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Novel Preconditioners for Unfitted FEM in Darcy

Flow for Fractured Medium

Wasif Khan∗and Shahbaz Ahmad†

Abstract

We suggest using GMRES preconditioners to solve a saddle-point problem
arising from the discretization of unfitted Finite Element Method (FEM) in
Darcy flow for fractured media. These problems often occur when we use a
specific method to understand how fluids move in complex situations, such
as multiple dimensions. We conducted a thorough study, examining the so-
lutions, and found that our new way of preparing the problem makes things
work better. Spectral analysis of the proposed preconditioners, along with nu-
merical results, showed that our method works well, especially when combined
with a flexible-GMRES method. We applied our approach to solve problems
from a 2D test scenario, proving that our way is practical and useful.

keywords: Darcy flow problem, Finite Element Method, Spectral analysis, Pre-
conditioning Technique, Krylov Subspace Methods.

AMS Classification: 74Sxx, 65N06, 65N12, 65F10.

1 Introduction

The computational simulation of fluid flow within porous media containing fractures
presents a widespread challenge in geosciences and reservoir behavior modeling [25,
43]. Despite a rich body of literature on this subject, as highlighted in recent research
summaries such as [3, 15, 21, 26, 35], the development of a precise and efficient
numerical approach for handling intricate fracture networks remains a formidable
obstacle.
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†ASSMS, Government College University, Lahore, Pakistan (shahbazahmad@sms.edu.pk)
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Recent publications have explored finite element techniques that do not specifi-
cally cater to the geometric characteristics when modeling fluid and substance move-
ment in permeable media with fractures, as evidenced in works like [6, 14, 27, 34].
Notable developments aligned with the approach discussed in this paper are ap-
parent in [23, 28, 33]. In [28], a low-order Raviart–Thomas finite element method
was employed for addressing Darcy flow in a 1D network of fractures. Although
triangulations were constructed for each fracture surface, they did not align with
the intersection points of fractures. To manage solution discontinuities at junctions,
the XFEM methodology was employed. A comprehensive review of this and other
numerical approaches, assuming varying degrees of conformity in fracture mesh in-
terfaces, is available in [30]. Triangulating each fracture branch proves challenging,
especially in the case of extensive networks or intricate geometries. Consequently,
the next level of nonconformity involves departing from the conventional triangu-
lation of fractures. Instead, the flow problem is discretized exclusively along the
fracture network, utilizing degrees of freedom tailored to the ambient mesh, en-
suring complete separation of the background mesh from the embedded fracture
network. This innovative strategy was initially introduced in [39] and has evolved
into the Trace Finite Element Method (FEM) for addressing scalar elliptic partial
differential equations (PDEs) on surfaces [38], forming a component of the Cut FEM
[16]. The Trace FEM methodology has found application in modeling the transport
and diffusion of contaminants in fractured porous media, as demonstrated in [23].
In addressing the Darcy problem, the Trace Finite Element Method (FEM) was
first explored in [33], where the authors focused on solving the Darcy problem on a
surface embedded within a volumetric tetrahedral grid, utilizing a modified form of
the Hughes–Masud weak formulation to compute pressure and tangential velocity.

Building upon the groundwork laid in [33], we apply the Trace Finite Element
Method (FEM) alongside a modified version of the Hughes–Masud weak formula-
tion. Our current study stands out in two crucial aspects. Firstly, we embrace
octree Cartesian grids for the ambient mesh, ensuring convenient adaptability. Sec-
ondly, and notably, we delve into the realm of intersecting piecewise smooth sur-
faces representing branching fractures, in contrast to previous work that focused
solely on closed smooth manifolds. Introducing branching surfaces leads to discon-
tinuous fluxes and a piecewise smooth pressure field. Addressing these challenges
without relying on mesh fitting while maintaining optimal convergence order is a
non-trivial task. In our manuscript, we tackle this issue by allowing discontinuities
in both velocity and pressure fields within the background cells intersected by frac-
ture junctions, achieved through the incorporation of a penalty term. Our strategy
for managing fracture junctions shares similarities with the Nitsche-XFEM method
introduced by Hansbo and Hansbo [32] for handling interface problems and aligns
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with the broader concept of CutFEM [16]. Notably, our distinctive approach involves
using a different scaling technique for the penalty term. Additionally, we diverge by
omitting specific consistency terms, common in discontinuous Galerkin FEM and
Nitsche’s method, along the junctions. Remarkably, despite these variations, we
consistently maintain optimal asymptotic accuracy in our methodology.

(a) (b)

Figure 1: (a) An instance of a bulk domain featuring a singular fracture, wherein
the background mesh undergoes refinement in close proximity to the fracture. (b)
The magnified view of the surface triangulation generated for numerical integration.
[22]

Incorporating interaction conditions introduces interdependence and asymmetry
into the Darcy model, primarily due to its saddle-point formulation. Consequently,
employing the Trace finite element method in conjunction with this model generates
a set of algebraic equations characterized by interdependence, indefiniteness, asym-
metry, and ill-conditioning. To tackle this computational hurdle, we employ the
generalized minimal residual (GMRES) method with preconditioning, as suggested
by [18, 19], as a viable solution strategy for the discretized system.

Significant research efforts have been dedicated to advancing preconditioning
techniques tailored specifically for saddle-point problems. Various existing precondi-
tioners in the literature are formulated and assessed with a comprehensive algebraic
perspective, applicable to generic saddle-point problems. While certain precondi-
tioners rely on a singular model, such as a Stokes operator, to address fluid flow, a
limited number address the integration of diverse models and their interconnected
interfaces.

Our focus centers on devising effective and highly operational decoupled pre-
conditioning techniques that fully exploit the inherent mathematical structures of

3



distinct mixed physical models. This entails meticulous consideration of the analyt-
ical properties of local Darcy operators and their interactions at interfaces. Our goal
is to introduce multiple preconditioners specifically designed for the Darcy model,
where preconditioning not only acts as a decoupling mechanism but also contributes
to enhancing the convergence rate [10, 17, 20]. The manuscript will offer a theoret-
ical analysis and present numerical experiments to highlight the effectiveness and
efficiency of the proposed decoupled preconditioners. Additionally, we will explore
how variations in physical parameters impact the convergence performance.

2 Mathematical model

Consider a fragmented and smooth surface denoted as Γ̂ within a specified bulk do-
main Ω̂ ⊂ R

3. This surface Γ̂ represents a 2D fracture network, comprising numerous
interconnected components expressed as Γ̂ =

⋃n

j=1 Γ̂j. Each Γ̂j is conceptualized as
a smooth, orientable surface without self-intersections. For analytical purposes, we
assume that every Γ̂j is a subdomain of a more extensive C2–smooth surface Γ̂j with

∂Γ̂j ∩ Ω̂ = ∅. Additionally, ∂Γ̂j is a piece-wise smooth and Lipschitz curve within

Γ̂j. The individual components Γ̂j only intersect by a curve, i.e., meas2(Γ̂j ∩ Γ̂i) = 0

for j ̸= i, and Γ̂j ∩ Γ̂i = ∅ for j ̸= i. This condition implies that fracture parts sepa-
rated by a junction are considered distinct components. Moreover, let m represent a
unit normal vector defined across the entire surface Γ̂ except at junction interfaces.
Specifically, we represent mj as m on Γ̂j, extending similar notation to other vector

and scalar fields defined on the union of surfaces
⋃n

j=1 Γ̂j.
The representation of fractures as 2D interfaces in porous media flow has been

extensively studied in the literature, as demonstrated by various works [1, 2, 29, 36].
In this context, the movement within the fracture component Γ̂j is defined by the
tangential velocity field uj(x), representing the flow rate through the cross-section

of the fracture, and the pressure field pj(x) for x ∈ Γ̂j. The Darcy systems govern

the steady-state flow within Γ̂.











K−1
j uj +∇Γ̂pj = fj

divΓ̂uj = g

uj · nj = 0

in Γ̂j, (j = 1, . . . , n) (1)

In conjunction with the provided conditions at the interface and boundaries
of the computational domain, the equation (1) and subsequent discussions in the
manuscript utilize ∇Γ̂ and divΓ̂ to represent the operators for surface tangential
gradient and divergence, respectively. Within this context, the term g signifies
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the source term, typically originating from fluid exchange with the porous matrix
(though not addressed in this paper). The external force per unit area, represented
by fj, acts tangentially to Γ̂j, and its direction aligns with the tangential plane.
The symmetric permeability tensor along the fracture is denoted as Kj. For any
tangential vector field v (i.e., v ·nj = 0), where nj is the normal vector, it satisfies the
condition vTKjv ≥ ζj|v|

2 with some ζj > 0, and nT
j Kjv = 0. Consequently, K−1

j v

exists for a tangential field v. It is noteworthy that the incorporation of fracture
aperture into Kj can be achieved through scaling, as discussed in [1].

In the scenario where Γ̂ is piece-wise smooth, there are additional considerations,
especially when dealing with fracture networks where the edges, or fracture junc-
tions, play a crucial role. Let’s focus on an edge denoted as ê, which is shared by
Mê smooth components Γ̂jl, each associated with an index (l = 1, . . . ,Mê). The set
({jl}l=1,...,Mê

) represents a subset of indices from (1, . . . , n) unique to each ê. The

normal vector on the boundary ∂Γ̂j is oriented within the tangential plane of Γ̂j and
points outward. The conservation of fluid mass can be articulated as:

Mê
∑

l=1

ujl ·mjl = 0 on ê, (2)

This requirement, as stated in the second condition at the interface, ensures
pressure continuity along ê:

pj1 = . . . = pjMê
on ê. (3)

Consider the set Ê, which includes the intersection points of fractures. It is
reasonable to assume that Ê is a finite set, and for any ê ∈ Ê, the measure of ê,
denoted as meas1(ê), satisfies 0 < meas1(ê) < +∞.

Finally, we specify pressure constraints at the boundary on ∂Γ̂d and enforce the
boundary condition for flux ∂Γ̂n, where ∂Γ̂ = ∂Γ̂d ∪ ∂Γ̂n:

{

nj · uj = φj on ∂Γ̂n ∩ ∂Γ̂j, (j = 1, . . . , n)

p = pd on ∂Γ̂d.
(4)

3 Finite element method

Initially, let’s assume the existence of a discretization denoted as Tδh for the volu-
metric domain Ω̂ (matrix). This discretization involves a consistent subdivision into
tetrahedra with shape-regular properties. Our focus is on a Cartesian background
mesh characterized by cubic cells, showcasing flexibility through local refinement
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achieved by iteratively subdividing each cubic cell into eight smaller cubic subcells.
This iterative process results in a grid structure following an octree hierarchy, pro-
viding a versatile foundation for our study. This mesh serves as the discretization
Tδh for the volumetric domain Ω̂, where Ω̂ =

⋃

T∈Tδh
T . The fracture network Γ̂ ⊂ Ω̂

is allowed to intersect this mesh arbitrarily. For analytical considerations, we as-
sume that the cells intersected by Γ̂ have a quasi-uniform size characterized by the
characteristic size δh.

Now, consider the ambient finite element space, encompassing all piecewise tri-
linear continuous functions defined on the bulk octree mesh Tδh.

Vδh := {v̂ ∈ C(Ω̂) | v̂|S ∈ P1 ∀S ∈ Tδh}, (5)

where P1 = span{1, ψ1, ψ2, ψ3, ψ1ψ2, ψ1ψ3, ψ2ψ3, ψ1ψ2ψ3}.
For every fracture Γ̂j in the network Γ̂, we define the subregion of Ω̂ formed by

all cells intersected by Γ̂j.

Ω̂jδh =
⋃

T ∈ Tδh : T ∩ Γ̂j ̸= ∅,

Additionally, elucidate the constraints and outline any restrictions associated with
the proposed methodology of Vδh to Ω̂jδh, representing the set of functions that are
continuous and defined on distinct trilinear pieces, forming a piecewise structure.

V
j
δh := {û ∈ C(Ω̂j

δh) | ∃v̂ ∈ Vδhsuch thatû = v̂|Ω̂j
δh
}. (6)

Our spaces for trial and testing finite elements are constructed using V j
δh. We specify

the pressure and velocity function spaces as follows:

Vδh =
n
∏

j=1

[V j
δh] and Uδh =

n
∏

j=1

[V j
δh]

3.

According to the Trace FEM approach, the solutions to the equations (1)-(4) utiliz-
ing finite elements will manifest as traces of functions derived from Pδh and Uδh on
Γ̂. However, the finite element formulation will express these functions in relation to
⋃n

j=1 Ω̂
j
δh. Consequently, this approach gives rise to a system of algebraic equations

concerning standard nodal degrees of freedom within the overarching mesh Tδh.
Furthermore, we use the symbol ((·, ·)P ) to denote the (L2) scalar product across

a region (P ), which might signify a 3D, 2D, or 1D manifold depending on the context.
For example, utilizing this expression, the Green formula on Γ̂j can be formulated
as:

(divΓ̂v̂, p)Γ̂j
= −(v̂,∇Γ̂p)Γ̂j

+ (nj · v̂, p)∂Γ̂j
(7)
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For any smooth vector field tangent to the surface v̂ and scalar field (p) on (Γj),
the expression holds true.

The suggested finite element approach broadens the stabilized mixed formulation
for the Darcy problem, initially introduced in [37], originally designed for planar do-
mains. The pivotal observation lies in the fact that the smooth solution to equations
(1)-(4) satisfies the identity.

(K−1
j u+∇Γ̂q, v̂)Γ̂i

+ (divΓ̂u, p)Γ̂i
+

1

2
(K−1

j u+∇Γ̂q,−v̂ +Kj∇Γ̂p)Γ̂j

= (g, p)Γ̂j
+

1

2
(f,−v̂ +Kj∇Γ̂p)Γ̂j

For all p ∈ H1(Γ̂j), v̂ ∈ L2(Γ̂j), and (j = 1, . . . , n), the expression (7) is applied.

Setting (p = 0) on ∂Γ̂d and conducting straightforward calculations, this yields:

(K−1
j u, v̂)Γ̂j

+ (∇Γ̂q, v̂)Γ̂j
− (∇Γ̂p, u)Γ̂j

+ (Kj∇Γ̂q,∇Γ̂p)Γ̂j

+ 2(nj · u, p)∂Γ̂j
= 2(g, p)Γ̂j

+ (f,−v̂ +Kj∇p)Γ̂j

(8)

Another valuable insight is that (q) and (p) can be recognized by their normal
extensions to a vicinity of Γ̂j for every (j). This recognition, assumed throughout
the paper, implies the equality ∇Γ̂q = ∇q. This equality can be further employed
in (8) to derive:

(K−1
j u, v̂)Γ̂j

+ (∇q, v̂)Γ̂j
− (∇p, u)Γ̂j

+ (Kj∇q,∇p)Γ̂j

+ 2(mj · u, p)∂Γ̂j
= 2(g, p)Γ̂j

+ (f,−v̂ +Kj∇p)Γ̂j

(9)

This corresponds to the comprehensive gradient representation of the surface
partial differential equations (PDEs), as elucidated in [24, 40]. The full gradient
formulation leverages the inclusion of Γ̂ within the surrounding Euclidean space, en-
hancing stability in a broader context. This formulation is particularly well-suited
for finite element methods built upon external elements. It maintains consistency
across various ambient finite element methods aimed at approximating both the
surface solution and its normal extension. In the context of the surface Darcy prob-
lem, the full gradient formulation demonstrated its efficacy in [33]. To summarize,
through the aggregation of equalities (9) for all (j = 1, . . . , n) and the incorporation
of the interface condition (2), along with the flux boundary condition derived from
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(4), we infer that any smooth solution of (1)—(4) adheres to:

(K−1u, v̂)Γ̂ + (∇q, v̂)Γ̂ − (∇p, u)Γ̂ + (Kj∇q,∇p)Γ̂

+
∑

ê∈Ê

2

Mê

Mê−1
∑

l=1

Mê
∑

k=l+1

(mjl · ujl − njk · ujk, pjl − pjk)v̂

= 2(g, p)Γ̂ + (f,−v̂ +Kj∇p)Γ̂ − 2(Φ, p)∂Γ̂n

(10)

For any p ∈
∏n

j=1H
1(Γ̂j) with p = 0 on ∂Γ̂d, and

(

v̂ ∈ L2(Γ̂)3
)

, addressing

the summation of the contributions from the edges involves the utilization of (2)
alongside the following identity:

M
∑

j=1

ajbj =

(

1

M

)

[(

M
∑

j=1

aj

)(

M
∑

j=1

bj

)

+

[

M−1
∑

j=1

M
∑

i=j+1

(aj − ai)(bj − bi)

]]

(∀ai, bi ∈ R)

(11)
Our finite element approach relies on the equality (10). It’s noteworthy that we

presume the extension of (Kj) to possess positive definiteness and symmetry when
extended to (R3), rather than exclusively in the tangential space. This extension
doesn’t impact any quantities in (10) but proves beneficial in subsequent stages of
the finite element formulation. To approximate pressure, we employ finite element
functions from (Pδh), featuring discontinuities across ê ∈ Ê. Consequently, we in-
troduce a penalty term to our formulation to weakly enforce the pressure continuity
condition from (4). Furthermore, we choose over-penalization by opting for a dis-
tinct scaling of the penalty parameter, in contrast to the conventional approach in
Nitsche’s [32] or methods based on the discontinuous Galerkin approach [4]. In-
triguingly, this over-penalization allows us to bypass other edge terms in the finite
formulation, significantly simplifying the method while preserving optimal consis-
tency order.

The aforementioned equation (10) can be decomposed into two linear equations
as follows:

(K−1u, v̂)Γ̂ + (∇q, v̂)Γ̂ = (f,−v̂ +Kj∇p)Γ̂ − 2(Φ, p)∂Γ̂n
, (12)

− (∇p, u)Γ̂ + (Ki∇q,∇p)Γ̂ +
∑

ê∈Ê

ρêδh
2

Me−1
∑

l=1

Mê
∑

j=k

(qjl − qjk, pjl − pjk)ê+

n
∑

j=1

ρuδh(mj · ∇uj,mj · ∇v̂j)Ω̂j
δh
+

n
∑

j=1

ρqδh(mj · ∇qj,mj · ∇pj)Ω̂j
δh

= 2(g, p)Γ̂

(13)
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The parameters ρ are tunable, and for both the investigation and experiments,
we set them to a constant value of 1. The term Iδhb (qd) denotes the representation of
the boundary condition through interpolation. This process of interpolation extends
pressure values from ∂Γ̂d in the normal directions within ∂Ω̂ to the relevant nodal
values originating from the intersection of Ω̂δh

j and ∂Ω̂.
Consequently, the linear system of equations in (12)–(13) can be represented in

matrix form as:

[

M C

CT W

] [

U

P

]

=

[

f

g

]

(14)

Where, (Mij = (K−1ψj, ψl), l = 1, 2, 3, · · ·, n), (Cij = (∇φk, ψj), k = 1, 2, 3, · ·
·,m and j = 1, 2, 3, · · ·, n). Wik = (K∇φk,∇φl)+ tlk, Where tik are the elements
from the discretization of the summation terms in (13). Also, [û1, û2, · · ·, ûn]

T , and
P = [p1, p2, · · ·, pn]

T .

4 Proposed Preconditioned Matrix

This section begins by presenting fundamental concepts and core principles related
to iterative techniques. Suppose A ∈ R

N×N has an arbitrary decomposition (A =
P − R), where P is non-singular [5, 7–9]. In the context of this decomposition, a
foundational iterative approach to address the system equation (14) manifests itself
in the subsequent manner:

x(k+1) = P−1b+ P−1Rx(k)khan(k = 0, 1, 2, ...), (15)

The iterative process (15) demonstrates convergence when initiated with any starting
point x(0) ∈ R

n, solely contingent on the condition that the spectral radius of the
iteration matrix P−1R remains strictly below one.

Now we investigate a partitioning strategy for the coefficient matrix in (14),

A =

[

M C

CT W

]

. (16)

Consider
∗A = P1 −R∗ (17)

where,*

∗P1 =

[

M 0
−CT W − CTM−1C

]

, R =

[

0 − C

0 −CTM−1C

]

(18)
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To address the system (14), we can devise the subsequent iterative scheme.

khanx(k+1) = P−1
1 b+Gx(k), khan(k = 0, 1, 2, ..., ) (19)

x0 ∈ R
m+n represents an arbitrary initial estimate, and the matrix G is

rG = P−1
1 Rr =

[

M 0
−CT W − CTM−1C

]−1[
0 − C

0 −CTM−1C

]

(20)

The matrixrP1 in (18) can berdecomposed into therform:

rP1 =

[

I 0
−CTM−1 I

] [

M 0
0 W − CTM−1C

]

(21)

Fromrthe aboverdecomposition, It is readilyrapparent that the matrixrP1 is in-
vertiblerand we have,

rP−1
1 =

[

M 0
0 W − CTM−1C

]−1[
I 0
CTM−1 I

]

(22)

Theorem 1 Assume thatM is a positive definite symmetric matrix with dimensions
m×m,Let C be a full-rank Toeplitz matrix with dimensions m×n. In this scenario,
regardless of the initial estimate, the iterative method (19) converges to the unique
solution.

Proof:*
Consideringrthe relation expressedrin (22), we obtain

G = P−1
1 R =

[

M 0
0 W − CTM−1C

]−1 [
I 0
CTM−1 I

][

0 C

0 −CTM−1C

]

=

[

M−1 0
0 (W − CTM−1C)−1

] [

0 C

0 0

]

=

[

0 −M−1C

0 0

]

We deduce that all the eigenvalues associated with the matrix G equate to zero.
As a result, we establish spectral radius ρ(G) < 1, confirming the theorem’s validity.

Typically, the effectiveness of the iterative scheme (19) in converging may not
be optimal for solving the system (14). Our primary focus involves leveraging the
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matrix P1 as a preconditioner to enhance the efficiency of Krylov subspace methods,
such as GMRES.

The incorporation of the preconditioner P1 necessitates addressing a linear sub-
system in the subsequent stages.

∗P1z = r =

[

M 0
0 W − CTM−1C

] [

I 0
CTM−1 I

][

z1
z2

]

(23)

∗P1z = r = ∗

[

r1
r2

]

∗

Subsequently, we can outline a straightforward algorithm for computing z = P−1
1 r

as follows.

Algorithm 1: Calculation of z = P−1
1 r

1. Solve, Mz1 = r1 for z1;

2. Set, (W − CTM−1C)z2 = CTM−1r1 + r2.

Theorem 2 Consider a symmetric positive definite matrixM and a full-rank Toeplitz
matrix C, with dimensions (m×m) and (m× n) respectively. Then the precondi-
tioner P1 satisfies

σ(P−1
1 A) = 1,

where σ(.) denotes the set of all eigenvalues of a matrix.

Proof:*
It is straightforward to confirm that

rP−1
1 Ar = ∗I − P−1

1 Rr =

[

I −M−1C

0r rI

]

. (24)

This complete theorem.
Certainly! To enhance our result, let’s extend our results in a manner that en-

sures all blocks are non-zero. This generalization will provide a more comprehensive
and inclusive perspective, ensuring that each block contributes meaningfully to the
overall outcome. Indeed, our generalized preconditioner matrix is denoted as P2,
from the partitioning

∗A = P2 −R∗ (25)
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where

∗P2 =

[

M 2C
−CT W − CTM−1C

]

, R =

[

0 C

0 −CTM−1C

]

(26)

This preconditioner P2 has been crafted to accommodate a scenario where all blocks
are non-zero, thus facilitating a more robust and versatile solution. The application
of this preconditioner matrix aims to enhance the efficiency and reliability of our
computations, ensuring that every block plays a significant role in optimizing the
overall performance.

To address the system (14), so we can devise the subsequent iterative scheme.

khanx(k+1) = P−1
2 b+Gx(k), khan(k = 0, 1, 2, ..., ) (27)

x0 ∈ R
m+n represents an arbitrary initial estimate, and the matrix G is

rG = P−1
2 Rr =

[

M 2C
−CT W − CTM−1C

]−1[
0 C

0 −CTM−1C

]

(28)

The matrixrP2 in (26) can berdecomposed into therform:

rP2 =

[

I 0
−CTM−1 I

] [

M 0
0 W + CTM−1C

] [

I 2M−1C

0 I

]

(29)

Fromrthe aboverdecomposition, It is readilyrapparent that the matrixrP2 is in-
vertiblerand we have,

rP−1
2 =

[

I − 2M−1C

0 I

] [

M 0
0 W + CTM−1C

]−1 [
I 0
CTM−1 I

]

(30)

Ensuring the convergence of the iterative process (27) is asserted through the sub-
sequent theorem.

Theorem 3 Assume thatM is a positive definite symmetric matrix with dimensions
m × m and let C be a full-rank Toeplitz matrix with dimensions m × n. Then
regardless of the initial estimate, the iterative method (27) converges to the unique
solution.

Proof:*
Consideringrthe relation expressedrin (30), we obtain

G = rP−1
2 R =

[

I − 2M−1C

0 I

] [

M 0
0 W + CTM−1C

]−1 [
I 0
CTM−1 I

][

0 C

0 −CTM−1C

]
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=

[

I − 2M−1C

0 I

] [

M−1 0
0 (W + CTM−1C)−1

] [

0 C

0 0

]

=

[

I − 2M−1C

0 I

][

0 −M−1C

0 0

]

=

[

0 −M−1C

0 0

]

We deduce that all the eigenvalues associated with the matrix G equate to zero.
As a result, we establish ρ(G) < 1, confirming the theorem’s validity.

The incorporation of the preconditioner P2 necessitates addressing a linear sub-
system in the subsequent stages.

∗P2z = r =

[

I 0
−CTM−1 I

] [

M 0
0 W + CTM−1C

] [

I 2M−1C

0 I

][

z1
z2

]

(31)

∗P2z = r = ∗

[

r1
r2

]

∗

Subsequently, we can outline a straightforward algorithm for computing z = P−1
2 r

as follows.

Algorithm 2: Calculation of z = P−1
2 r

1. Solve, (W − CTMC)z1 = r2 + CTM−1r1 for z1;

2. Set, z2 = −2M−1Cz1 −M−1r1.

In the subsequent discussion, we examine the eigenvalues of the preconditioned
matrix P−1

2 A, offering insights into potential acceleration for Krylov subspace meth-
ods.

Theorem 4 In the realm of matrices, consider two entities: a symmetric positive
definite matrix M and a full-rank Toeplitz matrix C, with dimensions (m×m) and
(m× n) respectively.Then the preconditioner P2 satisfies,

σ(P−1
2 A) = 1.
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Proof:*
It is straightforward to confirm that

rP−1
2 Ar = ∗I − P−1

2 Rr =

[

I −M−1C

0r rI

]

. (32)

This complete theorem.
Effectively implementing the preconditioners (P1, P2) involves a single solve with

W − CTM−1C and two matrix-vector multiplications. The primary computational
overhead associated with applying this preconditioner is tied to finding a solution to
a system of linear equations using the matrix of coefficientW −CTM−1C. This task
can be inherently challenging due to the complete fullness of the matrix, making the
formulation of an efficient preconditioner a non-trivial endeavor.

The matrix W −CTM−1C exhibits symmetry and positive definiteness, allowing
for potential exact solutions through sparse Cholesky factorization or approximate
solutions using methods like The preconditioned conjugate gradient (PCG) method
has garnered attention in recent times. A recent study by Benzi and Faccio [12] has
introduced and explored various strategies for effectively solving such linear systems.
These systems find applications in various computational domains, including aug-
mented Lagrangian methods addressing PDE-related saddle point problems [13, 31],
solving KKT systems in constrained optimization [42], and addressing sparse-dense
least squares problems [11, 41]. Their study provides a comprehensive overview of
different applications involving such linear systems and introduces various solution
methodologies.

5 Numerical Experiments

In this section, we assess the performance of modified versions of the proposed
block preconditioner using an illustrative test problem extracted from [22]. The test
problem mirrors a 2D flow scenario, featuring substantial variations in permeability
within the porous flow domain. Tables 1 provide a comprehensive overview, present-
ing the cumulative count of outer GMRES iterations and the corresponding CPU
time in seconds, labeled as ”ITER” and ”CPU Time,” respectively. The total count
of inner GMRES (PCG) iterations necessary for solving the systems described by
(14) is documented under ”ITER.” The iterations conclude upon reaching a specified
criterion.

[

∥Axj − b∥2
∥b∥2

]

≤ tol

The tables include an assessment of the relative error,calculated concerning the
kth approximate solution xj = (uj, pj).
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Error :=
∥xj − x̂∥2

∥x̂∥2
The true solution (x̂) and its approximation (xj) represent the exact solution

and the solution obtained during the (k)− th iteration. Additionally, we employed
random solution vectors as right-hand sides, and the outcomes are averaged over 15
test runs. The iteration counts were rounded to the nearest integer. All computa-
tions were performed on a computer featuring an Intel Core i7-10750H CPU @ 2.60
GHz processor and 16.0 GB RAM, utilizing MATLAB.R2020b.

(a) (b) (c)

Figure 2: Eigen values distribution of the Darcy problem for the size 2000

Table 1: The results obtained from GMRES and GMRES with (P1, P2)

Method Size ITER RELRESI CPU Time

GMRES 1000 100(10) 0.9374 35.5504
GMRES with P1 1000 3(3) 1.4615e-4 7.2965
GMRES with P2 1000 3(4) 0.0014 7.0480

GMRES 1500 140(18) 0.8569 181.5504
GMRES with P1 1500 3(3) 1.2585e-6 23.0029
GMRES with P2 1500 3(5) 9.2415e-4 23.6480

GMRES 2000 190(20) 0.9987 427.5504
GMRES with P1 2000 3(5) 1.1415e-7 43.0480
GMRES with P2 2000 3(5) 6.5421e-5 43.9657

Remark 1 Examining Figure 2, it’s evident that our new preconditioners (P1, P2)
with GMRES exhibit significantly better organization of eigenvalues. In simpler
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terms, for our preconditioners, all eigenvalues fall within the range of 1.0 to 3.0 for
P2, and they are all at 1.0 for P1. This shows that our suggested method of preparing
the data is effective in achieving a more favorable arrangement of eigenvalues.

Remark 2 The information in Table 1 clearly shows that our newly introduced pre-
conditioners GMRES with (P1, P2) consistently achieve the desired level of accuracy
very efficiently, regardless of the problem size. It’s important to highlight that they
rapidly reach the target accuracy, outperforming others in terms of efficiency. The
results indicate that the preconditioners GMRES with (P1, P2) methods not only
quickly achieve the needed precision but also do so using less CPU time. This strong
evidence emphasizes how effective our preconditioner is, demonstrating its ability to
use computer resources wisely without compromising accuracy.

6 Conclusions

In this paper, we introduced a clever way to make solving certain types of mathe-
matical problems faster. This method is specially made for a type of problem related
to how fluids move in networks of fractures. We did some math analysis and found
a unique pattern in the solutions. When we tested it on a computer using a complex
2D model, our method helped the computer find the solution much faster.

Surprisingly, the GMRES with novel preconditioners (P1, P2) we introduced
works a quite better than the simple GMRES method without preconditioner, a
common technique for these kinds of problems. GMRES with novel preconditioners
(P1, P2) can quickly find the answer with fewer attempts and uses less computer
time.
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