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Fracture toughness of mixed-mode
anticracks in highly porous materials:
supplementary information

Supplementary methods
Field site and snowpack
Our experiments were performed between February 18 and March 10, 2022 on a flat and uniform

site in Flüela valley near Davos, Switzerland at an altitude of 1640 m (Fig. S1). The site itself was

on the roof of two buildings in a forest opening protected from wind. Most experiments were

performed on the roof of building A (Fig. 3 in the main text), and after it was cleared from snow,

we also carried out experiments on building B (Fig. 3 in the main text). The presence of a nearby

creek, the absence of direct sunlight in winter, and the cold concrete roof (typically below 0 �C),

created favorable conditions for the formation and preservation of surface hoar. The weak layer

tested consisted of surface hoar, buried by a snowfall at the beginning of January 2022, with an

average weak layer thickness of 9.02 mm.



047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

We characterized the snowpack using manual snow profiles 1 (Fig. 4 in the main text)

Microstructure and density of the weak layer were analyzed using computer-tomography (Fig. S2).

The properties of the layered slab were characterized using density measurements. For this

purpose, we used a cylindrical density cutter with 50 cm3 volume and 23 mm inner diameter

(Fig. S3b). Each 120 mm thick slab was resolved in with four density measurements (Fig. S3a),

accounting for temporal evolution of density-dependent slab properties. For our calculations, we

used the arithmetic mean density per layer per experimental day (Fig. S3a).

For successful experiments, specific snowpack properties were necessary, in particular sur-

rounding the weak layer. The substratum needed a certain minimum stiffness to support the

snow block during tilting of experimental rig and the slab needed to support added weights. We

met these conditions with dense layers of rounded grains both above and right below the weak

layer of interest between mid February and mid March of 2022 (Fig. 3 in the main text).

Experimental procedure
We designed our mixed-mode mixed-mode fracture tests (MMFTs) by adapting the propagation

saw test 2–4 (PST) to enable testing under variable slope inclinations. To extract snow columns

from the snowpack, we employed a U-shaped aluminum sled (3 mm thick with 60 mm flanges,

300 mm width, and 1000 mm length) (Fig. S4a). Utilizing a spirit level to maintain horizontal

alignment, we inserted the sled into the snowpack’s sidewall, ensuring that its flanges rested

 A

 B

500 m

N

Fig. S� | Geographic location of the field site. Topographical map (https://map.geo.admin.ch, accessed
Jan ��, ����) of the location of the two field sites A and B (WGS ��, 46.80773� N, 9.86999� E).
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directly beneath the weak layer. This facilitated the isolation of a snow column with a 60 mm

thick base layer (substratum). We cut around the sled on all sides using a 1 m snow saw to sever

the snow block specimen (Fig. S4b). After reducing the slab’s thickness to 150 mm, we applied a

custom-made profiling device, creating serrated cuts on its top surface. This resulted in a mean

slab thickness from the weak layer to the base of the serrated cuts of 115 mm. Guided by side rails,

the sled–snow block assembly was lifted onto the tilting rig (Fig. S4c). Wood screws, penetrating

the substratum through circular holes in the aluminum sled, prevented sliding of the snow block

even at elevated inclinations (Fig. S4c).

The tilting device comprised a base plate, which was pivoted on a metal foot on one end and

suspended on a steel cable from a tower made of scaffolding poles on the other. This configuration

enabled the assembly to be tilted between 0� and 65� (Fig. S4d). The titled snow block was loaded

5 mm

a b
Fig. S� | Computer-tomography scan of the weak layer. a Horizontal (top) and vertical (bottom) cross
sections with boxed volume of interest (VOI) of the surface-hoar weak-layer sample extracted on March
�, ���� at site A. a Rendering of the scanned VOI with a volume fraction of ice of 0.19 corresponding to a
density of ⌧wl = 174 kg/m3.

a b

Fig. S� | Slab density. a Evolution of the slab density on site A over a period of 9 days. Layerwise mean
densities per day are shown. The mean density of the substratum was ⌧b = 339 kg/m3. b Location of
four density measurements through the thickness of each 120 mm slab using a 50 cm3 density cutter.
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with 12 variable weights distributed into notches (Fig. S4e). Each weight consisted of a rectangular

hollow steel profile (500 mm length) with up to three metal rods (600 mm length). The profile–

rod assemblies weighed up to 1 kg each, enabling the application of different load levels without

altering the slab bending stiffness. In certain instances, an additional row of weights was added for

very high surface loading. The titling angle was measured using an analog inclinometer aligned

with the weak layer. To initiate the fracture process, we introduced a cut into the weak layer by

pushing the unserrated back of a 2 mm thick snow saw (450 mm length, 60 mm width) into the

weak layer (Fig. S4e). Two operators from both sides ensured that the saw remained within the

weak layer. We cut at a constant travel speed of approximately 70 mm/s (Fig. S4e). When the

artificially induced weak-layer crack became unstable and propagated through the entire sample,

the critical cut length from saw tip to slab face was measured on both sidewalls and averaged

when the cut was not perfectly perpendicular (Fig. S4f).

In total, we conducted 102 MMFTs and obtained 88 valid results. Experiments were discarded

when we encountered increased resistance while cutting, indicating that the cut did not remain

in the weak layer. Experiments with cut lengths exceeding 50 cm were also excluded due to the

limited effective length of the slab, which was only 100 cm.

Data fitting procedure
The interaction laws examined in this work are two-dimensional implicit nonlinear models

0 ⇡ A(x8 ; �), (S1)

where � = (GIc ,GIIc , = ,<)| is the vector of model parameters and x8 =
�GI ,GII

�|
8

is the vector

of independent variables, i.e., the vector of 8 = 1, ...,# observations. Owing to measurement

errors in the observations x8 , the model A(x8 ; �) can only approximate 0. Because of the implicit

relationship and because of uncertainties in the independent variables, the parameters � were

estimated using a weighted orthogonal-distance-regression procedure. 5–7 Accounting for the

measurement errors, the models satisfy

0 = A(x8 + �i; �), for 8 = 1, ...,# , (S2)

where � 2 R2 is the vector of unknown errors. The implicit orthogonal-distance-regression

problem is finding the � for which the sum of the squares of the # orthogonal distances from the

4
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Fig. S� | Experimental procedure. a Aluminum sled pushed into the snowpack to facilitate the extraction
of the snow column of interest. b Profiling device used to serrate the slab’s top surface to support the
addition of weights. c Placement of snowpack–sled assembly onto the tilting rig with guiding plates on
the sides and the bottom edge to ensure alignment. Screws punch into the substratum to prevent sliding.
d Assembly tilted to final inclination before addition of weights. e Weak-layer cut introduced with the
back of a snow saw by two people ensuring parallel movement through the weak layer. f Slab sliding
after unstable propagation of the introduced crack. The cut length is recorded form the end of the saw
to the end of the slab.

curve A(x,�) to the # data points is minimized. This is expressed by the optimization problem

min
�,�

#’
8=1

�
|
8
W8 �8 , (S3)

subject to

0 = A(x8 + �i; �), (S4)

where the diagonal matrix

W = ©≠
´
��2

I 0

0 ��2
II

™Æ
¨
, (S5)

accounts for unequal error variances �2
I and �2

II in GI and GII, respectively. The optimization

problem was solved using a trust-region Levenberg–Marquardt procedure. 7 Jacobian matrices

5
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Table S� | Best fit parameters. Interaction-law parameters of Eq. (S�) identified from a weighted orthog-
onal distance regression.

Weak layer type GIc (J/m2) GIIc (J/m2) :

Surface hoar 0.59±0.03 1.12±0.07 1.0

with respect to parameters and independent variables were computed explicitly and supplied to

the algorithm. The goodness of fit is assessed using the residual variance expressed by

"2
⇡ =

1
⇡

#’
8=1

�
|
8
W8 �8 , (S6)

where ⇡ = # � % is the number of degrees of freedom obtained from the number of observations

with nonzero weight # and the number of estimated model parameters %.

Interaction-law identification
Compare the best fit of the power-law interaction model given in Eq. (1) of the main text (Fig. 2)

0 ⇡ A1 (x8 ; �1) ⌘
 
G 8

I
GIc

! 1
=

+
 
G 8

II
GIIc

! 1
<

� 1, (S7)

where �1 = (GIc ,GIIc , = ,<)| , to the mixed-mode interaction law proposed by Benzeggagh and

Kenane 8

0 ⇡ A2 (x8 ; �2) ⌘
GIc + (GIIc � GIc)#:

8

G 8 + G 8

II
� 1, (S8)

where

#8 =
G 8

II
G 8

I + G 8

II
, (S9)

is the mode ratio and �2 = (GIc ,GIIc , :)| the vector of model parameters (Fig. S5). Equation (S8)

was proposed to capture mixed-mode fracture toughness under tension–shear interaction, 8 where

the total energy release rate G = GI + GII is observed as a monotonous function of the mode

ratio, expressed in the #: -term. 8,9 Our data show that for compression–shear interaction, the

total energy release rate is not monotonous with respect to the mode ratio # (Figs. 2b and S5b).

This incompatibility results in a linear relationship G(#), i.e., : = 1.0 (Table S1), as the best fit of

Eq. (S8) and in a significantly larger residual variance "2
⇡ (4.16 vs. 3.14, Figs. 2b and S5b).

While the mode I fracture toughness estimates of both models are similar, their mode II

representations are much different (Tables 1 and S1). Owing to their exceptionally low density,

we assume that the tensile mode I fracture toughness of highly porous weak layers is very small.
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Fig. S� | Best fit of tension–shearmixed-mode interaction law. aMode I/II composition of critical energy
release rates at the onset of unstable crack propagation from this work (# = 88, green) and literature ��
(# = 183, orange) with best fit (? < 0.001) of Eq. (S�). b Total energy release rate G = GI+GII as a function
of mode ratio # (mode II fraction). A monotonous model of the total energy release rate vs. mode ratio
#, e.g., Eq. (S�), cannot capture the local maximum evident in the data.

That is, we expect a mixed-mode law that captures the interaction of mode II with both mode I

compression and mode I tension to decrease sharply on the tension side. For this reason, we

expect a vanishing or small but positive gradient %GII/%GI for GI ! 0 (Figs. 2a). However, for the

best fit of Eq. (S8), we observe a steep, negative gradient (Fig. S5a).

Eq. (S8) was proposed to account for tension–shear interaction. We observe that the mechanics

of compression–shear interaction are quite different and that interactions laws are not directly

transferable.

Model derivation
The mechanical model used in this work results from a series of articles in which different

components of the theory have been derived and tested. The novelty, here, is the treatment of

added surface loads. To help readers who would not be familiar already with this literature, we

provide a summary how physical components have been validated. In the following, we refer to

the works of Weißgraeber & Rosendahl. 11–13

Governing equations. We model a stratified snow cover as a system comprised of i) a snow

slab, represented by an arbitrarily layered beam, that rests ii) on a weak layer, represented by an

elastic foundation. The beam kinematics and its constitutive behavior are derived from first-order

shear deformation theory of laminated plates under cylindrical bending. 14 The weak layer is

modeled as a so-called weak interface. 15 The concept simplifies the kinematics of the weak layer

and allows for efficient analyses of interface configurations that exhibit a strong elastic contrast.

7
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Fig. S� | Mechanical model. Stratified snowpack composed of an arbitrary number of slab layers and a
weak layer modeled as an elastic foundation.

The weak interface can be understood as an infinite set of smeared springs with normal and

shear stiffness attached to the bottom side of the slab. Weak interface models are common for the

analysis of cracks in thin, compliant layers. 16–18 The analysis of this system yields fully coupled

bending, extension and shear deformations of both slab and weak layer.

Consider the segment of the stratified snow pack on an inclined slope of angle ! shown in

Fig. S6. As typical for beam analyses, the axial coordinate G points left-to-right along the beam

midplane and is zero at its left end. The thickness coordinate I is perpendicular to the midplane,

points downwards and is zero at the center line. Slope angles ! are counted positive about the H

axis of the right-handed Cartesian coordinate system (counterclockwise). Note that on inclined

slopes (! < 0), the axial and normal beam axes (G and I) do not coincide with the horizontal and

vertical directions.

The slab with total thickness ⌘ is composed of # layers with individual ply thicknesses

⌘8 = I8+1 � I8 , each assumed homogeneous and isotropic (Fig. S7). Young’s modulus, Poisson’s

ratio and density of each layer are denoted by ⇢8 , ⇡8 and ⌧8 , respectively. The weak layer of

thickness C can be anisotropic and its normal and tangential stiffnesses are

:n =
⇢
0
wl
C

, (S10a)

where ⇢0wl = ⇢wl/(1 � ⇡2) is the weak layer’s plane-strain elastic modulus and

:t =
⌧wl
C

, (S10b)

where ⌧wl is the weak layer’s plane-strain shear modulus, respectively. To account for anisotropic

weak layers, these constants can be defined from independent stiffness properties. It is to note, that

8
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Fig. S� | Slab layering. Slab of total thickness ⌘ composed of# individual layers. A layer 8 is characterized
by its height ⌘8 and its the top and bottom coordinates I8 and I8+1, respectively.

since the weak layer is connected to the slab, an intrinsic coupling of shear and normal deformation

of the weak layer occurs even when the stiffnesses :n and :t are defined independently.

The slab is loaded by its own weight, i.e., the gravitational load @, and an external load � (e.g.,

a skier or added weights) in vertical direction. The gravity load corresponds to the sum of the

weight of all layers

@ = 6

#’
8=1

⌘8⌧8 . (S11)

It is split into a normal component @n = @ cos! and a tangential component @t = �@ sin! that

are introduced as line loads. The tangential gravity line load acts at center of gravity in thickness

direction

Is =
Õ
#

8=1(I8 + I8+1)⌘8⌧8
2
Õ
#

8=1 ⌘8⌧8
, (S12)

in the slab, where (I8+I8+1)/2 yields each layer’s center I-coordinate. For relevant slab thicknesses

the external load can be modeled as a point load and is introduced as a force with a normal

component �n = � cos! and a tangential component �t = �� sin!.

Deformations of the slab are described by means of the first-order shear deformation theory

(FSDT) of laminated plates under cylindrical bending. 14 By dropping the Kirchhoff assumption

of orthogonality of cross sections and midplane, this allows for the consideration of shear defor-

mations. We consider midplane deflections F0, midplane tangential displacements D0 and the

rotation# of cross sections. The quantities define the displacement field of the beam according to

F(G , I) = F0(G), (S13a)

D(G , I) = D0(G) + I#(G). (S13b)
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At the interface between slab and weak layer (I = ⌘/2), the displacement fields of slab (D ,F)

and weak-layer ( , $) coincide. Using Eqs. (S13a) and (S13b), this yields  ̄ = D̄ = D0 + # ⌘/2 and

$̄ = F̄ = F0, where the bar indicates quantities at the interface. Modeling the weak layer as an

elastic foundation of an infinite set of smeared linear elastic springs, yields constant strains and

consequently a constant deformation gradient through its thickness. Hence, weak-layer stresses

can be expressed through the differential deformation between the lower boundary of the weak

layer ( = $ = 0) and its deformations at the interface:

�II(G) = ⇢wl⌘II(G) = ⇢wl
d$(G , I)

dI = ⇢wl
0 � $̄(G)

C

= �:nF0(G),
(S14a)

�GI(G) = ⌧wl✏GI(G) = ⌧wl

✓
d (G , I)

dI + d$(G , I)
dG

◆

= ⌧wl

✓
0 �  ̄(G)

C

+ $̄0(G)
2

◆

= :t

✓
C

2F
0
0(G) � D0(G) �

⌘

2#(G)
◆
.

(S14b)

From the free body-cut of an infinitesimal beam section of the layered slab (Fig. S8), we obtain

the equilibrium conditions of the section forces and moments:

0 =
d#(G)

dG + �(G) + @t + ?t , (S15a)

0 =
d+(G)

dG + �(G) + @n + ?n , (S15b)

0 =
d"(G)

dG �+(G) + ⌘ + C
2 �(G) + Is@t �

⌘

2 ?t . (S15c)

Note the addition of normal and tangential surface loads ?n and ?t, respectively. 13 To connect the

slab section forces (normal force # , shear force + , and bending moment ") to the deformations

of the layered slab, we make use of the mechanics of composite laminates. First-order shear

deformation theory of laminate plates under cylindrical bending yields

©≠
´
#(G)
"(G)

™Æ
¨
= ©≠

´
�11 ⌫11

⌫11 ⇡11

™Æ
¨
©≠
´
D
0
0(G)

#0(G)
™Æ
¨
, (S16a)

and

+(G) = ��55
�
F
0
0(G) + #(G)� . (S16b)
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Fig. S� | Equilibrium conditions. Free-body cut of an infinitesimal segment of length of the layered slab
of height with half of the weak layer.

These constitutive equations contain the extensional stiffness �11, the bending stiffness ⇡11, the

bending–extension coupling stiffness ⌫11, and the shear stiffness ��55 of the layered slab. The

coupling stiffness ⌫11 accounts for the bending–extension coupling of asymmetrically layered

systems such as bimetal bars. These stiffness quantities are obtained by weighted1 integration of

the individual ply stiffness properties:

�11 =

⌘/2π
�⌘/2

⇢(I)
1 � ⇡(I)2 dI =

#’
8=1

⇢8

1 � ⇡2
8

⌘8 , (S17a)

⌫11 =

⌘/2π
�⌘/2

⇢(I)
1 � ⇡(I)2 I dI = 1

2

#’
8=1

⇢8

1 � ⇡2
8

⇣
I

2
8+1 � I2

8

⌘
, (S17b)

⇡11 =

⌘/2π
�⌘/2

⇢(I)
1 � ⇡(I)2 I

2 dI = 1
3

#’
8=1

⇢8

1 � ⇡2
8

⇣
I

3
8+1 � I3

8

⌘
, (S17c)

�55 =

⌘/2π
�⌘/2

⌧(I)dI =
#’
8=1

⌧8 ⌘8 . (S17d)

The shear correction factor � complements the shear stiffness ��55. It is set to 5/6 as a good

approximation for the layered slab of rectangular cross-section. 19 The above quantities are given

for the case of isotropic layers. Orthotropic layers can be considered following the same approach

by using directional elastic properties of the individual layers instead of an isotropic Young’s

modulus.

In the special case of a homogeneous, isotropic slab with Young’s modulus ⇢sl and Poisson’s

ratio ⇡, the laminate stiffnesses take the homogeneous stiffness properties well-known from beam

1Weighted by the moment of area of the cross-section of zeroth, first, and second order.
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theory:

�11 =
⇢sl⌘

1 � ⇡2 , (S18a)

⇡11 =
⇢sl⌘

3

12
�
1 � ⇡2� , (S18b)

�55 =
⇢sl⌘

2 (1 + ⇡) , (S18c)

and the coupling stiffness vanishes (⌫11 = 0).

System of differential equations. The equations of the kinematics of the weak layer, (S14a) and

(S14b), the equilibrium conditions, (S15a) to (S15c), and the constitutive equations of the layered

beam with first-order shear deformation theory, (S16a) and (S16b), provide a complete descrip-

tion of the mechanics of the layered snowpack and constitute a system of ordinary differential

equations (ODEs) of second order.

With the first derivative of the constitutive equation of the normal force (S16a)0 inserted into

the equilibrium of horizontal forces (S15a), we obtain

0 = �11D
00
0 (G) + ⌫11#

00
0 (G) + �(G) + @t . (S19)

Likewise, with the first derivative of the constitutive equation of the shear force (S16b)0 and the

vertical force equilibrium (S15b), we have:

0 = ��55(F00
0 (G) + #0(G)) + �(G) + @n . (S20)

The first derivative of the constitutive equation of the bending moment (S16a)0 with the balance

of moments (S15c), yields

0 = ⌫11D
00
0 (G) + ⇡11#

00(G) � ��55
�
F
0
0(G) + #(G)�

+ ⌘ + C
2 �(G) + Is@t .

(S21)

We then insert the definition of the shear stresses (S14b) into Eq. (S19) to obtain

0 = �11D
00
0 (G) � :tD0(G) � :t

C

2F
0
0(G)

+ ⌫11#
00(G) � :t

⌘

2#(G) + @t .

(S22)
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Inserting the normal stress definition (S14a) into Eq. (S20), yields

0 = ��55F
00
0 (G) � :nF0(G) + ��55#0(G) + @n , (S23)

and, again, inserting the shear stress (S14b) into Eq. (S21), yields

0 = ⌫11D
00
0 (G) � :t

⌘ + C
2 D0(G) + ⇡11#

00(G)

+
✓
⌘ + C

2
C

2 :t � ��55

◆
F
0
0(G)

�
✓
��55 +

⌘ + C
2

⌘

2 :t

◆
#(G) + Is@t .

(S24)

Equations (S22) to (S24) constitute a system of linear ordinary differential equations of second

order with constant coefficients of the deformation variables D(G), F(G), #(G) that describes the

mechanical behavior of a layered beam on a weak layer.

Using the vector of unknown functions

z(G) =
h
D0(G) D00(G) F0(G) F0

0(G) #(G) #0(G)
i|
, (S25)

the ODE system can be written as a system of first-order for the form

Az0(G) +Bz(G) + d = 0, (S26)

with the matrices

A =

2666666666666666664

1 0 0 0 0 0

0 �11 0 0 0 ⌫11

0 0 1 0 0 0

0 0 0 ��55 0 0

0 0 0 0 1 0

0 ⌫11 0 0 0 ⇡11

3777777777777777775

, (S27)
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629

630

631
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633

634

635

636

637

638

639

640

641

642

643

644

and

B =

2666666666666666664

0 �1 0 0 0 0

�:t 0 0 :t
C

2 �:t
⌘

2 0

0 0 0 �1 0 0

0 0 �:n 0 0 :�55

0 0 0 0 0 �1

� ⌘+C
2 :t 0 0 ⌫64 ⌫65 0

3777777777777777775

, (S28)

where

⌫64 = :t
⌘ + C

4 C � ��55 , and ⌫65 = �:t
⌘ + C

4 ⌘ � ��55 ,

and the vector

d =
h
0 @t + ?t 0 @n + ?n 0 Is@t � ⌘

2 ?t

i|
. (S29)

Note the addition of surface loads ?n and ?t. 13 The system (S26) can be rearranged into the form

z0(G) = Kz(G) + q, (S30)

where

K = �A�1B , (S31a)

q = �A�1d. (S31b)

The solution of the nonhomogeneous ODE system (S30) is composed of a complementary solution

vector zh(G) and a particular integral vector zp, where the latter is constant in the present case.

The complementary solution can be obtained from an eigenanalysis of the system matrix K.

Depending on the layering and the material properties, K has six real or complex eigenvalues.

Since the beam is bedded, it has no rigid body motions and all eigenvalues of nonzero. Real

eigenvalues occur as sets of two eigenvalues with opposite signs ±⌫R and linearly independent

eigenvectors vR± 2 R6. Complex eigenvalues appear as complex conjugates ⌫±
C
= ⌫< ± 8⌫= with

the corresponding complex eigenvectors v±
C

= v< ± 8v= such that v±
C

2 C6 and v< , v= 2 R6.

Denoting the number of sets of real eigenvalue pairs as #R 2 {0, . . . , 3} and the number of

complex conjugate eigenvalue pairs as#C 2 {0, . . . , 3} such that#R+#C = 3, the complementary
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solution is given by the linear combination

zh(G) =
#R’
==1

⇠
(=)
R+ exp

⇣
+⌫(=)

R
G

⌘
v
(=)
R+

+ ⇠(=)
R� exp

⇣
�⌫(=)

R
G

⌘
v
(=)
R�

+
#C’
==1

⇠
(=)
< exp

⇣
⌫(=)
< G

⌘ h
v
(=)
< cos

⇣
⌫(=)
= G

⌘

� v
(=)
= sin

⇣
⌫(=)
= G

⌘ i

+ ⇠(=)
= exp

⇣
⌫(=)
< G

⌘ h
v
(=)
< sin

⇣
⌫(=)
= G

⌘

+ v
(=)
= cos

⇣
⌫(=)
= G

⌘ i
.

(S32)

The particular solution is obtained using the method of undetermined coefficients, which yields

the constant vector

zp =
h
@t+?t
:t

+ ⌘(⌘+C�2Is) @t
4��55

0 @n+?n
:n

0 (2Is�⌘�C) @t+(2⌘+C) ?t
2��55

0
i|

. (S33)

Again, note the addition of surface loads ?n and ?t. 13 The general solution of the system

z•(G) = zh(G) + zp , (S34)

comprises six unknown coefficients ⇠(=)
• that must be identified from boundary and transmission

conditions. It can be given in the matrix form

z•(G) = Zh(G) c• + zp , (S35)

where Zh : R ! R6⇥6 is a matrix-valued function with the summands of Eq. (S32) as column

vectors and c• 2 R6 a vector containing the six free constants ⇠(=)
• according of Eq. (S32).

Layered segments without elastic foundation. To study situations where the weak layer has

partially failed, the case of an unsupported slab must be considered. The situation can occur

when the weak layer has collapsed or when a saw cut is introduced in a propagation saw test.

Accounting for such cases allows for the use of the present model in failure models for anticrack

nucleation 12 or growth. 20 If the slab is not supported by an elastic foundation, the general solution

simplifies. In the equilibrium conditions (S15a) to (S15c), the normal and shear stress terms are

omitted since no stresses act on the bottom side of the slab. The constitutive equations (S16a) and

(S16b) remain the same.
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Without elastic foundation, the equilibrium conditions (S15a) and (S15b) reduce to

0 =
d#(G)

dG + @t + ?t , (S36a)

0 =
d+(G)

dG + @n + ?n , (S36b)

0 =
d"(G)

dG �+(G) + Is@t �
⌘

2 ?t . (S36c)

By adding and subtracting ±⇡11F00
0 (G) to the constitutive equation of the bending moment (S16a)

and using the first derivative of the constitutive equation of the shear force (S16b)0, we obtain

"(G) = ⌫11D
0
0(G) +

⇡11
��55

+
0(G) � ⇡11F

00
0 (G). (S37)

Differentiating twice and using the first derivatives of the equilibrium conditions, (S36b)0 and

(S36c)0, yields

"
00(G) = +0(G) = �(@n + ?n) = ⌫11D

000
0 (G) � ⇡11F

0000
0 (G). (S38)

Adding and subtracting ±⌫11F00
0 to the constitutive equation of the normal force (S16a) and using

the constitutive equation of the shear force (S16b), gives

#(G) = �11D
0
0(G) +

⌫11
��55

+
0(G) � ⌫11F

00
0 (G). (S39)

Differentiating this equation and, again, using the derivatives of the equilibrium conditions,

(S36a)0 and (S36b)0, yields

#
0(G) = �(@t + ?t) = �11D

00
0 (G) � ⌫11F

000
0 (G). (S40)

Solving the derivative of this equation for D0000 (G) and inserting it into Eq. (S38), yields an ordinary

differential equation of fourth order for the vertical displacement

F
0000
0 (G) = � �11

⌫
2
11 � �11⇡11

(@n + ?n). (S41)

It can be solved readily by direct integration

F0(G) = 21 + 22G + 23G2 + 24G3

� �11

24(⌫2
11 � �11⇡11)

(@n + ?n)G4
.

(S42)
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Solving Eq. (S40) for D000 (G), integrating twice and inserting the third derivative of the general solu-

tion for F0(G) (S42)0, yields the general solution for the tangential displacement of unsupported

beams

D0(G) = 25 + 26G +
(6⌫1124 � @t � ?t)

2�11
G

2

� ⌫11

6
⇣
⌫

2
11 � �11⇡11

⌘ (@n + ?n)G3
.

(S43)

To obtain a solution of the cross-section rotation #(G), we take the derivative of the constitutive

equation for the bending moment (S16a)0 and insert it together with the constitutive equation of

the shear force (S16b) into the equilibrium of moments (S36c). Solving this for #(G) yields

#(G) = 1
��55

�
⌫11D

00
0 (G) + ⇡11#

00(G) + Is@t �
⌘

2 ?t
� � F0

0(G). (S44)

Equation (S40) allows for eliminating D000 (G). In order to eliminate#00(G), we insert the constitutive

equation of the shear force (S16b) into the second derivative of the vertical equilibrium (S36b)00,

which yields #00(G) = �F000
0 (G) and we obtain

#(G) =
⌫

2
11 � �11⇡11

��55�11
F
000
0 (G) � F0

0(G)

+
✓
Is �

⌫11
�11

◆
@t

��55
� ⌘?t

2��55
,

(S45)

which is fully defined through the solution for F0(G) (S42).

In order to assemble a global system of linear equations from boundary and transmission

conditions between supported and unsupported beam segments, it is helpful to express the

general solutions for both cases in the same form. For this purpose, we express vector of unknown

functions (S25) used for the solution of supported beam segments through the general solutions

(S42) to (S45) for unsupported beam segments. This yields the matrix form

z�(G) = P(G) c� + p(G), (S46)

where

c� =
h
⇠
(1)
� ⇠

(2)
� . . . ⇠

(6)
�

i|
. (S47)
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is the vector of unknown coefficients,

P(G) =

2666666666666666664

0 0 0 3 ⌫11
�11

G
2 1 G

0 0 0 6 ⌫11
�11

G 0 1

1 G G
2

G
3 0 0

0 1 2G 3G2 0 0

0 �1 �2G 6 0
�11��55

� 3G2 0 0

0 0 �2 �6G 0 0

3777777777777777775

, (S48)

and

p(G) =

2666666666666666664

� @t+?t
2�11

G
2 � ⌫11

6 0
(@n + ?n) G3

� @t+?t
�11

G � ⌫11
2 0

(@n + ?n) G2

� �11
24 0

(@n + ?n) G4

� �11
6 0

(@n + ?n) G3

�11
6 0

(@n + ?n) G3 +
⇣
Is � ⌫11

�11

⌘
@t

��55
� ⌘?t

2��55
� @n+?n

��55
G

�11
2 0

(@n + ?n) G2 � @n+?n
��55

3777777777777777775

, (S49)

with  0 = ⌫
2
11 � �11⇡11.

Global system assembly. The general solutions presented above allow for the investigation of

different systems composed of segments of supported and unsupported layered slabs. Possible

configurations of interest are, e.g., skier-loaded snowpacks, skier-loaded snowpacks with a par-

tially collapsed weak layer, or propagation saw test (PSTs) with an artificially introduced (sawed)

edge crack. Assemblies of such configurations are illustrated in Fig. S9. Individual segments are

connected through transmission conditions given in terms of displacements and section forces.

Stability tests are typically conducted on finite volumes with free ends that require vanishing

section forces and moments

# = + = " = 0, (S50)

as boundary conditions. Skier-induced loading is typically confined in a very small volume

compared to the overall dimensions of the snowpack that extends over the entire slope. For the

model, this corresponds to an unbounded domain where, all components of the solution converge

to a constant at infinity. That is, at the boundaries, the complementary solution vector must vanish

zh = 0, (S51)
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Fig. S� | System assembly. Exemplary systems of interest assembled from supported and unsupported
layered slabs with numbered segments: a) downslope PST, b) upslope PST, c) skier-loaded snowpack,
d) partially fractured weak-layer, and d) layered slab loaded by multiple skiers with partially frac-
tured weak-layer. Dotted lines indicate transmission conditions for the continuity of displacements and
section forces.

which yields constant displacements z(G) = zp, see Eq. (S33).

At interfaces between two segments (e.g., change from supported to unsupported), C0-

continuity of displacements and section forces is required and the transmission conditions

read

�D0 = 0, �F0 = 0, �# = 0,

�# = 0, �+ = 0, �"= 0, (S52)

where the � operator indicates the difference between left and right segments, i.e., �H = Hl � Hr.

External concentrated forces (e.g., skiers) are introduced as discontinuities of the section

forces. They are considered with their normal and tangential components �n and �t and with their

resulting moment " = �⌘�t/2. They have to be accounted for in the form of the transmission

conditions between two segments

�# = �t , �+ = �n , �" = � ⌘2 �t , (S53)
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where again, the � operator expresses the difference between left and right segments. Therefore,

at points of such loads the slab must always be split into segments to allow for the definition of

the transmission conditions.

Inserting the general solutions (S35) and (S46) into the boundary and transmission conditions,

yields equations that only depend on free constants. The set of equations can be assembled into

a system of linear equations with : = 6#b degrees of freedom, where #b is the number of beam

segments. In matrix form, the system reads

 c = f . (S54)

Here,  2 R:⇥: is a square matrix of full rank, c 2 R: is the vector of all free constants, and

f 2 R: is the right-hand-side vector that contains the particular solutions and displacement

discontinuities induced by concentrated loads. With only : degrees of freedom, the system can

be solved in real-time using standard methods such as Gaussian elimination or lower-upper (LU)

decomposition.

Computation of displacements, stresses and energy release rates. Substituting the coeffi-

cients ⇠(=) obtained from Eq. (S54) for each beam segment back into the general solutions (S35)

and (S46), yields the vector z(G), which contains all slab displacement functions, see Eq. (S25).

Inserting the slab deformation solution into Eqs. (S14a) and (S14b), provides weak-layer

normal and shear stresses, respectively. As discussed in the details of the mechanical model, weak-

interface models do not allow for capturing highly localized stress concentrations (e.g., stress

singularities) as they occur at crack tips. However, it is known that outside the direct vicinity

of crack tips, the simplified weak-interface kinematics provide accurate displacement and stress

solutions. 11

The in-plane stresses �G , �I , and �GI within layers of the slab are obtained using the layers’

constitutive equations and exploiting the equilibrium conditions. 14 Using Hooke’s law and the

identities ⌘G(G , I) = D
0(G , I) = D

0
0(G) + I#0(G), the axial layer normal stresses can be expressed in

terms of slab displacements in the form

�G(G , I) =
⇢(I)

1 � ⇡(I)2
⇣
D
0
0(G) + I#0(G)

⌘
, (S55)

where Young’s modulus ⇢(I) and Poisson’s ratio ⇡(I) are layerwise, i.e., piecewise, constant in

I-direction. Integrating the local equilibrium condition

0 =
%�G
%G

+
%�GH
%H

+ %�GI
%I

, (S56)
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with respect to I, where derivatives with respect to H vanish owing to the plane-strain assumption,

yields the in-plane layer shear stress

�GI(G , I) = �
π

�0
G
(G , I)dI

= �
π

⇢(I)
1 � ⇡(I)2

⇣
D
00
0 (G) + I#00(G)

⌘
dI ,

(S57)

The second-order derivatives are obtained from the left-hand side of Eq. (S30) and integration

with respect to I is performed using the trapezoidal rule. Again, integrating the equilibrium

condition

0 =
%�GI
%G

+
%�HI
%H

+ %�I
%I

, (S58)

with respect to I under the same assumptions, yields the interlayer normal stresses

�I(G , I) = �
π

�0
GI
(G , I)dI. (S59)

Here, differentiation is performed using difference quotients with consideration of discontinuities.

Finally, maximum (�I) and minimum (�III) principal stresses are computed from

�I,III =
�G + �I

2 ±
r⇣ �G � �I

2

⌘2
+ �2

GI
. (S60)

The model can be used to determine the energy release rate of cracks. Here, we make use of the

concept of anticracks, 21 that allows for studying failure of a weak layer in a snowpack exhibiting

collapse. 22 As typical for fracture mechanics, 23 the symmetry of the displacement field around

the crack tip can be used to identify symmetric (mode I) and antisymmetric deformations (mode

II). We follow this convention to study mode I (crack closure) and mode II (crack sliding) energy

release rates of anticracks. The energy release rate of cracks in weak interfaces can be given as

G(0) = GI(0) + GII(0) =
�(0)2
2:n

+ �(0)2
2:t

, (S61)

where 0 denotes the crack-tip coordinate. The limitations of the weak-interface kinematics yield

energy release rates that cannot capture very short cracks but, again, provide accurate results for

cracks of a minimum length. 24 Cracks shorter than a few millimeters cannot be studied by the

present approach.
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Fig. S�� | Benchmark profiles. Illustration of benchmark snow profiles used in the present work. Material
properties of hard, medium, and soft slab layers (dark) and the weak layer (light) are given in Table S�.
The weak layer is � cm thick and the slab layers have a thickness of �� cm each.

Table S� | Snow profiles. Considered snow layers and their elastic properties with reference to three-
layer slabs. ��

Hand Density ⌧ Young’s Poisson’s
Layer hardness (kg/m3) modulus ratio ⇡

index ⇢ (MPa)

Hard P 350 93.8 0.25
Medium 1F 270 30.0 0.25
Soft 4F 180 5.0 0.25
Weak layer F– 100 0.15 0.25

Model validation
With reference to previous analysis of snowpack layering, 25,26 we use three-layered slabs pro-

posed as schematic hardness profiles, 27 that are composed of soft, medium, and hard snow as

benchmark slab configurations (Fig. S10). Assuming bonded slabs (e.g., rounded grains) and

considering the density–hand hardness relations, 28 we assume densities of ⌧ = 350, 270, and

180 kg/m3 for hard, medium, and soft snow layers with hand hardness indices pencil (P), four

fingers (4F), and one finger (1F), respectively. From slab densities, we calculate the Young’s mod-

ulus using a density-parametrization developed using acoustic wave propagation experiments 29

and improved using full-field displacement measurements 30

⇢sl(⌧) = ⇢0

✓
⌧
⌧0

◆✏
, (S62)

where ✏ = 4.4 accounts for density scaling and ⇢0 = 6.5 ·103 MPa and ⌧0 = 917 kg/m3 are Young’s

modulus and density of ice. Each slab layer is 12 cm thick and their individual material properties

are given in Table S2. With reference to previous studies who report weak layer thickness between

0.2 and 3 cm, 31 we assume a weak-layer thickness of C = 2 cm. Following density measurements of

surface hoar layers that report densities i) between 44 and 215 kg/m3 with a mean of 102.5 kg/m3

and ii) between 75 and 252 kg/m3 with a mean of 132.4 kg/m3 using two different measurement

techniques, we assume a weak-layer density of ⌧wl = 100 kg/m3, and a Young’s modulus of

⇢wl = 0.15 MPa. 32 Other parameters are summarized in Table S3.
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Table S� | Material properties.Material properties used throughout this work unless specified di�erently.

Property Symbol Value

Skier weight < 80 kg
Slope angle ! 38�
Slab thickness†

⌘ 36 cm
Weak-layer thickness†

C 2 cm
Effective ouf-of-plane ski length ;o 100 cm
Young’s modulus weak layer ⇢wl 0.15 MPa
Poisson’s ratio ⇡ 0.25
Length of PST block ;PST 250 cm
Length of PST cut 0PST 50 cm
† Thicknesses given in slope-normal direction.

Finite element reference model. To validate the model, in particular with respect to differ-

ent slab layerings, we compare the analytical solution to finite element analyses (FEA). The finite

element model is assembled from individual layers with unit out-of-plane width on an inclined

slope (Fig. S11). Each layer is discretized using at least 10 eight-node biquadratic plane-strain con-

tinuum elements with reduced integration through its thickness. The lowest layer corresponds to

the weak layer and rests on a rigid foundation. Weak-layer cracks are introduced by removing all

weak-layer elements on the crack length 0. The mesh is refined towards stress concentration such

as crack tips and mesh convergence has been controlled carefully. The weight of the snowpack is

introduced by providing the gravitational acceleration 6 and assigning each layer its correspond-

ing density ⌧. The load introduced by a skier is modeled as a concentrated force acting on the

top of the slab. If skier loading is considered, the horizontal dimensions of the model are cho-

sen large enough for all gradients to vanish. Typically 10 m suffice. Boundary conditions of PST

experiments are free ends. In the FE model, the energy release rate of weak-layer cracks

GFE(0) = � %⇧(0)
%0

⇡ �⇧(0 + �0) �⇧(0 � �0)
2�0 , (S63)

is computed using the central difference quotient to approximate the first derivative of the total

potential ⇧ with respect to 0. The crack increment �0 corresponds to the element size and could

be increased twofold or threefold without impacting computed values of GFE(0). Weak-layer

stresses are evaluated in its vertical center.

Displacement and stress fields. Although visual representations of deformation and stress

fields are limited to qualitative statements, they illustrate the principal responses of structures in

different load cases. For this purpose, Fig. S12 compares principal stresses in a deformed slab-

on-weak-layer system between present model and finite element reference solution. The system

is loaded by the weight of the homogeneous slab H and a concentrated force representing an
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Fig. S�� | Finite element model used for validation. Discretization of a snowpack with slab and weak
layer. Cracks are introduced by removing all weak layer elements. Skier loads are applied as vertical
concentrated forces. Here, the case of a propagation saw test is shown as an example. The rigid base
layer below the weak layer has a Young’s modulus of ⇢bl = 1012 MPa.

undeformed geometry present

σI�σ+c
σIII�σ−c

FEA

σI�σ+c
σIII�σ−c

−�.� −�.� �.� �.� �.�
Normalized principal stress σ�σc �→

Fig. S�� | Stress field. Principal stresses and ��� times scaled snowpack deformations in the central
��� cm section of a skier-loaded snowpack comparing the present model (top) and the FEA reference
model (bottom). In the homogeneous slab H, maximum principal normal stresses �I (tension) normal-
ized their tensile strength �+c = 9.1 kPa are shown. In the weak layer we show minimum principal normal
stresses �III (compression) normalized to an assumed weak layer compressive strength of ��c = 2.6 kPa.
The weak-layer thickness is scaled by a factor of � for illustration.

80 kg skier. Deformations are scaled by a factor of 200 and the weak-layer thickness by a factor of

4. In the slab, we show maximum principal normal stresses (tension) normalized to their tensile

normal strength �+c = 9.1 kPa obtained from the scaling law

�+c (⌧) = 240 kPa
✓
⌧
⌧0

◆2.44
, (S64)
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Fig. S�� | Displacement field. Horizontal displacement field of the first �.�m of a flat-field propagation
saw test (PST) with an 0 = 23 cm cut into the C = 1 cm weak layer under a ⌘ = 46 cm slab. Comparison of
the present model (top) with full-field digital image correlation measurements (bottom). White patches
indicate missing data points. Deformations are scaled by a factor of ��� and the weak-layer thickness
by a factor of �� for illustration.

where ⌧0 = 917 kg/m3 is the density of ice. 33 This illustrates the potential of tensile slab fracture.

In the weak layer, minimum principal normal stresses (compression) normalized to their rapid-

loading compressive strength ��c = 2.6 kPa 34 are shown, illustrating the potential for weak-layer

collapse. We choose principal stresses for the visualization because they allow for the assessment

of complex stress states by incorporating several stress components.

While the present model (Fig. S12, top panel) does not capture the highly localized stresses at

the contact point between skier and slab observed in the FEA model (Fig. S12, bottom panel), the

overall stress fields are in excellent agreement. This is consistent with Saint-Venant’s principle,

according to which the far-field effect of localized loads is independent of their asymptotic near-

field behavior. The same holds for the displacement field. While the concentrated load introduces

a dent in the slab’s top surface, the overall deformations agree. With respect to the numerical

reference, the present model renders displacement fields and both weak-layer and slab stresses

well. Moreover, we can confirm the model assumption of constant stresses through the thickness

of the weak layer.

Experimental validations are challenging since direct measurements of stresses are not possi-

ble and displacement measurements require considerable experimental effort. The latter can be

recorded using digital image correlation (DIC). 30 From their analysis, we use the DIC-recorded

displacement field of the first 1.3 m of a 3.0 ± 0.1 m long flat-field propagation saw test (Fig. S13,

bottom panel). The PST was performed on January 7, 2019, had a slab thickness of ⌘ = 46 cm, a
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critical cut length of 0 = 23 ± 2 cm, and the density profile shown in Fig. S13 (left panel) with a

mean slab density of ⌧̄ = 111 ± 6 kg/m3. From the density we computed individual layer stiff-

nesses according to Eq. (S62). Figure S13 compares both in-plane deformations of the snowpack

(outlines) and the horizontal displacement fields (colorized overlay) obtained from the present

model (top panel) and from DIC measurements (bottom panel). Deformations are scaled by a

factor of 100, the weak-layer thickness by a factor of 10 for their visualization. In-plane slab and

weak-layer deformations are in very good agreement. This is evident in both the deformed con-

tours and in the colorized displacement field overlay. Since displacements are C1-continuous

across layer interfaces, the effect of layering is not directly visible in the displacement field. How-

ever, the slightly larger-than-expected tilt of the slab at its left end hints at a higher stiffness at the

bottom of the slab and a compliant top section.

Weak-layer stresses and energy release rates. For all benchmark profiles illustrated in Fig. S10,

weak-layer shear and normal stresses (�, �) obtained from the FEA model (dotted, light) and the

present analytical solution (solid, dark) are compared in Fig. S14. We investigate a 38� inclined

slope subjected to a concentrated force equivalent to the load of an 80 kg skier on an effective

out-of-plane ski length of 1 m. The finite element reference model has a horizontal length of 10 m,

of which the central 3 m are shown. The boundary conditions of the present model require the

complementary solution (S32) to vanish, representing an infinite extension of the system.

Kinks in the model solution originate from the loading discontinuity introduced by the

concentrated skier force. They are a direct result of the plate-theory modeling approach. The

agreement with the FEA reference solution is close for all types of investigated profiles and

layering effects on weak-layer stress distributions are well captured. Only for profile C, the

present solution slightly underestimates the normal stress peak directly below the skier. This

observation is not relevant for the prediction of weak-layer failure in a snow cover. 12 To study

size effects present in any structure, a nonlocal evaluation of stresses must be used. 37–40 This has

been discussed in detail by Leguillon 41, laying the foundation for the successful application of

finite fracture mechanics approaches with weak-interface models. 42,43 Effects of bending stiffness

(Fig. S14c vs. d) or bending–extension coupling (Fig. S14e vs. f) resulting from different layering

orders, will be discussed in detail below.

A similar comparison of solutions for all profiles is given in Fig. S15, where total energy

release rates (ERRs) of weak-layer anticracks in 38� inclined PST experiments are shown. Here,

both models consider free boundaries of the 1.2 m long PST block. The structure is loaded by the

weight of the slab and saw-introduced cracks are modeled by removing all weak-layer elements

on the crack length 0. This causes finite ERRs, even for very small cracks, because a finite amount
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of strain energy is removed from the system with these elements. The ERR of a sharp crack is

expected to vanish in the limit of zero crack length (⌧ 1 cm).

The principal behavior of the ERR as a function of crack length is unaffected by the choice

of profile. However, the different resulting stiffness and deformation properties influence the

magnitude of the energy release rate considerably. For instance, between cases A and B, we

observe a difference of almost 10 % (Fig. S15).

Figure S16 shows weak-layer fracture toughnesses determined from critical cut lengths of

PSTs with layered slabs throughout the 2019 winter season using the present model. 30,35 The

authors performed 21 tests on the same weak layer. While we observe small weak-layer fracture

toughnesses at the beginning of January 2019, it quickly increases with the most significant

precipitation event in mid January and then remains comparatively constant throughout the rest

of the season. 30 For the purpose of validation of the present model, it is to note that all fracture

toughnesses computed from the experiments lie within the bounds of the to date lowest 36 and

highest 10 published values, 0.01 J/m2 and 2.7 J/m2, respectively.
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The present model can be classified as a structural mechanics model as frequently employed

in fracture mechanics. Structural models can be used to obtain effective quantities characterizing

weak layers. 20 Effective quantities of fracture mechanics models always include microscopic

mechanisms without further resolving their microscopic nature. 23

Supplementary tables
Recorded data and literature data
Tables S4 and S5 list the experimental data with mean and standard deviation recorded at field

sites A and B, respectively, between February 18 and March 10, 2022. Table S6 lists the literature

data 10 evaluated for the present study.

Table S� | Field site A. Experimental data recorded at field site A between February �� and March �, ����.

Date
Slope Cut length Fracture toughness

! 0c (cm) GIc (J/m2) GIIc (J/m2)

Feb 18 0� ± 2� 10.90 ± 1.00 0.892 ± 0.173 0.022 ± 0.008

10� ± 2� 15.50 ± 1.00 0.880 ± 0.143 0.061 ± 0.012

15� ± 2� 14.75 ± 1.00 0.645 ± 0.112 0.070 ± 0.012

20� ± 2� 16.75 ± 1.00 0.616 ± 0.106 0.101 ± 0.015

25� ± 2� 19.00 ± 1.00 0.739 ± 0.126 0.157 ± 0.021

35� ± 2� 20.00 ± 1.00 0.509 ± 0.100 0.218 ± 0.026

40� ± 2� 23.50 ± 1.00 0.592 ± 0.117 0.305 ± 0.034

45� ± 2� 26.50 ± 1.00 0.602 ± 0.126 0.391 ± 0.041

50� ± 2� 28.75 ± 1.00 0.459 ± 0.111 0.447 ± 0.046

50� ± 2� 31.00 ± 1.00 0.599 ± 0.136 0.510 ± 0.051

(continued on next page)
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Table S� | Field site A (continued)

Date ! 0c (cm) GIc (J/m2) GIIc (J/m2)

55� ± 2� 34.00 ± 1.00 0.571 ± 0.147 0.614 ± 0.061

60� ± 2� 38.50 ± 1.00 0.579 ± 0.175 0.772 ± 0.077

Feb 23 �49� ± 2� 9.20 ± 1.00 0.452 ± 0.059 0.098 ± 0.016

14� ± 2� 14.00 ± 1.00 0.431 ± 0.070 0.042 ± 0.008

25� ± 2� 14.25 ± 1.00 0.343 ± 0.064 0.087 ± 0.013

36� ± 2� 27.75 ± 1.00 0.974 ± 0.149 0.304 ± 0.032

47� ± 2� 28.00 ± 1.00 0.542 ± 0.106 0.367 ± 0.039

53� ± 2� 35.75 ± 1.00 0.720 ± 0.151 0.567 ± 0.056

57� ± 2� 38.00 ± 1.00 0.447 ± 0.117 0.612 ± 0.062

61� ± 2� 37.50 ± 1.00 0.289 ± 0.094 0.606 ± 0.064

64� ± 2� 46.75 ± 1.00 0.346 ± 0.134 0.884 ± 0.091

Feb 24 �60� ± 2� 19.65 ± 1.00 0.867 ± 0.102 0.147 ± 0.026

�50� ± 2� 16.55 ± 1.00 0.810 ± 0.094 0.109 ± 0.020

�45� ± 2� 11.40 ± 1.00 0.551 ± 0.069 0.091 ± 0.016

�40� ± 2� 16.75 ± 1.00 0.928 ± 0.108 0.064 ± 0.014

�27� ± 2� 14.75 ± 1.00 0.802 ± 0.099 0.025 ± 0.008

�18� ± 2� 14.55 ± 1.00 0.779 ± 0.101 0.006 ± 0.003

�10� ± 2� 14.50 ± 1.00 0.705 ± 0.094 0.000 ± 0.000

1� ± 2� 13.35 ± 1.00 0.510 ± 0.074 0.006 ± 0.003

5� ± 2� 17.75 ± 1.00 0.720 ± 0.097 0.021 ± 0.006

60� ± 2� 43.25 ± 1.00 0.391 ± 0.121 0.737 ± 0.076

Feb 25 24� ± 2� 19.50 ± 1.00 0.706 ± 0.106 0.126 ± 0.017

28� ± 2� 22.90 ± 1.00 0.817 ± 0.119 0.182 ± 0.022

32� ± 2� 24.70 ± 1.00 0.715 ± 0.108 0.222 ± 0.026

35� ± 2� 25.75 ± 1.00 1.045 ± 0.157 0.285 ± 0.031

(continued on next page)
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Table S� | Field site A (continued)

Date ! 0c (cm) GIc (J/m2) GIIc (J/m2)

37� ± 2� 23.00 ± 1.00 0.539 ± 0.091 0.240 ± 0.027

42� ± 2� 28.50 ± 1.00 0.870 ± 0.143 0.371 ± 0.038

47� ± 2� 28.45 ± 1.00 0.501 ± 0.098 0.386 ± 0.040

53� ± 2� 33.75 ± 1.00 0.394 ± 0.094 0.515 ± 0.051

53� ± 2� 31.25 ± 1.00 0.510 ± 0.112 0.482 ± 0.048

56� ± 2� 34.00 ± 1.00 0.377 ± 0.096 0.542 ± 0.054

57� ± 2� 49.00 ± 1.00 0.064 ± 0.060 1.015 ± 0.112

65� ± 2� 42.50 ± 1.00 0.141 ± 0.072 0.778 ± 0.079

Mar 02 7� ± 2� 13.40 ± 1.00 0.458 ± 0.066 0.016 ± 0.005

16� ± 2� 9.25 ± 1.00 0.248 ± 0.047 0.033 ± 0.007

28� ± 2� 20.50 ± 1.00 0.496 ± 0.076 0.143 ± 0.019

35� ± 2� 28.25 ± 1.00 0.875 ± 0.128 0.280 ± 0.030

42� ± 2� 31.00 ± 1.00 0.699 ± 0.116 0.372 ± 0.038

48� ± 2� 31.75 ± 1.00 0.437 ± 0.089 0.425 ± 0.044

53� ± 2� 37.00 ± 1.00 0.555 ± 0.122 0.573 ± 0.056

56� ± 2� 40.75 ± 1.00 0.386 ± 0.107 0.672 ± 0.067

62� ± 2� 41.75 ± 1.00 0.270 ± 0.096 0.736 ± 0.074

63� ± 2� 46.00 ± 1.00 0.333 ± 0.123 0.875 ± 0.087

65� ± 2� 45.50 ± 1.00 0.175 ± 0.085 0.857 ± 0.087

Mar 03 8� ± 2� 15.75 ± 1.00 0.582 ± 0.080 0.024 ± 0.006

11� ± 2� 16.25 ± 1.00 0.639 ± 0.090 0.038 ± 0.008

17� ± 2� 20.00 ± 1.00 0.768 ± 0.104 0.079 ± 0.013

26� ± 2� 22.25 ± 1.00 0.617 ± 0.089 0.142 ± 0.019

32� ± 2� 26.00 ± 1.00 0.796 ± 0.115 0.227 ± 0.026

36� ± 2� 24.75 ± 1.00 0.499 ± 0.081 0.236 ± 0.027

(continued on next page)

32



1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

Table S� | Field site A (continued)

Date ! 0c (cm) GIc (J/m2) GIIc (J/m2)

42� ± 2� 31.25 ± 1.00 0.588 ± 0.102 0.367 ± 0.038

46� ± 2� 36.50 ± 1.00 0.915 ± 0.156 0.513 ± 0.049

50� ± 2� 38.50 ± 1.00 0.797 ± 0.153 0.589 ± 0.056

55� ± 2� 40.25 ± 1.00 0.656 ± 0.147 0.672 ± 0.064

59� ± 2� 44.50 ± 1.00 0.393 ± 0.122 0.800 ± 0.079

Table S� | Field site B. Experimental data recorded at field site B between March � and March ��, ����.

Date
Slope Cut length Fracture toughness

! 0c (cm) GIc (J/m2) GIIc (J/m2)

Mar 07 59� ± 2� 29.75 ± 1.00 0.635 ± 0.247 0.755 ± 0.098

Mar 08 2� ± 2� 14.25 ± 1.00 0.575 ± 0.095 0.039 ± 0.009

13� ± 2� 16.75 ± 1.00 0.696 ± 0.119 0.111 ± 0.019

21� ± 2� 17.00 ± 1.00 0.542 ± 0.100 0.137 ± 0.021

29� ± 2� 19.25 ± 1.00 0.403 ± 0.079 0.174 ± 0.023

35� ± 2� 19.75 ± 1.00 0.326 ± 0.071 0.202 ± 0.026

39� ± 2� 25.25 ± 1.00 0.584 ± 0.116 0.357 ± 0.041

44� ± 2� 27.75 ± 1.00 0.556 ± 0.118 0.430 ± 0.048

49� ± 2� 32.25 ± 1.00 0.711 ± 0.156 0.609 ± 0.066

55� ± 2� 29.75 ± 1.00 0.196 ± 0.066 0.418 ± 0.050

60� ± 2� 35.25 ± 1.00 0.404 ± 0.133 0.663 ± 0.080

Mar 09 �53� ± 2� 11.15 ± 1.00 0.603 ± 0.077 0.038 ± 0.010
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Table S� | Field site B (continued)

Date ! 0c (cm) GIc (J/m2) GIIc (J/m2)

�48� ± 2� 9.10 ± 1.00 0.511 ± 0.069 0.035 ± 0.009

�41� ± 2� 13.35 ± 1.00 0.823 ± 0.106 0.010 ± 0.005

�22� ± 2� 13.75 ± 1.00 0.874 ± 0.122 0.002 ± 0.002

�12� ± 2� 14.90 ± 1.00 0.877 ± 0.125 0.016 ± 0.006

�1� ± 2� 9.90 ± 1.00 0.375 ± 0.067 0.011 ± 0.004

Mar 10 52� ± 2� 25.00 ± 1.00 0.347 ± 0.114 0.723 ± 0.086

56� ± 2� 20.25 ± 1.00 0.127 ± 0.068 0.706 ± 0.091

58� ± 2� 21.50 ± 1.00 0.082 ± 0.054 0.735 ± 0.095

62� ± 2� 26.00 ± 1.00 0.029 ± 0.031 0.667 ± 0.086

62� ± 2� 23.25 ± 1.00 0.120 ± 0.073 0.732 ± 0.095

65� ± 2� 22.75 ± 1.00 0.006 ± 0.013 0.689 ± 0.095

Table S� | Historic data set. Literature data �� on propagation saw tests evaluated for the present study,
truncated at two digits.

#
Slope Cut length Fracture toughness

! 0c (cm) GIc (J/m2) GIIc (J/m2)

1 0� ± 2� 19.98 ± 1.00 0.38 ± 0.05 0.00 ± 0.00

2 0� ± 2� 21.69 ± 1.00 0.13 ± 0.01 0.00 ± 0.00

3 0� ± 2� 52.04 ± 1.00 2.02 ± 0.22 0.01 ± 0.01

4 0� ± 2� 37.06 ± 1.00 0.99 ± 0.13 0.00 ± 0.00

5 0� ± 2� 34.41 ± 1.00 0.51 ± 0.06 0.00 ± 0.00
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1565

1566

1567

1568

1569
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1599
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1602
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1605

1606
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1608

1609

1610

Table S� | Historic data set (continued)

# ! 0c (cm) GIc (J/m2) GIIc (J/m2)

6 0� ± 2� 29.19 ± 1.00 0.51 ± 0.06 0.00 ± 0.00

7 0� ± 2� 31.81 ± 1.00 0.99 ± 0.12 0.00 ± 0.00

8 0� ± 2� 27.08 ± 1.00 0.18 ± 0.02 0.00 ± 0.00

9 0� ± 2� 33.93 ± 1.00 1.02 ± 0.12 0.00 ± 0.00

10 0� ± 2� 30.30 ± 1.00 0.22 ± 0.02 0.01 ± 0.00

11 0� ± 2� 30.53 ± 1.00 0.93 ± 0.12 0.00 ± 0.00

12 0� ± 2� 26.46 ± 1.00 0.18 ± 0.02 0.00 ± 0.00

13 0� ± 2� 33.18 ± 1.00 1.06 ± 0.13 0.00 ± 0.00

14 0� ± 2� 34.00 ± 1.00 0.29 ± 0.02 0.01 ± 0.00

15 0� ± 2� 16.96 ± 1.00 0.13 ± 0.01 0.00 ± 0.00

16 0� ± 2� 34.21 ± 1.00 0.30 ± 0.02 0.01 ± 0.00

17 0� ± 2� 34.63 ± 1.00 0.30 ± 0.02 0.01 ± 0.00

18 0� ± 2� 31.53 ± 1.00 0.26 ± 0.02 0.00 ± 0.00

19 0� ± 2� 38.46 ± 1.00 0.37 ± 0.03 0.01 ± 0.00

20 0� ± 2� 29.54 ± 1.00 0.33 ± 0.04 0.00 ± 0.00

21 0� ± 2� 31.18 ± 1.00 0.42 ± 0.05 0.00 ± 0.00

22 0� ± 2� 53.80 ± 1.00 3.11 ± 0.38 0.00 ± 0.01

23 0� ± 2� 51.39 ± 1.00 2.93 ± 0.36 0.00 ± 0.01

24 0� ± 2� 28.60 ± 1.00 0.43 ± 0.04 0.00 ± 0.00

25 0� ± 2� 44.57 ± 1.00 0.99 ± 0.11 0.01 ± 0.00

26 0� ± 2� 32.10 ± 1.00 0.54 ± 0.07 0.00 ± 0.00

27 0� ± 2� 38.27 ± 1.00 1.16 ± 0.13 0.00 ± 0.00

28 0� ± 2� 16.54 ± 1.00 0.44 ± 0.06 0.00 ± 0.00

29 0� ± 2� 20.72 ± 1.00 0.19 ± 0.02 0.00 ± 0.00

30 0� ± 2� 23.16 ± 1.00 0.20 ± 0.02 0.00 ± 0.00
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1611

1612

1613

1614

1615

1616

1617
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1619

1620

1621
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Table S� | Historic data set (continued)

# ! 0c (cm) GIc (J/m2) GIIc (J/m2)

31 0� ± 2� 8.82 ± 1.00 0.05 ± 0.01 0.00 ± 0.00

32 0� ± 2� 15.91 ± 1.00 0.10 ± 0.01 0.00 ± 0.00

33 0� ± 2� 24.18 ± 1.00 0.26 ± 0.03 0.00 ± 0.00

34 0� ± 2� 24.63 ± 1.00 0.27 ± 0.03 0.00 ± 0.00

35 0� ± 2� 23.35 ± 1.00 0.25 ± 0.03 0.00 ± 0.00

36 0� ± 2� 29.32 ± 1.00 0.35 ± 0.04 0.01 ± 0.00

37 0� ± 2� 26.91 ± 1.00 0.30 ± 0.03 0.00 ± 0.00

38 0� ± 2� 32.91 ± 1.00 0.39 ± 0.04 0.01 ± 0.00

39 0� ± 2� 31.90 ± 1.00 0.37 ± 0.03 0.01 ± 0.00

40 0� ± 2� 33.27 ± 1.00 0.39 ± 0.04 0.01 ± 0.00

41 0� ± 2� 27.45 ± 1.00 0.31 ± 0.03 0.00 ± 0.00

42 0� ± 2� 31.86 ± 1.00 0.38 ± 0.04 0.00 ± 0.00

43 0� ± 2� 31.43 ± 1.00 0.68 ± 0.08 0.00 ± 0.00

44 0� ± 2� 29.79 ± 1.00 0.32 ± 0.03 0.01 ± 0.00

45 0� ± 2� 34.47 ± 1.00 0.45 ± 0.04 0.01 ± 0.00

46 0� ± 2� 35.42 ± 1.00 0.49 ± 0.05 0.01 ± 0.00

47 0� ± 2� 21.80 ± 1.00 0.19 ± 0.02 0.00 ± 0.00

48 0� ± 2� 23.19 ± 1.00 0.22 ± 0.03 0.00 ± 0.00

49 0� ± 2� 36.76 ± 1.00 0.80 ± 0.10 0.00 ± 0.00

50 0� ± 2� 23.11 ± 1.00 0.32 ± 0.04 0.00 ± 0.00

51 0� ± 2� 23.62 ± 1.00 0.26 ± 0.03 0.00 ± 0.00

52 0� ± 2� 18.71 ± 1.00 0.36 ± 0.04 0.00 ± 0.00

53 0� ± 2� 24.43 ± 1.00 0.48 ± 0.06 0.00 ± 0.00

54 0� ± 2� 28.36 ± 1.00 0.56 ± 0.09 0.00 ± 0.00

55 0� ± 2� 47.10 ± 1.00 2.36 ± 0.29 0.00 ± 0.00
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Table S� | Historic data set (continued)

# ! 0c (cm) GIc (J/m2) GIIc (J/m2)

56 0� ± 2� 23.00 ± 1.00 0.45 ± 0.06 0.00 ± 0.00

57 0� ± 2� 38.22 ± 1.00 0.68 ± 0.07 0.00 ± 0.00

58 0� ± 2� 25.30 ± 1.00 0.79 ± 0.09 0.00 ± 0.00

59 0� ± 2� 34.75 ± 1.00 1.10 ± 0.12 0.00 ± 0.00

60 0� ± 2� 35.44 ± 1.00 1.38 ± 0.16 0.00 ± 0.00

61 0� ± 2� 38.39 ± 1.00 1.50 ± 0.17 0.00 ± 0.00

62 0� ± 2� 20.98 ± 1.00 0.86 ± 0.11 0.00 ± 0.00

63 0� ± 2� 29.36 ± 1.00 0.61 ± 0.07 0.00 ± 0.00

64 0� ± 2� 46.27 ± 1.00 1.17 ± 0.11 0.01 ± 0.01

65 0� ± 2� 33.99 ± 1.00 0.67 ± 0.07 0.01 ± 0.00

66 0� ± 2� 36.80 ± 1.00 0.80 ± 0.09 0.00 ± 0.00

67 0� ± 2� 29.06 ± 1.00 0.55 ± 0.06 0.00 ± 0.00

68 0� ± 2� 27.58 ± 1.00 0.52 ± 0.06 0.00 ± 0.00

69 0� ± 2� 30.56 ± 1.00 0.59 ± 0.07 0.00 ± 0.00

70 0� ± 2� 38.69 ± 1.00 0.72 ± 0.07 0.00 ± 0.00

71 0� ± 2� 41.01 ± 1.00 1.43 ± 0.16 0.00 ± 0.00

72 0� ± 2� 39.06 ± 1.00 0.71 ± 0.07 0.00 ± 0.00

73 0� ± 2� 37.61 ± 1.00 1.07 ± 0.12 0.01 ± 0.00

74 0� ± 2� 46.29 ± 1.00 1.68 ± 0.20 0.01 ± 0.01

75 0� ± 2� 47.90 ± 1.00 1.39 ± 0.14 0.01 ± 0.01

76 0� ± 2� 56.34 ± 1.00 2.18 ± 0.23 0.01 ± 0.01

77 0� ± 2� 33.61 ± 1.00 1.28 ± 0.16 0.00 ± 0.00

78 0� ± 2� 48.23 ± 1.00 1.87 ± 0.21 0.00 ± 0.00

79 0� ± 2� 52.43 ± 1.00 3.55 ± 0.46 0.00 ± 0.01

80 0� ± 2� 69.26 ± 1.00 6.22 ± 0.75 0.00 ± 0.01
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Table S� | Historic data set (continued)

# ! 0c (cm) GIc (J/m2) GIIc (J/m2)

81 0� ± 2� 58.13 ± 1.00 4.12 ± 0.50 0.01 ± 0.01

82 0� ± 2� 71.48 ± 1.00 6.25 ± 0.74 0.01 ± 0.01

83 0� ± 2� 77.64 ± 1.00 15.16 ± 2.00 0.00 ± 0.01

84 0� ± 2� 40.21 ± 1.00 1.40 ± 0.16 0.00 ± 0.00

85 0� ± 2� 32.21 ± 1.00 0.29 ± 0.03 0.00 ± 0.00

86 0� ± 2� 37.94 ± 1.00 0.78 ± 0.07 0.01 ± 0.00

87 0� ± 2� 24.82 ± 1.00 0.46 ± 0.05 0.00 ± 0.00

88 0� ± 2� 32.81 ± 1.00 0.65 ± 0.06 0.00 ± 0.00

89 0� ± 2� 27.86 ± 1.00 0.41 ± 0.05 0.00 ± 0.00

90 0� ± 2� 36.42 ± 1.00 0.63 ± 0.07 0.00 ± 0.00

91 0� ± 2� 26.62 ± 1.00 0.36 ± 0.04 0.00 ± 0.00

92 0� ± 2� 23.73 ± 1.00 0.29 ± 0.03 0.00 ± 0.00

93 0� ± 2� 16.65 ± 1.00 0.20 ± 0.02 0.00 ± 0.00

94 0� ± 2� 31.46 ± 1.00 0.43 ± 0.04 0.00 ± 0.00

95 0� ± 2� 36.73 ± 1.00 0.54 ± 0.05 0.01 ± 0.00

96 0� ± 2� 35.24 ± 1.00 0.50 ± 0.05 0.00 ± 0.00

97 0� ± 2� 28.25 ± 1.00 0.53 ± 0.05 0.00 ± 0.00

98 0� ± 2� 32.99 ± 1.00 0.54 ± 0.06 0.00 ± 0.00

99 0� ± 2� 30.27 ± 1.00 0.60 ± 0.06 0.00 ± 0.00

100 0� ± 2� 28.38 ± 1.00 0.59 ± 0.06 0.00 ± 0.00

101 0� ± 2� 27.54 ± 1.00 0.54 ± 0.06 0.00 ± 0.00

102 0� ± 2� 32.86 ± 1.00 0.66 ± 0.07 0.00 ± 0.00

103 0� ± 2� 60.72 ± 1.00 1.22 ± 0.07 0.09 ± 0.01

104 0� ± 2� 20.07 ± 1.00 0.41 ± 0.05 0.00 ± 0.00

105 0� ± 2� 32.31 ± 1.00 0.64 ± 0.06 0.00 ± 0.00

(continued on next page)

38



1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

Table S� | Historic data set (continued)

# ! 0c (cm) GIc (J/m2) GIIc (J/m2)

106 0� ± 2� 41.95 ± 1.00 2.09 ± 0.29 0.00 ± 0.00

107 0� ± 2� 44.08 ± 1.00 0.56 ± 0.04 0.03 ± 0.00

108 �8� ± 2� 16.14 ± 1.00 0.17 ± 0.02 0.00 ± 0.00

109 �8� ± 2� 25.55 ± 1.00 0.27 ± 0.02 0.00 ± 0.00

110 �9� ± 2� 25.63 ± 1.00 0.27 ± 0.02 0.00 ± 0.00

111 �10� ± 2� 32.32 ± 1.00 0.63 ± 0.07 0.00 ± 0.00

112 �10� ± 2� 30.30 ± 1.00 0.39 ± 0.03 0.00 ± 0.00

113 �10� ± 2� 32.82 ± 1.00 0.73 ± 0.07 0.00 ± 0.00

114 �10� ± 2� 29.41 ± 1.00 0.59 ± 0.06 0.00 ± 0.00

115 �10� ± 2� 31.14 ± 1.00 0.69 ± 0.07 0.00 ± 0.00

116 �10� ± 2� 37.14 ± 1.00 0.98 ± 0.10 0.00 ± 0.00

117 �10� ± 2� 31.80 ± 1.00 0.48 ± 0.04 0.00 ± 0.00

118 �10� ± 2� 25.67 ± 1.00 0.49 ± 0.06 0.00 ± 0.00

119 �10� ± 2� 24.88 ± 1.00 0.53 ± 0.06 0.00 ± 0.00

120 �10� ± 2� 28.89 ± 1.00 0.60 ± 0.07 0.00 ± 0.00

121 �10� ± 2� 49.62 ± 1.00 0.89 ± 0.06 0.00 ± 0.00

122 �10� ± 2� 30.65 ± 1.00 0.52 ± 0.05 0.00 ± 0.00

123 �13� ± 2� 17.31 ± 1.00 0.19 ± 0.02 0.00 ± 0.00

124 �15� ± 2� 17.13 ± 1.00 0.18 ± 0.02 0.00 ± 0.00

125 �15� ± 2� 17.15 ± 1.00 0.17 ± 0.02 0.00 ± 0.00

126 �17� ± 2� 19.43 ± 1.00 0.20 ± 0.02 0.00 ± 0.00

127 �18� ± 2� 29.08 ± 1.00 0.80 ± 0.08 0.01 ± 0.00

128 �18� ± 2� 53.46 ± 1.00 4.55 ± 0.57 0.01 ± 0.01

129 �18� ± 2� 42.11 ± 1.00 2.90 ± 0.38 0.01 ± 0.01

130 �18� ± 2� 37.17 ± 1.00 1.03 ± 0.10 0.00 ± 0.00
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Table S� | Historic data set (continued)

# ! 0c (cm) GIc (J/m2) GIIc (J/m2)

131 �18� ± 2� 21.40 ± 1.00 0.29 ± 0.03 0.00 ± 0.00

132 �18� ± 2� 56.46 ± 1.00 3.97 ± 0.39 0.08 ± 0.02

133 �19� ± 2� 19.72 ± 1.00 0.18 ± 0.02 0.01 ± 0.00

134 �19� ± 2� 36.74 ± 1.00 0.32 ± 0.02 0.00 ± 0.00

135 �19� ± 2� 64.28 ± 1.00 1.83 ± 0.11 0.00 ± 0.00

136 �20� ± 2� 56.61 ± 1.00 2.26 ± 0.22 0.02 ± 0.01

137 �20� ± 2� 37.04 ± 1.00 1.08 ± 0.11 0.02 ± 0.01

138 �20� ± 2� 22.70 ± 1.00 0.26 ± 0.02 0.00 ± 0.00

139 �20� ± 2� 33.21 ± 1.00 0.47 ± 0.03 0.00 ± 0.00

140 �20� ± 2� 18.30 ± 1.00 0.20 ± 0.02 0.01 ± 0.00

141 �20� ± 2� 25.11 ± 1.00 0.33 ± 0.04 0.01 ± 0.00

142 �20� ± 2� 45.98 ± 1.00 1.28 ± 0.12 0.02 ± 0.01

143 �20� ± 2� 50.44 ± 1.00 2.11 ± 0.22 0.02 ± 0.01

144 �20� ± 2� 56.14 ± 1.00 2.49 ± 0.26 0.02 ± 0.01

145 �20� ± 2� 60.99 ± 1.00 4.58 ± 0.52 0.03 ± 0.01

146 �21� ± 2� 23.12 ± 1.00 0.17 ± 0.02 0.00 ± 0.00

147 �21� ± 2� 17.00 ± 1.00 0.11 ± 0.01 0.00 ± 0.00

148 �21� ± 2� 32.07 ± 1.00 1.61 ± 0.17 0.05 ± 0.01

149 �21� ± 2� 22.58 ± 1.00 0.15 ± 0.01 0.00 ± 0.00

150 �21� ± 2� 18.01 ± 1.00 0.12 ± 0.01 0.00 ± 0.00

151 �21� ± 2� 35.25 ± 1.00 0.38 ± 0.03 0.00 ± 0.00

152 �21� ± 2� 19.23 ± 1.00 0.23 ± 0.02 0.01 ± 0.00

153 �21� ± 2� 6.46 ± 1.00 0.04 ± 0.01 0.00 ± 0.00

154 �21� ± 2� 6.36 ± 1.00 0.04 ± 0.01 0.00 ± 0.00

155 �21� ± 2� 26.25 ± 1.00 1.12 ± 0.11 0.05 ± 0.01
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Table S� | Historic data set (continued)

# ! 0c (cm) GIc (J/m2) GIIc (J/m2)

156 �21� ± 2� 41.73 ± 1.00 1.86 ± 0.19 0.05 ± 0.01

157 �22� ± 2� 19.97 ± 1.00 0.13 ± 0.01 0.00 ± 0.00

158 �22� ± 2� 16.85 ± 1.00 0.19 ± 0.02 0.00 ± 0.00

159 �23� ± 2� 42.76 ± 1.00 0.37 ± 0.03 0.00 ± 0.00

160 �24� ± 2� 31.09 ± 1.00 0.39 ± 0.04 0.02 ± 0.00

161 �25� ± 2� 15.46 ± 1.00 0.07 ± 0.01 0.00 ± 0.00

162 �25� ± 2� 26.50 ± 1.00 0.33 ± 0.03 0.00 ± 0.00

163 �26� ± 2� 26.53 ± 1.00 0.21 ± 0.02 0.00 ± 0.00

164 �26� ± 2� 30.78 ± 1.00 0.26 ± 0.02 0.00 ± 0.00

165 �27� ± 2� 23.61 ± 1.00 0.52 ± 0.04 0.02 ± 0.00

166 �27� ± 2� 25.41 ± 1.00 0.55 ± 0.04 0.02 ± 0.00

167 �28� ± 2� 27.67 ± 1.00 0.12 ± 0.01 0.00 ± 0.00

168 �28� ± 2� 29.35 ± 1.00 0.14 ± 0.01 0.00 ± 0.00

169 �28� ± 2� 29.84 ± 1.00 0.17 ± 0.01 0.00 ± 0.00

170 �28� ± 2� 32.07 ± 1.00 0.54 ± 0.04 0.00 ± 0.00

171 �28� ± 2� 41.74 ± 1.00 0.57 ± 0.07 0.00 ± 0.00

172 �30� ± 2� 44.29 ± 1.00 0.81 ± 0.06 0.02 ± 0.01

173 �31� ± 2� 36.61 ± 1.00 0.33 ± 0.03 0.01 ± 0.00

174 �32� ± 2� 40.96 ± 1.00 0.92 ± 0.06 0.01 ± 0.00

175 �33� ± 2� 66.99 ± 1.00 1.66 ± 0.13 0.02 ± 0.01

176 �34� ± 2� 66.21 ± 1.00 3.28 ± 0.35 0.05 ± 0.01

177 �34� ± 2� 60.86 ± 1.00 1.07 ± 0.07 0.00 ± 0.00
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