experimental procedure

We designed our mixed-mode mixed-mode fracture tests (MMFTs) by adapting the propagation
saw test’™ (PST) to enable testing under variable slope inclinations. To extract snow columns
from the snowpack, we employed a U-shaped aluminum sled (3 mm thick with 60 mm flanges,

300mm width, and 1000 mm length) (Fig. S4a). Utilizing a spirit level to maintain horizontal

alignment, we inserted the sled into the snowpack’s sidewall, ensuring that its flanges rested
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Fig. S1 | Geographic location of the field site. Topograph|cal map (https //map geo.admin. ch accessed
Jan 29, 2024) of the location of the two field sites A and B (WGS 84, 46.80773° N, 9.86999° E).



directly beneath the weak layer. This facilitated the isolation of a snow column with a 60 mm
thick base layer (substratum). We cut around the sled on all sides using a 1 m snow saw to sever
the snow block specimen (Fig. S4b). After reducing the slab’s thickness to 150 mm, we applied a
custom-made profiling device, creating serrated cuts on its top surface. This resulted in a mean
slab thickness from the weak layer to the base of the serrated cuts of 115 mm. Guided by side rails,
the sled—snow block assembly was lifted onto the tilting rig (Fig. S4c). Wood screws, penetrating
the substratum through circular holes in the aluminum sled, prevented sliding of the snow block
even at elevated inclinations (Fig. S4c).

The tilting device comprised a base plate, which was pivoted on a metal foot on one end and
suspended on a steel cable from a tower made of scaffolding poles on the other. This configuration

enabled the assembly to be tilted between 0° and 65° (Fig. S4d). The titled snow block was loaded

a b

Fig. S2 | Computer-tomography scan of the weak layer. a Horizontal (top) and vertical (bottom) cross
sections with boxed volume of interest (VOI) of the surface-hoar weak-layer sample extracted on March
7,2022 at site A. a Rendering of the scanned VOI with a volume fraction of ice of 0.19 corresponding to a
density of py = 174kg/m?>.
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Fig. S3 | Slab density. a Evolution of the slab density on site A over a period of 9 days. Layerwise mean
densities per day are shown. The mean density of the substratum was p, = 339kg/mS. b Location of
four density measurements through the thickness of each 120 mm slab using a 50 cm® density cutter.
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with 12 variable weights distributed into notches (Fig. S4e). Each weight consisted of a rectangular
hollow steel profile (500 mm length) with up to three metal rods (600 mm length). The profile-
rod assemblies weighed up to 1 kg each, enabling the application of different load levels without
altering the slab bending stiffness. In certain instances, an additional row of weights was added for
very high surface loading. The titling angle was measured using an analog inclinometer aligned
with the weak layer. To initiate the fracture process, we introduced a cut into the weak layer by
pushing the unserrated back of a 2mm thick snow saw (450 mm length, 60 mm width) into the
weak layer (Fig. S4e). Two operators from both sides ensured that the saw remained within the
weak layer. We cut at a constant travel speed of approximately 70mm/s (Fig. S4e). When the
artificially induced weak-layer crack became unstable and propagated through the entire sample,
the critical cut length from saw tip to slab face was measured on both sidewalls and averaged
when the cut was not perfectly perpendicular (Fig. S4f).

In total, we conducted 102 MMFTs and obtained 88 valid results. Experiments were discarded
when we encountered increased resistance while cutting, indicating that the cut did not remain
in the weak layer. Experiments with cut lengths exceeding 50 cm were also excluded due to the

limited effective length of the slab, which was only 100 cm.

Data fitting procedure

The interaction laws examined in this work are two-dimensional implicit nonlinear models
0= r(@i; B), 1)

where B8 = (Gic, G, n, m)" is the vector of model parameters and x; = (QI, QH)IT is the vector
of independent variables, i.e., the vector of i = 1, ..., N observations. Owing to measurement
errors in the observations «;, the model r(x;; 3) can only approximate 0. Because of the implicit
relationship and because of uncertainties in the independent variables, the parameters 3 were
estimated using a weighted orthogonal-distance-regression procedure.’” Accounting for the

measurement errors, the models satisfy
0=r(xz;j+68;; B), for i=1,..,N, (52)

where § € R? is the vector of unknown errors. The implicit orthogonal-distance-regression

problem is finding the 3 for which the sum of the squares of the N orthogonal distances from the



Fig. S4 | Experimental procedure. a Aluminum sled pushed into the snowpack to facilitate the extraction
of the snow column of interest. b Profiling device used to serrate the slab’s top surface to support the
addition of weights. ¢ Placement of snowpack-sled assembly onto the tilting rig with guiding plates on
the sides and the bottom edge to ensure alignment. Screws punch into the substratum to prevent sliding.
d Assembly tilted to final inclination before addition of weights. e Weak-layer cut introduced with the
back of a snow saw by two people ensuring parallel movement through the weak layer. f Slab sliding
after unstable propagation of the introduced crack. The cut length is recorded form the end of the saw
to the end of the slab.

curve r(x, B) to the N data points is minimized. This is expressed by the optimization problem

N
i TW, §:

rggl%@ W, 3, (S3)
subject to

0=r(m; +di; B), (54)
where the diagonal matrix

o 2.0
W= / (S5)
0 aﬁz

accounts for unequal error variances 012 and oﬁ in Gr and G, respectively. The optimization

problem was solved using a trust-region Levenberg-Marquardt procedure.” Jacobian matrices
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Table S1 | Best fit parameters. Interaction-law parameters of Eq. (S8) identified from a weighted orthog-
onal distance regression.

Weak layer type Gic (J/m?) Gie (J/m?) k

Surface hoar 0.59+0.03 1.12+0.07 1.0

with respect to parameters and independent variables were computed explicitly and supplied to

the algorithm. The goodness of fit is assessed using the residual variance expressed by
1N
X=o ) 8 Wid, (S6)

where v = N — P is the number of degrees of freedom obtained from the number of observations

with nonzero weight N and the number of estimated model parameters P.

Interaction-law identification

Compare the best fit of the power-law interaction model given in Eq. (1) of the main text (Fig. 2)

1 1
0~r(xi; ﬁl)z(%) + (QQI][IC) -1, (57)

where 81 = (Gic, Giie, 1, m)", to the mixed-mode interaction law proposed by Benzeggagh and

Kenane® L
g’[c + (ch - g’[c) llji
0~ r (@i Bo)= ————— -1, S8
r (@i B2) G (s8)
where )
T (59)
G| + Gy

is the mode ratio and 3; = (Gic, Gie, k)" the vector of model parameters (Fig. S5). Equation (S8)
was proposed to capture mixed-mode fracture toughness under tension-shear interaction, * where
the total energy release rate G = Gy + G is observed as a monotonous function of the mode
ratio, expressed in the 1*-term.®° Our data show that for compression-shear interaction, the
total energy release rate is not monotonous with respect to the mode ratio ¢ (Figs. 2b and S5b).
This incompatibility results in a linear relationship G(¢), i.e., k = 1.0 (Table S1), as the best fit of
Eq. (S8) and in a significantly larger residual variance x2 (4.16 vs. 3.14, Figs. 2b and S5b).

While the mode I fracture toughness estimates of both models are similar, their mode II
representations are much different (Tables 1 and S1). Owing to their exceptionally low density,

we assume that the tensile mode I fracture toughness of highly porous weak layers is very small.
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Fig. S5 | Best fit of tension-shear mixed-mode interaction law. a Mode I/1 composition of critical energy
release rates at the onset of unstable crack propagation from this work (N = 88, green) and literature ©
(N =183, orange) with best fit (p < 0.001) of Eq. (S8). b Total energy release rate G = Gi+Gn as a function
of mode ratio ¢ (mode II fraction). A monotonous model of the total energy release rate vs. mode ratio
¥, e.g., Eq. (S8), cannot capture the local maximum evident in the data.

That is, we expect a mixed-mode law that captures the interaction of mode II with both mode I
compression and mode I tension to decrease sharply on the tension side. For this reason, we
expect a vanishing or small but positive gradient dGr/dG for G — 0 (Figs. 2a). However, for the
best fit of Eq. (S8), we observe a steep, negative gradient (Fig. S5a).

Eq. (S8) was proposed to account for tension—shear interaction. We observe that the mechanics
of compression-shear interaction are quite different and that interactions laws are not directly

transferable.

Model derivation
The mechanical model used in this work results from a series of articles in which different
components of the theory have been derived and tested. The novelty, here, is the treatment of
added surface loads. To help readers who would not be familiar already with this literature, we
provide a summary how physical components have been validated. In the following, we refer to
the works of Weiflgraeber & Rosendahl. =13

Governing equations. We model a stratified snow cover as a system comprised of i) a snow
slab, represented by an arbitrarily layered beam, that rests ii) on a weak layer, represented by an
elastic foundation. The beam kinematics and its constitutive behavior are derived from first-order
shear deformation theory of laminated plates under cylindrical bending.'* The weak layer is
modeled as a so-called weak interface. !> The concept simplifies the kinematics of the weak layer

and allows for efficient analyses of interface configurations that exhibit a strong elastic contrast.
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Fig. S6 | Mechanical model. Stratified snowpack composed of an arbitrary number of slab layers and a
weak layer modeled as an elastic foundation.

The weak interface can be understood as an infinite set of smeared springs with normal and
shear stiffness attached to the bottom side of the slab. Weak interface models are common for the

16-18 The analysis of this system yields fully coupled

analysis of cracks in thin, compliant layers.
bending, extension and shear deformations of both slab and weak layer.

Consider the segment of the stratified snow pack on an inclined slope of angle ¢ shown in
Fig. S6. As typical for beam analyses, the axial coordinate x points left-to-right along the beam
midplane and is zero at its left end. The thickness coordinate z is perpendicular to the midplane,
points downwards and is zero at the center line. Slope angles ¢ are counted positive about the y
axis of the right-handed Cartesian coordinate system (counterclockwise). Note that on inclined
slopes (¢ # 0), the axial and normal beam axes (x and z) do not coincide with the horizontal and
vertical directions.

The slab with total thickness /1 is composed of N layers with individual ply thicknesses
hi = zi41 — zi, each assumed homogeneous and isotropic (Fig. S7). Young’s modulus, Poisson’s
ratio and density of each layer are denoted by E;, v; and p;, respectively. The weak layer of
thickness t can be anisotropic and its normal and tangential stiffnesses are

Eu

kn = T, (SlOa)

where E! | = Eyy/(1 - v2) is the weak layer’s plane-strain elastic modulus and
ke = —>=, (S10b)

where G, is the weak layer’s plane-strain shear modulus, respectively. To account for anisotropic

weak layers, these constants can be defined from independent stiffness properties. It is to note, that



z hn =zZnw — 2N

Fig. S7 | Slab layering. Slab of total thickness & composed of N individual layers. A layer i is characterized
by its height k; and its the top and bottom coordinates z; and z;,1, respectively.

since the weak layer is connected to the slab, an intrinsic coupling of shear and normal deformation
of the weak layer occurs even when the stiffnesses kn and k; are defined independently.
The slab is loaded by its own weight, i.e., the gravitational load g, and an external load F (e.g.,

a skier or added weights) in vertical direction. The gravity load corresponds to the sum of the

weight of all layers
N
9=8> hipi. (S11)
i=1
It is split into a normal component g, = g cos ¢ and a tangential component g; = —q sin ¢ that

are introduced as line loads. The tangential gravity line load acts at center of gravity in thickness

direction

B SN (zi + zis)hipi

(512)
23N hipi

in the slab, where (z; +z;.1)/2 yields each layer’s center z-coordinate. For relevant slab thicknesses
the external load can be modeled as a point load and is introduced as a force with a normal
component F = F cos ¢ and a tangential component Fy = —F sin ¢.

Deformations of the slab are described by means of the first-order shear deformation theory
(FSDT) of laminated plates under cylindrical bending. '* By dropping the Kirchhoff assumption
of orthogonality of cross sections and midplane, this allows for the consideration of shear defor-
mations. We consider midplane deflections wg, midplane tangential displacements 1y and the

rotation 1 of cross sections. The quantities define the displacement field of the beam according to

w(x,z) = wo(x), (S13a)

u(x, z) = up(x) + zh(x). (S13b)
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At the interface between slab and weak layer (z = h/2), the displacement fields of slab (u, w)
and weak-layer (v, w) coincide. Using Eqs. (S13a) and (S13b), this yields & = i = ug + ¢ /2 and
@ = @ = wo, where the bar indicates quantities at the interface. Modeling the weak layer as an
elastic foundation of an infinite set of smeared linear elastic springs, yields constant strains and
consequently a constant deformation gradient through its thickness. Hence, weak-layer stresses
can be expressed through the differential deformation between the lower boundary of the weak

layer (v = @ = 0) and its deformations at the interface:

dw(x, z) 0-a(x)
) =Ew ;
z (S14a)

022(x) = Ewiezz(x) = Ey

= —knwo(x),

Txz(¥) = G Y2z (x) = Gwl ( dz + Tdx

0 - v(x) . c?)’(x))

dv(x,z) do(x,z) )

(S14b)

=Gwl( 7 >

~ k3 = 0) - ).

From the free body-cut of an infinitesimal beam section of the layered slab (Fig. S8), we obtain

the equilibrium conditions of the section forces and moments:

0= dI:ilix) +7(x) + gt + pt, (S15a)

0= d‘d/i") +0(x) + G + Pny (S15b)
dMm h+t h

0= di") V() + 1) + 2501 - 3P (S150)

Note the addition of normal and tangential surface loads py, and py, respectively. '3 To connect the
slab section forces (normal force N, shear force V, and bending moment M) to the deformations
of the layered slab, we make use of the mechanics of composite laminates. First-order shear

deformation theory of laminate plates under cylindrical bending yields

(N(x)) ) (An Bll)(”é(x)), (S16a)
M(x) B11 D11 ) \¢'(x)
and

V(x) = KA55 (w(’)(x) + lzb(x)) . (Sl6b)

10
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Fig. S8 | Equilibrium conditions. Free-body cut of an infinitesimal segment of length of the layered slab
of height with half of the weak layer.

z

These constitutive equations contain the extensional stiffness A1y, the bending stiffness D11, the
bending-extension coupling stiffness B11, and the shear stiffness xAss of the layered slab. The
coupling stiffness By; accounts for the bending-extension coupling of asymmetrically layered
systems such as bimetal bars. These stiffness quantities are obtained by weighted' integration of

the individual ply stiffness properties:

/2

N
E(z) E;
Ay = | —EB) g, hi S17
. ./1—1/(2)2 : ;1—%21 (S172)

—h/2

N
- E(z) 1 Ei (2
By = / 1 _V(Z)ZZdZ T2 Z 1— v? (Zi+1 zl.), (S17b)

N
_ E(z) ». _1 Ei (3 3
D1 = /mz dz = 32 12 (Zi+1_zi)' (S17¢)

nj2

N
Ass = / Gz)dz = > Gi. (S17d)
i=1

—h/2

The shear correction factor x complements the shear stiffness xAss. It is set to 5/6 as a good
approximation for the layered slab of rectangular cross-section. '’ The above quantities are given
for the case of isotropic layers. Orthotropic layers can be considered following the same approach
by using directional elastic properties of the individual layers instead of an isotropic Young's
modulus.

In the special case of a homogeneous, isotropic slab with Young’s modulus Eg and Poisson’s

ratio v, the laminate stiffnesses take the homogeneous stiffness properties well-known from beam

1Weighted by the moment of area of the cross-section of zeroth, first, and second order.
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theory:

_ Egh
A11 = 1- 1/2 ’ (SlSa)
Egh®
Dy = ———, S18b
n=1 1—) ( )
_ Egh
Ass = TA+v) (S18¢)

and the coupling stiffness vanishes (B11 = 0).

System of differential equations. The equations of the kinematics of the weak layer, (S14a) and
(S14b), the equilibrium conditions, (515a) to (S15c¢), and the constitutive equations of the layered
beam with first-order shear deformation theory, (S16a) and (S16b), provide a complete descrip-
tion of the mechanics of the layered snowpack and constitute a system of ordinary differential
equations (ODEs) of second order.

With the first derivative of the constitutive equation of the normal force (S16a)’” inserted into

the equilibrium of horizontal forces (515a), we obtain
0 = Apug(x) + By (x) + 7(x) + gt (S19)

Likewise, with the first derivative of the constitutive equation of the shear force (S16b)" and the

vertical force equilibrium (S15b), we have:
0 = kAss(wy (x) + P’ (x)) + 0(x) + gn. (S20)

The first derivative of the constitutive equation of the bending moment (S16a)’ with the balance

of moments (S15c), yields

0 = Bryug (x) + Dnyp” (x) — xAss (wg(x) + ¢(x))

h+t (521)
+ T(x) + 254¢.
We then insert the definition of the shear stresses (514b) into Eq. (519) to obtain
4 t ’
0= Aq1ug (x) — keuo(x) - ke wp (%)
(522)

+Buy() - ks p(x) + g

12



Inserting the normal stress definition (S14a) into Eq. (520), yields

0 = kAssw( (x) = knwo(x) + kAs51" (%) + qn,

and, again, inserting the shear stress (S14b) into Eq. (S21), yields

+t

0 = Byyull(x) — ke -

+ (u ikt - KA55) wg(x)

ug(x) + D119p” (x)

2 2

h+th
- (KA55 + T Ekt) ll)(x) + Zsqt.

(S23)

(S24)

Equations (522) to (524) constitute a system of linear ordinary differential equations of second

order with constant coefficients of the deformation variables u(x), w(x), ¢ (x) that describes the

mechanical behavior of a layered beam on a weak layer.

Using the vector of unknown functions

2(3) = [uo(x) wy(x) wolx) wy(x) Pix) ()],

the ODE system can be written as a system of first-order for the form
AzZ'(x)+ Bz(x)+d =0,

with the matrices

1 00 0 00
0A11 0
001 0 0O

0 0 Bng

0 0 0xkAs5 0 O
000 O 10

0B110 0 0Dn

13

(S25)

(S26)

(27)
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and

0 -10 0 0 ©
ke 0 0 kb ki o0

B-= , (528)

—%kt 0 O Bes Bes 0

where

Bgsa = kthitf—KA55, and Bgs = —kthzth—KA55,
and the vector
h T
d= 0 qt+pt 0 n + Pn 0 qut_fpt . (829)

Note the addition of surface loads py and p. !> The system (526) can be rearranged into the form

2/ (x) = Kz(x) +q, (S30)

where
K=-A"'B, (S31a)
g=-A"ld. (S31b)

The solution of the nonhomogeneous ODE system (S30) is composed of a complementary solution
vector z(x) and a particular integral vector 2z, where the latter is constant in the present case.
The complementary solution can be obtained from an eigenanalysis of the system matrix K.
Depending on the layering and the material properties, K has six real or complex eigenvalues.
Since the beam is bedded, it has no rigid body motions and all eigenvalues of nonzero. Real
eigenvalues occur as sets of two eigenvalues with opposite signs +Ar and linearly independent
eigenvectors vp. € R®. Complex eigenvalues appear as complex conjugates AE = Ag = idg with
the corresponding complex eigenvectors vE = vy * ivg such that v¢ € C% and vy, vy € RO.
Denoting the number of sets of real eigenvalue pairs as Ng € {0,...,3} and the number of

complex conjugate eigenvalue pairs as N¢ € {0, ...,3} such that Ng + N¢ = 3, the complementary

14



solution is given by the linear combination

Nr
zp(x) = Z Clgl exp (+/\g§)x) vsg
n=1

+ C;{? exp (—Ag)x) vgj

+ % Cf}z) exp (/\(Qg)x) ['vf;) cos ()\(;)x) (S32)
n=1

- v(sn) sin ()\gz)x) ]
+ ng) exp (/\f;)x) [’ugg) sin (/\gz)x)
+ 'v(sn) cos (Ag')x) ]

The particular solution is obtained using the method of undetermined coefficients, which yields

the constant vector

— | gttpe h(h+t-2z5) q¢ n+pn (2zs—h—t) qe+(2h+t) pt ]T
Zp [_kt t 5 0 R 0 TxAss 0] - (833)

Again, note the addition of surface loads pn and pt.'® The general solution of the system
ze(x) = 2p(x) + 2p, (S34)

comprises six unknown coefficients C (.") that must be identified from boundary and transmission

conditions. It can be given in the matrix form
ze(x) = Zp(x) co + 2zp, (S35)

where Zj, : R — R®%® is a matrix-valued function with the summands of Eq. (S32) as column
vectors and ce € R a vector containing the six free constants C (.n) according of Eq. (532).
Layered segments without elastic foundation. To study situations where the weak layer has
partially failed, the case of an unsupported slab must be considered. The situation can occur
when the weak layer has collapsed or when a saw cut is introduced in a propagation saw test.
Accounting for such cases allows for the use of the present model in failure models for anticrack
nucleation '? or growth. 2 If the slab is not supported by an elastic foundation, the general solution
simplifies. In the equilibrium conditions (S15a) to (S15¢), the normal and shear stress terms are
omitted since no stresses act on the bottom side of the slab. The constitutive equations (S16a) and

(S16b) remain the same.

15

646

647

648

649

650

651

652

656

657

658

659

660

661

662

666

667

668

669

670

671

672

673

674

676

677

678

679

680

681

682

686

687

688

689

690



692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

Without elastic foundation, the equilibrium conditions (S15a) and (S15b) reduce to

dN

0= di") + e+ pr (S36a)
av

0= dix) +qn + P, (S36b)
dM h

0= diX) V() + 2500 - 5P (S36¢)

By adding and subtracting +D13w( (x) to the constitutive equation of the bending moment (S16a)

and using the first derivative of the constitutive equation of the shear force (S16b)’, we obtain

’ D !’ 7
M(x) = Byuj(x) + —-V'(x) - Dpw{(x). (S37)
KAss

Differentiating twice and using the first derivatives of the equilibrium conditions, (536b)" and

(S36¢), yields
M"(x) = V'(x) = =(gn + pn) = Br1ug’(x) = D1rwg” (x). (538)

Adding and subtracting +B13w{ to the constitutive equation of the normal force (S16a) and using

the constitutive equation of the shear force (516b), gives
N(x) = Ajul(x) + ﬁv'(x) - Byyw(x). (S39)
0 KAss 0

Differentiating this equation and, again, using the derivatives of the equilibrium conditions,

(S36a)" and (S36b)’, yields
N'(x) = =(g¢ + pt) = Anug (x) = Brwg (x). (540)

Solving the derivative of this equation for 1" (x) and inserting it into Eq. (538), yields an ordinary

differential equation of fourth order for the vertical displacement

An
w(”(x) = ——————(Gn + Pn)- (541)
0 B3, — A Dy ne

It can be solved readily by direct integration

wo(x) = c1 + cox + c3x% + cgx®
Ay (S42)

- (gn + po)x*,
24(B2, - AnD1p)
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Solving Eq. (540) for u(x), integrating twice and inserting the third derivative of the general solu-
tion for wo(x) (S42)’, yields the general solution for the tangential displacement of unsupported
beams

(6B11cs — gt — Pt)xz

Uupg(x) =cs5 + cgx +
o(x) = ¢5 + ¢ 24,

By (543)

- 2—(qn + pn)x3.
6 (B11 - An D11)
To obtain a solution of the cross-section rotation y(x), we take the derivative of the constitutive

equation for the bending moment (S16a)’ and insert it together with the constitutive equation of

the shear force (S16b) into the equilibrium of moments (S36c). Solving this for ¢(x) yields

Y0 = — (Bruu () + Dy (6) + 2ags ~ 3p1) = (0. (544)

Equation (540) allows for eliminating u/(x). In order to eliminate ¢”’(x), we insert the constitutive
equation of the shear force (S16b) into the second derivative of the vertical equilibrium (S36b)”,

which yields ¢”(x) = —~w(’(x) and we obtain

W) = B2 - A;1Dn

PN ot
<AssAll wy (x) wo(x)

(S45)

which is fully defined through the solution for wo(x) (542).

In order to assemble a global system of linear equations from boundary and transmission
conditions between supported and unsupported beam segments, it is helpful to express the
general solutions for both cases in the same form. For this purpose, we express vector of unknown
functions (525) used for the solution of supported beam segments through the general solutions

(542) to (545) for unsupported beam segments. This yields the matrix form

2zo(x) = P(x) co + p(x), (546)
where
;
co = [cf}) c?® . cO| . (S47)
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is the vector of unknown coefficients,

00 O 33—111342 1x
00 0 6xtx 01
1 x x2 x3 00
P(x) = , (548)
01 2x 3x2 00
0-1-2x A111<A55 -3x200
00 -2 —6x 00
and
_qttpt x2 _ BA( + )x3
241, 6K, \In t Pn
+ B
'121}1% 2]2) (’7n + pn) x?
__1( + )x
241( qn * Pn
p(x) = 0 , (549)
61(0 (5]n+Pn)x
B q hp In+pn
S (an+pn) 2 + (20— F) o - gkt - gl
n+pPn
ﬁ([]n + pn) x2 - _q,(A;

with Ko = B3, — A1 Dy.

Global system assembly. The general solutions presented above allow for the investigation of
different systems composed of segments of supported and unsupported layered slabs. Possible
configurations of interest are, e.g., skier-loaded snowpacks, skier-loaded snowpacks with a par-
tially collapsed weak layer, or propagation saw test (PSTs) with an artificially introduced (sawed)
edge crack. Assemblies of such configurations are illustrated in Fig. S9. Individual segments are
connected through transmission conditions given in terms of displacements and section forces.

Stability tests are typically conducted on finite volumes with free ends that require vanishing

section forces and moments
N=V=M=0, (S50)

as boundary conditions. Skier-induced loading is typically confined in a very small volume
compared to the overall dimensions of the snowpack that extends over the entire slope. For the
model, this corresponds to an unbounded domain where, all components of the solution converge

to a constant at infinity. That is, at the boundaries, the complementary solution vector must vanish

2 =0, (S51)
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Fig. S9 | System assembly. Exemplary systems of interest assembled from supported and unsupported
layered slabs with numbered segments: a) downslope PST, b) upslope PST, c) skier-loaded snowpack,
d) partially fractured weak-layer, and d) layered slab loaded by multiple skiers with partially frac-
tured weak-layer. Dotted lines indicate transmission conditions for the continuity of displacements and
section forces.

which yields constant displacements z(x) = zp, see Eq. (S33).
At interfaces between two segments (e.g., change from supported to unsupported), CO-
continuity of displacements and section forces is required and the transmission conditions

read

Aug=0, Awg=0, Ay =0,

AN =0, AV =0, AM=0, (S52)

where the A operator indicates the difference between left and right segments, i.e., Ay = y; — yr.

External concentrated forces (e.g., skiers) are introduced as discontinuities of the section
forces. They are considered with their normal and tangential components Fn and F; and with their
resulting moment M = —hF/2. They have to be accounted for in the form of the transmission

conditions between two segments

h
AN =F, AV=F,, AM=-F, (S53)
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where again, the A operator expresses the difference between left and right segments. Therefore,
at points of such loads the slab must always be split into segments to allow for the definition of
the transmission conditions.

Inserting the general solutions (S35) and (546) into the boundary and transmission conditions,
yields equations that only depend on free constants. The set of equations can be assembled into
a system of linear equations with k = 6Ny, degrees of freedom, where N}, is the number of beam

segments. In matrix form, the system reads
We=f. (S54)

Here, W € R** g a square matrix of full rank, ¢ € R* is the vector of all free constants, and
f € RF is the right-hand-side vector that contains the particular solutions and displacement
discontinuities induced by concentrated loads. With only k degrees of freedom, the system can
be solved in real-time using standard methods such as Gaussian elimination or lower-upper (LU)
decomposition.

Computation of displacements, stresses and energy release rates. Substituting the coeffi-
cients C( obtained from Eq. (S54) for each beam segment back into the general solutions (S35)
and (546), yields the vector z(x), which contains all slab displacement functions, see Eq. (525).

Inserting the slab deformation solution into Eqs. (S14a) and (S14b), provides weak-layer
normal and shear stresses, respectively. As discussed in the details of the mechanical model, weak-
interface models do not allow for capturing highly localized stress concentrations (e.g., stress
singularities) as they occur at crack tips. However, it is known that outside the direct vicinity
of crack tips, the simplified weak-interface kinematics provide accurate displacement and stress
solutions. !

The in-plane stresses oy, 02, and Ty, within layers of the slab are obtained using the layers’
constitutive equations and exploiting the equilibrium conditions. '* Using Hooke’s law and the
identities ex(x, z) = u'(x, z) = uj(x) + zy’(x), the axial layer normal stresses can be expressed in

terms of slab displacements in the form

ox(x,z) = % (ué(x) + z¢'(x)), (S55)

where Young’s modulus E(z) and Poisson’s ratio v(z) are layerwise, i.e., piecewise, constant in
z-direction. Integrating the local equilibrium condition
_ doy aTxy 0Ty

0= Fru Y e (S56)
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with respect to z, where derivatives with respect to y vanish owing to the plane-strain assumption,

yields the in-plane layer shear stress

Tyz(x,2) = —/0;(x,z)dz

__ / E) (g 0) + 297(0)) iz,

1-v()p?

(S57)

The second-order derivatives are obtained from the left-hand side of Eq. (S30) and integration
with respect to z is performed using the trapezoidal rule. Again, integrating the equilibrium

condition

0Ty 19Tyz dJo,
0= o + 3y + 5 (S58)

with respect to z under the same assumptions, yields the interlayer normal stresses

oz(x,z) = —/T;Z(x,z)dz. (S59)

Here, differentiation is performed using difference quotients with consideration of discontinuities.

Finally, maximum (o1) and minimum (oyr) principal stresses are computed from

org = & ; 9z 4 ("" ;"Z )2 +i2,. (S60)

The model can be used to determine the energy release rate of cracks. Here, we make use of the
concept of anticracks,?! that allows for studying failure of a weak layer in a snowpack exhibiting
collapse.?? As typical for fracture mechanics,” the symmetry of the displacement field around
the crack tip can be used to identify symmetric (mode I) and antisymmetric deformations (mode
I). We follow this convention to study mode I (crack closure) and mode I (crack sliding) energy

release rates of anticracks. The energy release rate of cracks in weak interfaces can be given as

o(a)? + 7(a)?

G(a) = Gila) + Grla) = G + S,

(S61)

where a denotes the crack-tip coordinate. The limitations of the weak-interface kinematics yield
energy release rates that cannot capture very short cracks but, again, provide accurate results for
cracks of a minimum length.?* Cracks shorter than a few millimeters cannot be studied by the

present approach.
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Fig. S10 | Benchmark profiles. Illustration of benchmark snow profiles used in the present work. Material
properties of hard, medium, and soft slab layers (dark) and the weak layer (light) are given in Table S2.
The weak layer is 2 cm thick and the slab layers have a thickness of 12 cm each.

Table S2 | Snow profiles. Considered snow layers and their elastic properties with reference to three-
layer slabs.?®

Hand Density p Young’s Poisson’s
Layer hardness (kg/m>) modulus ratio v
index E (MPa)
Hard P 350 93.8 0.25
Medium 1F 270 30.0 0.25
Soft 4F 180 5.0 0.25
Weak layer F- 100 0.15 0.25

Model validation

With reference to previous analysis of snowpack layering, 22

we use three-layered slabs pro-
posed as schematic hardness profiles,?” that are composed of soft, medium, and hard snow as
benchmark slab configurations (Fig. 510). Assuming bonded slabs (e.g., rounded grains) and

considering the density~hand hardness relations,

we assume densities of p = 350, 270, and
180 kg/rn3 for hard, medium, and soft snow layers with hand hardness indices pencil (P), four
fingers (4F), and one finger (1F), respectively. From slab densities, we calculate the Young’s mod-
ulus using a density-parametrization developed using acoustic wave propagation experiments >’

and improved using full-field displacement measurements*’
py
Eq(p) = Eo (—) , (562)
Po

where y = 4.4 accounts for density scaling and Eg = 6.5-103 MPa and pg = 917 kg/m3 are Young’s
modulus and density of ice. Each slab layer is 12 cm thick and their individual material properties
are given in Table S2. With reference to previous studies who report weak layer thickness between
0.2and 3 cm, *! we assume a weak-layer thickness of t = 2 cm. Following density measurements of
surface hoar layers that report densities i) between 44 and 215 kg/m3 with a mean of 102.5 kg/m?
and ii) between 75 and 252 kg/m? with a mean of 132.4 kg/m? using two different measurement
techniques, we assume a weak-layer density of py; = 100kg/ m?, and a Young’s modulus of

Ey1 = 0.15MPa.>? Other parameters are summarized in Table S3.
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Table S3 | Material properties. Material properties used throughout this work unless specified differently.

Property Symbol Value
Skier weight m 80kg
Slope angle Q@ 38°

Slab thickness® h 36cm
Weak-layer thickness' t 2cm
Effective ouf-of-plane ski length lo 100 cm
Young’s modulus weak layer Ewl 0.15MPa
Poisson’s ratio v 0.25
Length of PST block Ipst 250 cm
Length of PST cut apst 50 cm

* Thicknesses given in slope-normal direction.

Finite element reference model. To validate the model, in particular with respect to differ-
ent slab layerings, we compare the analytical solution to finite element analyses (FEA). The finite
element model is assembled from individual layers with unit out-of-plane width on an inclined
slope (Fig. S11). Each layer is discretized using at least 10 eight-node biquadratic plane-strain con-
tinuum elements with reduced integration through its thickness. The lowest layer corresponds to
the weak layer and rests on a rigid foundation. Weak-layer cracks are introduced by removing all
weak-layer elements on the crack length a. The mesh is refined towards stress concentration such
as crack tips and mesh convergence has been controlled carefully. The weight of the snowpack is
introduced by providing the gravitational acceleration g and assigning each layer its correspond-
ing density p. The load introduced by a skier is modeled as a concentrated force acting on the
top of the slab. If skier loading is considered, the horizontal dimensions of the model are cho-
sen large enough for all gradients to vanish. Typically 10 m suffice. Boundary conditions of PST
experiments are free ends. In the FE model, the energy release rate of weak-layer cracks

dll(a) o _T(a + Aa) —T(a — Aa)

Gre(a) = - P A7

(S63)

is computed using the central difference quotient to approximate the first derivative of the total
potential IT with respect to a. The crack increment Aa corresponds to the element size and could
be increased twofold or threefold without impacting computed values of Grr(a). Weak-layer
stresses are evaluated in its vertical center.

Displacement and stress fields. Although visual representations of deformation and stress
fields are limited to qualitative statements, they illustrate the principal responses of structures in
different load cases. For this purpose, Fig. S12 compares principal stresses in a deformed slab-
on-weak-layer system between present model and finite element reference solution. The system

is loaded by the weight of the homogeneous slab BH and a concentrated force representing an
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Fig. S11 | Finite element model used for validation. Discretization of a snowpack with slab and weak
layer. Cracks are introduced by removing all weak layer elements. Skier loads are applied as vertical
concentrated forces. Here, the case of a propagation saw test is shown as an example. The rigid base
layer below the weak layer has a Young's modulus of Ey = 10'> MPa.

undeformed geometry T present
or/aot

-1.0 -0.5 0.0 0.5 1.0

Normalized principal stress /0. —>

Fig. S12 | Stress field. Principal stresses and 200 times scaled snowpack deformations in the central
200 cm section of a skier-loaded snowpack comparing the present model (top) and the FEA reference
model (bottom). In the homogeneous slab BH, maximum principal normal stresses o (tension) normal-
ized their tensile strength ¢} = 9.1 kPa are shown. In the weak layer we show minimum principal normal
stresses oy (compression) normalized to an assumed weak layer compressive strength of o7 = 2.6 kPa.
The weak-layer thickness is scaled by a factor of 4 for illustration.

80 kg skier. Deformations are scaled by a factor of 200 and the weak-layer thickness by a factor of
4. In the slab, we show maximum principal normal stresses (tension) normalized to their tensile

normal strength ¢f = 9.1kPa obtained from the scaling law

244
0 (p) = 240 kPa (E) , (S64)
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Horizontal displacement  (mm) —

Fig. S13 | Displacement field. Horizontal displacement field of the first 1.3m of a flat-field propagation
saw test (PST) with an @ = 23 cm cut into the t = 1cm weak layer under a = 46 cm slab. Comparison of
the present model (top) with full-field digital image correlation measurements (bottom). White patches
indicate missing data points. Deformations are scaled by a factor of 100 and the weak-layer thickness
by a factor of 10 for illustration.

where pg = 917 kg/m? is the density of ice.>® This illustrates the potential of tensile slab fracture.
In the weak layer, minimum principal normal stresses (compression) normalized to their rapid-
loading compressive strength 07 = 2.6 kPa’* are shown, illustrating the potential for weak-layer
collapse. We choose principal stresses for the visualization because they allow for the assessment
of complex stress states by incorporating several stress components.

While the present model (Fig. S12, top panel) does not capture the highly localized stresses at
the contact point between skier and slab observed in the FEA model (Fig. 512, bottom panel), the
overall stress fields are in excellent agreement. This is consistent with Saint-Venant’s principle,
according to which the far-field effect of localized loads is independent of their asymptotic near-
field behavior. The same holds for the displacement field. While the concentrated load introduces
a dent in the slab’s top surface, the overall deformations agree. With respect to the numerical
reference, the present model renders displacement fields and both weak-layer and slab stresses
well. Moreover, we can confirm the model assumption of constant stresses through the thickness
of the weak layer.

Experimental validations are challenging since direct measurements of stresses are not possi-
ble and displacement measurements require considerable experimental effort. The latter can be
recorded using digital image correlation (DIC). >’ From their analysis, we use the DIC-recorded
displacement field of the first 1.3 m of a 3.0 + 0.1 m long flat-field propagation saw test (Fig. 513,

bottom panel). The PST was performed on January 7, 2019, had a slab thickness of 1 = 46cm, a
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critical cut length of 2 = 23 + 2cm, and the density profile shown in Fig. 513 (left panel) with a
mean slab density of p = 111 + 6kg/ m?3. From the density we computed individual layer stiff-
nesses according to Eq. (562). Figure S13 compares both in-plane deformations of the snowpack
(outlines) and the horizontal displacement fields (colorized overlay) obtained from the present
model (top panel) and from DIC measurements (bottom panel). Deformations are scaled by a
factor of 100, the weak-layer thickness by a factor of 10 for their visualization. In-plane slab and
weak-layer deformations are in very good agreement. This is evident in both the deformed con-
tours and in the colorized displacement field overlay. Since displacements are C!-continuous
across layer interfaces, the effect of layering is not directly visible in the displacement field. How-
ever, the slightly larger-than-expected tilt of the slab at its left end hints at a higher stiffness at the
bottom of the slab and a compliant top section.

Weak-layer stresses and energy release rates. For all benchmark profiles illustrated in Fig. 510,
weak-layer shear and normal stresses (7, 0) obtained from the FEA model (dotted, light) and the
present analytical solution (solid, dark) are compared in Fig. S14. We investigate a 38° inclined
slope subjected to a concentrated force equivalent to the load of an 80kg skier on an effective
out-of-plane ski length of 1 m. The finite element reference model has a horizontal length of 10m,
of which the central 3m are shown. The boundary conditions of the present model require the
complementary solution (532) to vanish, representing an infinite extension of the system.

Kinks in the model solution originate from the loading discontinuity introduced by the
concentrated skier force. They are a direct result of the plate-theory modeling approach. The
agreement with the FEA reference solution is close for all types of investigated profiles and
layering effects on weak-layer stress distributions are well captured. Only for profile AC, the
present solution slightly underestimates the normal stress peak directly below the skier. This
observation is not relevant for the prediction of weak-layer failure in a snow cover.? To study
size effects present in any structure, a nonlocal evaluation of stresses must be used. " This has
been discussed in detail by Leguillon*!, laying the foundation for the successful application of
finite fracture mechanics approaches with weak-interface models. *>*® Effects of bending stiffness
(Fig. S14c vs. d) or bending-extension coupling (Fig. S14e vs. f) resulting from different layering
orders, will be discussed in detail below.

A similar comparison of solutions for all profiles is given in Fig. S15, where total energy
release rates (ERRs) of weak-layer anticracks in 38° inclined PST experiments are shown. Here,
both models consider free boundaries of the 1.2m long PST block. The structure is loaded by the
weight of the slab and saw-introduced cracks are modeled by removing all weak-layer elements

on the crack length a. This causes finite ERRs, even for very small cracks, because a finite amount
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(dotted, light) in the case of profile AC. Material pperties are given in Tables S2 and S3.
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results are within the hatched boundaries indicating the thus far lowest3° and highest ' published frac-
ture toughness of weak layers, 0.01]/m? and 2.7]/m?, respectively.

of strain energy is removed from the system with these elements. The ERR of a sharp crack is
expected to vanish in the limit of zero crack length (<« 1cm).

The principal behavior of the ERR as a function of crack length is unaffected by the choice
of profile. However, the different resulting stiffness and deformation properties influence the
magnitude of the energy release rate considerably. For instance, between cases A and B, we
observe a difference of almost 10 % (Fig. S15).

Figure S16 shows weak-layer fracture toughnesses determined from critical cut lengths of
PSTs with layered slabs throughout the 2019 winter season using the present model.*"* The
authors performed 21 tests on the same weak layer. While we observe small weak-layer fracture
toughnesses at the beginning of January 2019, it quickly increases with the most significant
precipitation event in mid January and then remains comparatively constant throughout the rest
of the season. " For the purpose of validation of the present model, it is to note that all fracture
toughnesses computed from the experiments lie within the bounds of the to date lowest>® and

highest ' published values, 0.01]/m? and 2.7]/m?, respectively.
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1335 The present model can be classified as a structural mechanics model as frequently employed

" in fracture mechanics. Structural models can be used to obtain effective quantities characterizing

1337

s weak layers.”0 Effective quantities of fracture mechanics models always include microscopic

w9 mechanisms without further resolving their microscopic nature.?®

1340

1341

== Supplementary tables

1343

e Recorded data and literature data

1345 Tables 54 and S5 list the experimental data with mean and standard deviation recorded at field

™ sites A and B, respectively, between February 18 and March 10, 2022. Table S6 lists the literature

1347

1348 data!? evaluated for the present study.

1349

Table S4 | Field site A. Experimental data recorded at field site A between February 18 and March 3, 2022.

1350

1351

- Slope Cut length Fracture toughness
Date

1353 2 2
- @ ac (cm) Gic (J/m?) Gie (J/m*”)
1355
. Feb 18 0° +2° 10.90 + 1.00 0.892 +0.173 0.022 + 0.008
1557 10° +2° 15.50 + 1.00 0.880 + 0.143 0.061 +0.012
1558 15° +£2° 14.75 + 1.00 0.645 + 0.112 0.070 + 0.012
1359
. 20° +2° 16.75 + 1.00 0.616 + 0.106 0.101 + 0.015
L6t 25° +2° 19.00 + 1.00 0.739 + 0.126 0.157 +0.021
1262 35° +2° 20.00 + 1.00 0.509 + 0.100 0.218 + 0.026
1363
- 40° +2° 23.50 + 1.00 0.592 +0.117 0.305 + 0.034
1565 45° +2° 26.50 + 1.00 0.602 + 0.126 0.391 + 0.041
1266 50° + 2° 28.75 +1.00 0.459 +0.111 0.447 + 0.046
1367

50° + 2° 31.00 + 1.00 0.599 + 0.136 0.510 + 0.051

1368
1369
(continued on next page)
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

1380

30



Table S | Field site A (continued)

Date @ ac (cm) Gic (J/m?) Gre (J/m?)
55° +2° 34.00 + 1.00 0.571 +0.147 0.614 + 0.061
60° +2° 38.50 + 1.00 0.579 +0.175 0.772 +0.077

Feb 23 —49° +2° 9.20 +1.00 0.452 + 0.059 0.098 + 0.016
14° +£2° 14.00 + 1.00 0.431 +0.070 0.042 +0.008
25° +2° 14.25 +1.00 0.343 + 0.064 0.087 +£0.013
36° +2° 27.75 +1.00 0.974 +0.149 0.304 + 0.032
47° +2° 28.00 + 1.00 0.542 + 0.106 0.367 +0.039
53° +2° 35.75 +1.00 0.720 £ 0.151 0.567 +0.056
57° +2° 38.00 + 1.00 0.447 £ 0.117 0.612 + 0.062
61° +2° 37.50 + 1.00 0.289 + 0.094 0.606 + 0.064
64° +2° 46.75 +1.00 0.346 + 0.134 0.884 +0.091

Feb 24 —60° + 2° 19.65 +1.00 0.867 +=0.102 0.147 + 0.026

—50° + 2° 16.55 £ 1.00 0.810 + 0.094 0.109 + 0.020
—45° + 2° 11.40 +£1.00 0.551 + 0.069 0.091 +0.016
—40° +2° 16.75 +1.00 0.928 +0.108 0.064 + 0.014
—27° +£2° 14.75 £ 1.00 0.802 + 0.099 0.025 + 0.008
-18° +2° 14.55 +1.00 0.779 £ 0.101 0.006 + 0.003
—10° +2° 14.50 £ 1.00 0.705 + 0.094 0.000 + 0.000
1°+2° 13.35+1.00 0.510 + 0.074 0.006 + 0.003
5° +2° 17.75 £ 1.00 0.720 + 0.097 0.021 + 0.006
60° +2° 43.25 +1.00 0.391 £ 0.121 0.737 £ 0.076

Feb 25 24° +2° 19.50 + 1.00 0.706 = 0.106 0.126 £ 0.017
28° +2° 22.90 +1.00 0.817 £ 0.119 0.182 + 0.022
32° +2° 24.70 £ 1.00 0.715 + 0.108 0.222 + 0.026
35° £ 2° 25.75 +1.00 1.045 +0.157 0.285 +0.031
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1427 Table S | Field site A (continued)

1428

129 Date ¢ ac (cm) Gie (J/m?) Gre (J/m?)
10

wn 37° +2° 23.00 + 1.00 0.539 +0.091 0.240 + 0.027
1 42° +2° 28.50 + 1.00 0.870 + 0.143 0.371 = 0.038
::j 47° £2° 28.45 +1.00 0.501 + 0.098 0.386 + 0.040
s 53° +2° 33.75 = 1.00 0.394 + 0.094 0.515 + 0.051
16 53° +2° 31.25 + 1.00 0.510 +0.112 0.482 +0.048
:: 56° +2° 34.00 = 1.00 0.377 +0.096 0.542 + 0.054
1 57° +2° 49.00 +1.00 0.064 + 0.060 1.015 +0.112
1o 65° +2° 4250 +1.00 0.141 +0.072 0.778 +0.079
"

e Mar 02 7° £2° 13.40 + 1.00 0.458 + 0.066 0.016 + 0.005
:j 16° +2° 9.25 +1.00 0.248 +0.047 0.033 + 0.007
s 28° +2° 20.50 + 1.00 0.496 + 0.076 0.143 +0.019
16 35° +2° 28.25 +1.00 0.875 +0.128 0.280 =+ 0.030
:: 42° +2° 31.00 + 1.00 0.699 +0.116 0.372 = 0.038
s 48° +2° 31.75 + 1.00 0.437 +0.089 0.425 + 0.044
10 53° +2° 37.00 = 1.00 0.555 + 0.122 0.573 = 0.056
2:1 56° + 2° 40.75 +1.00 0.386 +0.107 0.672 + 0.067
s 62° +2° 41.75 +1.00 0.270 + 0.096 0.736 + 0.074
1t 63° +2° 46.00 +1.00 0.333 +0.123 0.875 + 0.087
- 65° +2° 4550 + 1.00 0.175 + 0.085 0.857 + 0.087
2: Mar 03 8° +2° 15.75 + 1.00 0.582 +0.080 0.024 + 0.006
159 11° +2° 16.25 + 1.00 0.639 + 0.090 0.038 = 0.008
10 17° +2° 20.00 + 1.00 0.768 + 0.104 0.079 +0.013
:l 26° +2° 22.25+1.00 0.617 +0.089 0.142 +0.019
e 320 +2° 26.00 = 1.00 0.796 + 0.115 0.227 +0.026
1t 36° +2° 24.75 +1.00 0.499 +0.081 0.236 + 0.027

1465
1466 (continued on next page)
1467
1468
1469
1470

1471

1472
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Table S | Field site A (continued) 1473

1474

Date ¢ ac (cm) Gic §/m?) G (/m?) s
1476

42° £2° 31.25 +1.00 0.588 + 0.102 0.367£0.038

46° £2° 36.50 + 1.00 0.915 + 0.156 0513+0.049

1479

50° +2° 38.50 + 1.00 0.797 + 0.153 0.589+0.056

55° £2° 40.25 +1.00 0.656 + 0.147 0.672+0.064 1

59° +2° 44.50 +1.00 0.393 + 0.122 0.800+0.079  "*

1483

1484

Table S5 | Field site B. Experimental data recorded at field site B between March 7 and March 10, 2022. s

1486

Slope Cut length Fracture toughness -
Date - -
9 ac (cm) Gic U/m?) G (/m?) "
Mar 07 59° +2° 29.75 + 1.00 0.635 + 0.247 0.755 + 0.098 :”
Mar 08 20420 14.25 + 1.00 0.575 £ 0.095 0.039 + 0.009 ::
13° +2° 16.75 £ 1.00 0.696 = 0.119 0.111£0.019
21° +2° 17.00 + 1.00 0.542 +0.100 01370021 ™
29° +2° 19.25+£1.00 0.403 = 0.079 0.174 = 0.023 :i
35° +2° 19.75 £ 1.00 0.326 = 0.071 0202+0.026
39° +2° 25.25+1.00 0.584 = 0.116 03570041
440 £2° 27.75 + 1.00 0.556 + 0.118 0.430 + 0.048 :ZU
49° £2° 32.25 + 1.00 0.711 = 0.156 0.609%0.066 1
55° 4 2° 29.75 +1.00 0.196 = 0.066 0.418+0.050 '
60° +2° 35.25 + 1.00 0.404 + 0.133 0.663 + 0.080 :ZS
Mar 09 530 +2° 11.15 £ 1.00 0.603 = 0.077 00380010

1507
1508
(continued on next page)
1509
1510
1511
1512
1513
1514
1515
1516
1517

1518
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1519 Table S5 | Field site B (continued)

1520

1521 Date @ ac (cm) Gic (/m?) G (J/m?)
52

- —48° +2° 9.10 + 1.00 0.511 + 0.069 0.035 + 0.009
1o —41° £ 2° 13.35 £ 1.00 0.823 +0.106 0.010 + 0.005
f —22° 4 2° 13.75 + 1.00 0.874 +0.122 0.002 + 0.002
1527 —12° +2° 14.90 + 1.00 0.877 +0.125 0.016 + 0.006
12 —1°+2° 9.90 + 1.00 0.375 + 0.067 0.011 + 0.004
1520

e Mar 10 52° +2° 25.00 + 1.00 0.347 +0.114 0.723 +0.086
:l 56° + 2° 20.25 + 1.00 0.127 +0.068 0.706 + 0.091
153 58° +2° 21.50 + 1.00 0.082 + 0.054 0.735 + 0.095
. 62° +2° 26.00 + 1.00 0.029 + 0.031 0.667 + 0.086
:5 62° +2° 23.25 +1.00 0.120 + 0.073 0.732 +0.095
1537 65° +2° 22.75 +1.00 0.006 +0.013 0.689 + 0.095

1538

¥ Table S6 | Historic data set. Literature data ™° on propagation saw tests evaluated for the present study,

1540 truncated at two digits.

1541

1542 Slope Cut length Fracture toughness
1543 #
1544 [ ac (cm) Gic (J/mz) Gie (]/mZ)
1545
1546 1 0° £2° 19.98 + 1.00 0.38 £ 0.05 0.00 = 0.00
1547 2 0° +2° 21.69 +1.00 0.13 +£0.01 0.00 + 0.00
1548

3 0° +2° 52.04 +1.00 2.02+£0.22 0.01 £0.01
1549
1550 4 0° +2° 37.06 £ 1.00 0.99 £0.13 0.00 + 0.00
151 5 0° +2° 34.41 +£1.00 0.51 +0.06 0.00 + 0.00

1552

1553 (continued on next page)
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563

1564
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Table S6 | Historic data set (continued)

# @ ac (cm) Gic (J/m?) Gre (/m?)
6 0°+2° 29.19 £1.00 0.51 +£0.06 0.00 £ 0.00
7 0°+2° 31.81+£1.00 0.99 £0.12 0.00 £ 0.00
8 0°+2° 27.08 +1.00 0.18 +0.02 0.00 +0.00
9 0°+2° 33.93 £1.00 1.02+0.12 0.00 £ 0.00

10 0° +2° 30.30 +1.00 0.22 +0.02 0.01 +0.00

11 0°+2° 30.53 £1.00 0.93 £0.12 0.00 £ 0.00

12 0°+2° 26.46 +1.00 0.18 £0.02 0.00 +0.00

13 0°+2° 33.18 £1.00 1.06 +0.13 0.00 +0.00

14 0°+2° 34.00 +1.00 0.29 £ 0.02 0.01 £0.00

15 0°+2° 16.96 +1.00 0.13+0.01 0.00 +0.00

16 0°+2° 34.21 £1.00 0.30 £ 0.02 0.01 £0.00

17 0° +2° 34.63 +1.00 0.30 +0.02 0.01 +0.00

18 0°+2° 31.53 £1.00 0.26 £ 0.02 0.00 £ 0.00

19 0° +2° 38.46 +1.00 0.37 +0.03 0.01 +0.00

20 0°+2° 29.54 £1.00 0.33 £0.04 0.00 +0.00

21 0°+2° 31.18 £1.00 0.42 £0.05 0.00 +0.00

22 0° +2° 53.80 + 1.00 3.11+0.38 0.00+0.01

23 0°+2° 51.39 £ 1.00 293 +£0.36 0.00+0.01

24 0° +2° 28.60 +1.00 0.43 +0.04 0.00 +0.00

25 0°+2° 44.57 £1.00 0.99 £0.11 0.01 £0.00

26 0° +2° 32.10 £ 1.00 0.54 £ 0.07 0.00 = 0.00

27 0°+2° 38.27 £1.00 1.16 +£0.13 0.00 +0.00

28 0°+2° 16.54 £ 1.00 0.44 £ 0.06 0.00 £ 0.00

29 0° +2° 20.72 +1.00 0.19 £ 0.02 0.00 +0.00

30 0°+2° 23.16 £1.00 0.20 £ 0.02 0.00 £ 0.00
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1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622
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1624

1625
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1638

1639

1640

1641

1642

1643

1644
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1646
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1649

1650

1651

1652

1653

1654

1655

1656

Table S6 | Historic data set (continued)

# @ ac (cm) Gic (J/m?) Gre (/m?)
31 0°+2° 8.82 £1.00 0.05+0.01 0.00 £ 0.00
32 0°+2° 15.91 +£1.00 0.10 £ 0.01 0.00 £ 0.00
33 0°+2° 24.18 +1.00 0.26 +0.03 0.00 +0.00
34 0°+2° 24.63 £1.00 0.27 £0.03 0.00 £ 0.00
35 0° +2° 23.35+1.00 0.25+0.03 0.00 +0.00
36 0°+2° 29.32 £1.00 0.35+0.04 0.01 £0.00
37 0°+2° 26.91 +1.00 0.30 £ 0.03 0.00 +0.00
38 0°+2° 32.91+£1.00 0.39 £0.04 0.01 £0.00
39 0°+2° 31.90 +1.00 0.37 £0.03 0.01 £0.00
40 0°+2° 33.27 +1.00 0.39 +0.04 0.01+0.00
41 0°+2° 27.45+1.00 0.31 +£0.03 0.00 £ 0.00
42 0° +2° 31.86 +1.00 0.38 + 0.04 0.00 +0.00
43 0°+2° 31.43 £1.00 0.68 £0.08 0.00 £ 0.00
44 0° +2° 29.79 £ 1.00 0.32+0.03 0.01 +0.00
45 0°+2° 34.47 £1.00 0.45+0.04 0.01 £0.00
46 0°+2° 35.42 +£1.00 0.49 £ 0.05 0.01 £0.00
47 0° +2° 21.80 +1.00 0.19 £ 0.02 0.00 +0.00
48 0°+2° 23.19 £1.00 0.22 £0.03 0.00 £ 0.00
49 0° +2° 36.76 +1.00 0.80 +0.10 0.00 +0.00
50 0°+2° 23.11+£1.00 0.32 £0.04 0.00 £ 0.00
51 0° +2° 23.62 +£1.00 0.26 +0.03 0.00 = 0.00
52 0°+2° 18.71 +1.00 0.36 £ 0.04 0.00 +0.00
53 0°+2° 24.43 +£1.00 0.48 £ 0.06 0.00 £ 0.00
54 0° +2° 28.36 + 1.00 0.56 +0.09 0.00 +0.00
55 0°+2° 47.10 £ 1.00 2.36 £0.29 0.00 £ 0.00
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Table S6 | Historic data set (continued)

# @ ac (cm) Gic (J/m?) Gre (/m?)
56 0°+2° 23.00 £ 1.00 0.45 £ 0.06 0.00 £ 0.00
57 0°+2° 38.22 +£1.00 0.68 £ 0.07 0.00 £ 0.00
58 0°+2° 25.30 +1.00 0.79 £ 0.09 0.00 +0.00
59 0°+2° 34.75+£1.00 1.10+£0.12 0.00 £ 0.00
60 0° +2° 35.44 +1.00 1.38+£0.16 0.00 +0.00
61 0°+2° 38.39 £1.00 1.50+0.17 0.00 £ 0.00
62 0°+2° 20.98 +1.00 0.86 £0.11 0.00 +0.00
63 0°+2° 29.36 £ 1.00 0.61 +£0.07 0.00 +0.00
64 0°+2° 46.27 +£1.00 1.17+0.11 0.01 £0.01
65 0°+2° 33.99 +1.00 0.67 +0.07 0.01+0.00
66 0°+2° 36.80 +1.00 0.80 £ 0.09 0.00 £ 0.00
67 0° +2° 29.06 +1.00 0.55 + 0.06 0.00 +0.00
68 0°+2° 27.58 £1.00 0.52 £ 0.06 0.00 £ 0.00
69 0° +2° 30.56 + 1.00 0.59 +0.07 0.00 +0.00
70 0°+2° 38.69 £ 1.00 0.72 £0.07 0.00 +0.00
71 0°+2° 41.01 £1.00 1.43+0.16 0.00 +0.00
72 0° +2° 39.06 +1.00 0.71+0.07 0.00 +0.00
73 0°+2° 37.61 £1.00 1.07+0.12 0.01 £0.00
74 0° +2° 46.29 +1.00 1.68 £0.20 0.01+0.01
75 0°+2° 47.90 £ 1.00 1.39+0.14 0.01+£0.01
76 0° +2° 56.34 +1.00 2.18+£0.23 0.01+0.01
77 0°+2° 33.61 £1.00 1.28 +0.16 0.00 +0.00
78 0°+2° 48.23 +£1.00 1.87+0.21 0.00 £ 0.00
79 0° +2° 52.43 +1.00 3.55 +0.46 0.00 +0.01
80 0°+2° 69.26 +1.00 6.22 £0.75 0.00+0.01
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1745

1746

1747

1748

Table S6 | Historic data set (continued)

# ¢ ac (cm) Gic (J/m?) Gre (/m?)
81 0°+2° 58.13 £1.00 4.12+£0.50 0.01+£0.01
82 0°+2° 71.48 +1.00 6.25+0.74 0.01+£0.01
83 0°+2° 77.64 +1.00 15.16 +£2.00 0.00+0.01
84 0°+2° 40.21 £1.00 1.40+0.16 0.00 £ 0.00
85 0°+2° 32.21 +1.00 0.29 +0.03 0.00 +0.00
86 0°+2° 37.94 £1.00 0.78 £ 0.07 0.01 £0.00
87 0°+2° 24.82 +1.00 0.46 £ 0.05 0.00 +0.00
88 0°+2° 32.81+£1.00 0.65 £ 0.06 0.00 £ 0.00
89 0°+2° 27.86 £ 1.00 0.41 +£0.05 0.00 +0.00
90 0°+2° 36.42 +1.00 0.63 +0.07 0.00 +0.00
91 0°+2° 26.62 £ 1.00 0.36 £ 0.04 0.00 £ 0.00
92 0°+2° 23.73 +1.00 0.29 +0.03 0.00 +0.00
93 0°+2° 16.65 + 1.00 0.20 £ 0.02 0.00 £ 0.00
94 0°+2° 31.46 +£1.00 0.43 +0.04 0.00 = 0.00
95 0°+2° 36.73 £1.00 0.54 £0.05 0.01 £0.00
96 0°+2° 35.24 £1.00 0.50 £ 0.05 0.00 +0.00
97 0°+2° 28.25 +1.00 0.53 +0.05 0.00 +0.00
98 0°+2° 32.99 £1.00 0.54 £ 0.06 0.00 £ 0.00
99 0°+2° 30.27 £ 1.00 0.60 + 0.06 0.00 +0.00
100 0°+2° 28.38 £ 1.00 0.59 £ 0.06 0.00 £ 0.00
101 0°+2° 27.54 £1.00 0.54 £ 0.06 0.00 +0.00
102 0°+2° 32.86 +1.00 0.66 + 0.07 0.00 +0.00
103 0°+2° 60.72 +1.00 1.22 +£0.07 0.09£0.01
104 0°+2° 20.07 £ 1.00 0.41 +0.05 0.00 +0.00
105 0°+2° 32.31£1.00 0.64 £ 0.06 0.00 £ 0.00
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Table S6 | Historic data set (continued) 1749

1750

# 0 ae (cm) Gic 1/1m?) Gie 0/m®) s
-

106 0° £2° 41,95+ 1.00 2.09 +0.29 0.00£0.00 s
107 0° +2° 44.08 +1.00 0.56 + 0.04 0.03+0.00 ™
108 80 +2° 16.14 +1.00 0.17 +0.02 0.00 + 0.00 :
109 80 +2° 2555+ 1.00 0.27 +0.02 0.00£0.00 v
110 —9° 2 25.63 +1.00 0.27 +0.02 0.00£0.00
111 ~10° £2° 32.32+1.00 0.63 + 0.07 0.00 = 0.00 ;:
112 ~10° £2° 30.30 = 1.00 0.39 +0.03 0.00£0.00 e
113 ~10° £2° 32.82+1.00 0.73 £ 0.07 0.00£0.00 '
114 ~10° £2° 29.41 +1.00 0.59 + 0.06 0.00 + 0.00 :3
115 ~10° £2° 31.14 £ 1.00 0.69 +0.07 0.00£0.00 e
116 ~10° £2° 37.14+1.00 0.98 £ 0.10 0.00£0.00
117 ~10° £2° 31.80 = 1.00 0.48 +0.04 0.00 + 0.00 ::
118 ~10° £2° 25.67 +1.00 0.49 + 0.06 0.00£0.00 e
119 —10° £2° 24.88 +1.00 0.53 +0.06 0.00£0.00
120 100 £ 2° 28.89 + 1.00 0.60 £ 0.07 000£000
121 ~10° £2° 49.62£1.00 0.89 + 0.06 0.00£0.00  m
122 ~10° £2° 30.65 + 1.00 0.52 +0.05 0.00£0.00
123 _13° £2° 17.31 £ 1.00 0.19 £ 0.02 000£000
124 ~15° £2° 1713 £1.00 0.18 +0.02 0.00£0.00
125 _15° £2° 1715+ 1.00 0.17 +0.02 0.00£0.00
126 —17° £2° 19.43 £1.00 0.20 +0.02 0.00 + 0.00 ::
127 _18° £2° 29.08 +1.00 0.80 £ 0.08 0.01£0.00
128 _18° £2° 53.46 + 1.00 455+ 0.57 0.01£001 e
129 _18° £ 2° 42.11+1.00 2.90 +0.38 0.01 +0.01 ::3
130 _18° £2° 37.17 £ 1.00 1.03£0.10 0.00£0.00
-
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1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806
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1835

1836

1837

1838

1839

1840

Table S6 | Historic data set (continued)

# ® ac (cm) Gic (/m?) Gre (/m?)
131 -18° +2° 21.40 +£1.00 0.29 £0.03 0.00 £ 0.00
132 —18° +2° 56.46 +1.00 3.97+£0.39 0.08 £0.02
133 -19° £ 2° 19.72 £1.00 0.18 +0.02 0.01 +0.00
134 -19° +2° 36.74 £ 1.00 0.32 £0.02 0.00 £ 0.00
135 -19° £ 2° 64.28 +1.00 1.83+0.11 0.00 +0.00
136 —20° +2° 56.61 +1.00 226 £0.22 0.02+0.01
137 -20° £ 2° 37.04 +£1.00 1.08 +0.11 0.02+0.01
138 -20° +2° 22.70 +£1.00 0.26 £0.02 0.00 +0.00
139 -20° +2° 33.21 +£1.00 0.47 £0.03 0.00 £ 0.00
140 -20° £2° 18.30 £ 1.00 0.20 +0.02 0.01 +0.00
141 —20° +2° 25.11 £ 1.00 0.33 £0.04 0.01 £0.00
142 -20° £ 2° 45.98 +1.00 1.28+£0.12 0.02+0.01
143 —20° +2° 50.44 +1.00 2.11+£0.22 0.02+0.01
144 -20° £ 2° 56.14 + 1.00 249 +0.26 0.02+0.01
145 -20° +2° 60.99 +1.00 4.58 +0.52 0.03 +£0.01
146 —21° +2° 23.12+1.00 0.17 £ 0.02 0.00 +0.00
147 -21°+£2° 17.00 = 1.00 0.11+0.01 0.00 +0.00
148 —21° +2° 32.07 +£1.00 1.61+0.17 0.05+0.01
149 -21°+£2° 22.58 +1.00 0.15+0.01 0.00 +0.00
150 —21° +2° 18.01 +1.00 0.12+£0.01 0.00 £ 0.00
151 —21° £ 2° 35.25+1.00 0.38 +0.03 0.00 +0.00
152 —21° +2° 19.23 +1.00 0.23 £0.02 0.01 £0.00
153 —21°+2° 6.46 +1.00 0.04 £0.01 0.00 £ 0.00
154 -21°+£2° 6.36 +1.00 0.04+0.01 0.00 +0.00
155 —21° +2° 26.25+1.00 1.12+0.11 0.05+0.01
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Table S6 | Historic data set (continued) 1841

1842

# 0 e (em) Gie 0/m?) Gie O/m®) e
.

156 210 42° 41.73 £1.00 1.86+0.19 0.05+0.01 s
157 —22° +2° 19.97 +1.00 0.13+0.01 0.00 + 0.00 e
158 200420 16.85 +1.00 0.19 +0.02 0.00 + 0.00 Z:
159 230 420 42.76 +1.00 0.37 +0.03 0.00£0.00 1
160 240 £2° 31.09 +1.00 0.39 +0.04 0.02+000
161 250 420 15.46 + 1.00 0.07 +0.01 0.00 + 0.00 zz
162 _25° £2° 2650 +1.00 0.33 +0.03 0.00£0.00 1
163 —26° +£2° 2653+ 1.00 0.21+0.02 0.00£0.00
164 _26° +2° 30.78 £ 1.00 0.26 +0.02 0.00 + 0.00 :
165 _27° 420 23.61 £ 1.00 0.52 +0.04 0.02£0.00 1
166 270 420 25.41 + 1.00 0.55 + 0.04 0.02+000
167 _28° £2° 27.67 £1.00 0.12 +0.01 0.00 + 0.00 :
168 —28° £2° 29.35 + 1.00 0.14 £ 0.01 0.00£0.00 1
169 28° £2° 29.84 +1.00 0.17 +0.01 0.00£0.00
170 _28° +2° 32.07 + 1.00 0.54 = 0.04 000£000
171 _28° +2° 41.74 +1.00 0.57 +0.07 0.00£0.00 1
172 30° £2° 4429 +1.00 0.81 +0.06 0.02£001
173 3102 36.61 + 1.00 0.33 £ 0.03 0012000
174 320420 40.96 + 1.00 0.92 +0.06 0.01£0.00 1
175 —33° £2° 66.99 = 1.00 1.66 +0.13 0.02+001
176 —34° £2° 66.21+1.00 3.28+0.35 0.05 + 0.01 Zz
177 340 £2° 60.86 + 1.00 1.07 +0.07 0.00£0.00 1
178 —35° £2° 39.18 £ 1.00 0.31+0.02 0.00£0.00
179 35° +2° 23.03 + 1.00 0.43 £ 0.03 0.02 + 0.00 Zz
180 —35° £2° 20.70 £ 1.00 0.37 +0.03 0.02£0.00
181 —36° £2° 44.30 +1.00 0.99 +0.07 0.07+0.02
182 ~36° +2° 37.65 = 1.00 1.33+0.13 0.12 +0.02 Z:
-
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