Appendix A Supplementary Methods

Total outflow length

To estimate Porphyrion’s total length from its projected length, we perform statistical deprojection.
Equation 9 of Oei et al. [48] stipulates the probability density function (PDF) of an outflow’s total length
random variable (RV) L in case its projected length RV L, is known to equal some value [,. This PDF
is parametrised by the tail index £ of the Pareto distribution assumed to describe L. We calculate the
median and expectation value of L | L, = [, for tail indices £ = —3 and & = —4, the integer values
closest to the observationally favoured £ = —3.5 £ 0.5 [48].

First, we determine the cumulative distribution function (CDF) of L | L, = I, through integration:

l
Fopo, () = /_ Foipne, () AU (A1)

B _é‘ F2 (_%) /rnax {:L‘,l} x/&'fl dx,
C 2 T(=¢) )y 2?21

I
where z == li and 2’ = ll—
P P

For £ = —3, the CDF concretises to

3 [max {x,1} dz’
Frip,—i, () = 5/1 o 1 (A2)
0 ife<1;

Q41 Va2 -1 if 2 > 1.

2z3

The median conditional total length, I,,,, is defined by Fpp, (lm) = % Numerically, we obtain z, =

p=lp
llﬂ ~ 1.0664, or I, ~ 1.0664 I,. As [, = 6.43 £ 0.05 Mpc, we find I, = 6.86 £ 0.05 Mpc. An analogous
numerical determination of the 16-th and 84-th percentiles then yields I = 6.97}-$ Mpc.

For £ = —4, the CDF concretises to

16 max {x,1} da’

Frip,=1,(1) = 37 /) o5V =1 (A3)
0 ifrx <1
% (Wﬂ—l—?:arccos %) ifx>1.

Numerically, we obtain z,, ~ 1.0515, or l,, ~ 1.0515 [, and thus I/, = 6.76 +0.05 Mpc. In the same way

as before, we find [ = 6.87}2 Mpe.
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Equation 10 of Oei et al. [48] gives a closed-form expression for E [L | L, = I,] (§). Table 1 of the same
work lists E[L | L, = [,](£ = =3) = 2%, and E[L | L, = [,]({ = —4) = 321, In the case of Porphyrion,
these expressions concretise to E[L | L, = 1,](§ = —3) = 7.58 £0.06 Mpc and E[L | L, = [,]({ = —4) =
7.28 +0.06 Mpc.

By conditioning L on more knowledge than a value for L, alone, statistical deprojection could be made
more precise. For example, one could additionally condition on the fact that Porphyrion is generated
by a Type 2 radiatively efficient (RE) AGN. If Type 1 RE AGN are seen mostly face-on and Type 2
RE AGN are seen mostly edge-on, as proposed by the unification model [e.g. 27], then the detection of
a Type 2 RE AGN would imply that the jets make a small angle with the sky plane. Extending the
formulae to include this knowledge is beyond the scope of this work; however, mindful of the associated
deprojection factor-reducing effect, we choose £ = —4 as our fiducial tail index.

To assess Porphyrion’s transport capabilities in a cosmological context, it is instructive to calculate
its length relative to Cosmic Web length scales. In particular, the outflow’s total length relative to the
typical cosmic void radius at its epoch is fy = I(1 + z)R; !, where R, is the typical comoving cosmic
void radius. For [ = 6.87}2 Mpc, 2z = 0.896 + 0.001, and R, = 20 Mpc [13], we find f, = 6417 %. For

our fiducial total length | = 7 Mpc, we find f, = 66%.

Void penetration probability

Porphyrion’s orientation relative to its native Cosmic Web filament is currently unknown. We calculate
the probability that an outflow breaches its filament, thus penetrating the surrounding voids, by assuming
that jet orientations are independent from filament orientations. We furthermore assume that the jets
are straight and of equal length, that the filament is of cylindrical shape, and that the host galaxy resides
at the filament’s spine, where the gravitational potential is lowest. The RV ©¢ denotes the angle between
the jet axis and the filament axis, whilst the constants Ry and Dy := 2Ry denote the filament radius and

diameter, respectively. An outflow of total length [ penetrates voids with probability

D
P(Lsin®; > Dy |L=1)=P <sin@f > ;)

D
=1- Fine, (;) . (A4)

The RV ©¢ has support on the interval 0 < § < 7. On this interval, the CDF is

2 27
Fo,(0) =P(O; <) = %/ / sin6’ dy d¢’
o Jo

=1-—cosé. (A5)
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The RV sin ©¢ has support on the interval 0 < y < 1. On this interval, the CDF is

Fane,(y) =P (sinOf <y) =P (0f < arcsiny)

=1—cosarcsiny =1 — m, (A6)

where we use the fact that the arcsine function is monotonically increasing. By combining Eqs. A4 and

A6, we obtain

0 if I < Dy;
P(Lsin@f>Df|L:l): (A7)

1— (8" if1> Dy.

Typically, however, we only know an outflow’s projected length — not its total length. The quantity of

highest practical interest therefore is

py =P (LsinOr > D¢ | L, = 1)

in®
:IP’<L o f>Dpr=lp>

Psin ©,
Sin@f Df Df
=P — | =1—-Fx | — A
(sin@o> lp> X(lp)’ (A8)

where the RV Oy, is the angle between the jet axis and the line of sight, and the RV X is the ratio of the RVs
sin O¢ and sin ©,. These latter RVs are independent and identically distributed: Fyine,(y) = Fsino, (y)-
We derive the PDF fx by using the standard formula for the ratio distribution PDF (for independent
RVs). This formula demands the determination of fyne,(y) = fsimeo, (y). From Eq. A6, we find that on
the interval 0 < y < 1, the PDF is

Ssin O (y) = @Fsm O (y) = (A9)
To find the distribution of X it is helpful to distinguish three intervals. For < 0, fx(x) = 0, because

X is the ratio of two positive RVs. Then, for 0 < x < 1,

fx(x)=x 1 v dy, (A10)
0 \/1 —m2y2\/1 — 92

while for x > 1,

fx(@) == ’ v dy. (A11)
/0 \/1—x2y2\/1—y2
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Fig. A1l: From its projected length and an estimated radius for its native filament, one can
calculate the probability that an outflow penetrates the surrounding voids. Outflows with
projected lengths equalling the diameters of their filaments penetrate voids with 50% probability (as the
dots exemplify).

o
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sos Solving the integrals leads to

0 if z <0;
2 o itz
Fx(o) = EEURIST2 g o g o1 (A12)
2 S
W ifr>1.

sor At x =1, fx is undefined. We calculate F'x through integration, yielding

0 if x <0;
Fx(z) = §+}1((x+1—%)1n}t—;+1n <}:§f) if0<az<l; (A13)
%-l-}lwz_llni—ﬂ if x> 1.

s«os  Fx is continuously extendable at # = 1 by defining Fx (1) := 3. Finally, we define & = lD—pf, so that

809 pv(l') =1- Fx(x)l

%—%((az—l—l—%)lnif—i—kln%) ifo<x<l;
po(z) = % ifx=1; (A14)
L lafoly, ol if 2 > 1.
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The median of X equals unity. Therefore, half of the outflows with projected lengths I, = D; penetrate
voids. For outflows with larger projected lengths, void penetration is more likely than not. Figure Al
shows void penetration probabilities for physically relevant parameter ranges.

For Porphyrion, we take [, as before and adopt a filament (core) radius Ry = 1.2 Mpc [68]; this yields
x = 0.373 £ 0.003 and therefore p, = 95.2 + 0.1%.

Filament shape modification

We predict that powerful, long-lived outflows like Porphyrion cause their host galaxies’ filaments to
expand thermally. Through lateral shocks, the jets distribute an amount of heat @ over the warm-hot
IGM. This medium is sufficiently dilute that plasma interactions can be neglected; as a result, the ideal
gas law, pV = NkgT, may be adopted as the equation of state. Here, p, V', N, and T are the filament’s
pressure, volume, plasma particle number, and temperature, respectively; kg is Boltzmann’s constant.

Assuming a thermodynamic process at constant pressure and particle number, the work W is

W = pAV = NkgAT. (A15)

Before the outflow’s emergence, the filament’s equation of state is pV; = NkgT}, where V; and T; are

its initial volume and temperature, respectively. Upon dividing Eq. A15 by this equation of state, one

obtains

= (A16)

Assuming that the filament retains a cylindrical shape, initially with radius r; and finally with radius ¢,
and using that AV := V; — Vj, one obtains
T AT

— =4/1 .
Ty +Ti

(A7)

The radius ratio, :—f, depends only on the ratio between the temperature increase AT := Ty — T} and the

initial temperature. The temperature increase is

Q
NCpm’

AT = (A18)

where Cp, 1, is the molar heat capacity at constant pressure. For a monatomic gas or a hydrogen plasma,

Cp,m = 2R, where R is the molar gas constant. The number of filamentary electrons and atomic nuclei
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affected by the outflow is

N = @7 (A19)
g

where L is the length of the cylindrical segment affected, p; is the initial baryonic mass density, u is
the average mass of a plasma particle relative to the proton mass, and my is the proton mass. We
estimate % by multiplying the typical speed of lateral shocks with the outflow’s lifetime. We decompose
pi = PeoSdeMm,o(l + 2)3(1 + &), where z and § are the filament’s cosmological redshift and baryonic

overdensity, respectively.
We assess the outflow-induced morphological change to Porphyrion’s filament by evaluating Eq. A17,
taking Q = 10°° J, r; = 1.2 Mpc, L = 7 Mpc, 2 = 0.9, 1 + 6 = 10, p = 0.5, and T} = 107 K; we find
AT = 9-10° K and 7 = 1.7 Mpc (an increase of ~40%). Porphyrion’s heat dissipation renders the

outflow’s native filament much hotter and thicker than it would have otherwise been.

Transport of heavy elements to voids

Outflows from RE AGN could contain more heavy atoms than outflows from RI AGN: RE AGN tend
to reside in galaxies with higher star formation rates and thus more vigorous stellar winds, suggesting
increased entrainment of wind-borne atomic nuclei into jets [77]. The order-of-magnitude calculations
presented here, to be verified by future simulations, indicate that Mpc-scale outflows could supply Mpc?-
scale volumes in cosmic voids with significant heavy atoms, though consistent with upper limits [65].

We calculated the heavy element enrichment of the IGM in voids due to the deposition of atomic
nuclei initially entrained in the jets of Mpc-scale outflows. In particular, we estimated the final metallicity
in the deposition region considering both internal and external entrainment. Internal entrainment refers
to the entrainment into jets of atomic nuclei from stellar winds, internal to the host galaxy. External
entrainment refers to the entrainment into jets of atomic nuclei dwelling in the IGM, external to the
host galaxy.

Denoting the (two-sided) internal mass entrainment rate by M;, which we assumed constant through

time, the total internally entrained mass by an outflow of age T is

M; = M;T. (A20)
The internal mass entrainment rates of Centaurus A and 3C 31, both Fanaroff-Riley I (FR I) outflows
in the Local Universe, are estimated to be M; = 2- 1073 Mg yr=' [77] and M; = 8- 1073 Mg yr—*

[35], respectively. At M, = 6.3 - 10! Mg, 3C 31’s host stellar mass is similar to Porphyrion’s. However,

Porphyrion is a Fanaroff-Riley II (FR II) outflow, suggesting a smaller jet opening angle w and thus a

31



860

861

862

865

866

86

868

869

870

880

882

885

smaller M. If w is a factor of order unity smaller for FR IT outflows than for FR I outflows [e.g. 36, 59],
and Mi o« w?, then MFRH ~ 10’1MFR1. On the other hand, Porphyrion’s host is seen much closer
to the cosmic heyday of star formation, suggesting a larger SFR and thus a larger M. After z = 1.9,
SFRs S typically decayed exponentially with an e-folding time of 3.9 Gyr [e.g. 40]. If M; S, then
Mi(z = zp) ~ €2Mi(z = 0) ~ 10" M;(z = 0), where zp is Porphyrion’s redshift. Assuming that both
effects are indeed of comparable importance, we provisionally adopted 3C 31’s M, =8-10"3 Mg yr—1

as our fiducial value. Taking T as before, we obtained M; = 2 - 10" M. The total externally entrained

mass is

M, = /0 pe(r)Ac(r) dr, (A21)

where A, (r) is the entrainment cross-section at a distance r from the AGN. Perhaps the simplest approach
is to parametrise A, = mR2, where R, is a (constant) effective radius defined such that all baryons closer
to the jet axis than R, are entrained. Taking I and p, as before, and R, = 1 kpc [e.g. 55], we obtained
M, = 4-10" M. Although highly uncertain, these estimates suggest that M; and M, can be of the same
order of magnitude.

The total internally entrained mass in heavy elements is Z; M;, where Z; is the mass-weighted mean
metallicity of the galaxy’s stellar winds. The total externally entrained mass in heavy elements is Z,M,,
where Z, is the mass-weighted metallicity of the IGM along the jet. Assuming that the IGM in the voids

is initially pristine, its final metallicity is

ZiM; + Z M,

ZV == Sr AT 1
Mi+Me+va

(A22)
where p, is the baryon mass density within a deposition region of volume V. Taking a spherical deposition
region with a diameter of 1 Mpc, and p, as before, we obtained p,V = 7-10° My. Assuming Z; = Z
[e.g. 77] and Z, = 1071 Z [e.g. 42], we found Z, = 3 - 1073 Zg. In conclusion, order-of-magnitude
arguments suggest that void-penetrating Mpc-scale outflows can endow the local IGM with metallicities

Zy ~1073-10"2 Zg.

Quasar mass—based host galaxy candidate elimination

SDSS J152933.03+-601552.5 is the quasar-hosting galaxy 19” north-northeast of J152932.164-601534.4,
the galaxy we have identified as Porphyrion’s host. We initially also considered SDSS
J152933.034+-601552.5 as a host galaxy candidate. However, aforementioned arguments involving the pres-
ence of jets and their orientation and, to a lesser degree, arguments involving core radio luminosity and

core synchrotron self-absorption all favour J152932.164-601534.4. We now discuss how our results would
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change if, instead, SDSS J152933.03+601552.5 were Porphyrion’s host galaxy. Doing so will lead to a
contradiction that disproves this alternative hypothesis.

First, we discuss results that do not require dynamical modelling. To start with, Porphyrion would
remain generated by an RE AGN. The host galaxy redshift would decrease from z = 0.896 £0.001 to z =
0.799+0.001, decreasing Porphyrion’s projected length from I, = 6.43+0.05 Mpc to I, = 6.21£0.05 Mpc.
Again using ¢ = —4, the total length would decrease from [ = 6.87}2 Mpc to | = 6.57}2 Mpc and its
conditional expectation from E[L | L, = [,] = 7.28 £ 0.06 Mpc to E[L | L, = l,] = 7.03 £ 0.06 Mpc. If
orientation distinguishes Type 1 from Type 2 RE AGN, as the unification model supposes, then these
statistical deprojection results may underestimate Porphyrion’s total length. Porphyrion would remain
the projectively largest galaxy-made structure identified so far. Porphyrion’s total radio luminosity at
rest-frame wavelength A\, = 2 m would decrease from L, =2.84+0.3 -10?¢ W Hz ! to L, =2.24+0.2 -
1026 W Hz~ 1.

Next, we discuss results that come from dynamical modelling. The jet power would decrease from Q =
1.34£0.1-10% W to Q = 1.04+0.1-10% W, while the age would slightly increase from 7' = 1.970-7 Gyr to
T = 19737 Gyr.% The transported energy would decrease from FE = 7.673:2-10° J to E = 6.47}-5-10% J,
and the black hole mass gain from AM, > 8.5722- 108 Mg to AM, > 7.2122.10% M.

Finally, we arrive at a contradiction, as the quasar’s SMBH mass (measured from its SDSS BOSS
spectrum) M, = 2.5+ 0.3 - 108 Mg, [11]. This mass is lower than the minimum mass gain associated to
the fuelling of Porphyrion’s jets. Thus, assuming that SDSS J152933.03+601552.5 is the outflow’s host

galaxy leads to a contradiction. This argument reaffirms that J152932.16+601534.4 is Porphyrion’s host.

Diffusion of lobe plasma through voids

When cosmic rays move through the jumbled magnetic fields of galaxy clusters and filaments of the
Cosmic Web, the Lorentz force scatters them repeatedly. The mean free path of the ensuing random
walk is so short that the CRs radiate away their energy before they are able to travel a cosmologically
significant distance [e.g. 6]. Clusters and filaments thus effectively lock into place the CRs that are
injected into them. By contrast, magnetic fields with Mpc-scale coherence lengths in voids are orders of
magnitude weaker than those in clusters and filaments [e.g. 10], and as a result, CRs that are released
into voids might diffuse through their entirety within a few gigayears. Void-filling diffusion of CRs might
be especially rapid at early epochs: during Porphyrion’s lifetime, for instance, the proper volumes of
voids were on average an order of magnitude smaller than they are today.

Consider a void region filled with relativistic particles, so that their velocity components obey

v+ vi + 02 ~ 2. (A23)

SSignificant jet-mediated transport of heavy elements to the IGM would remain plausible. The host’s stellar mass would decrease
from M, = 6.7+ 1.4- 10" Mg to M, = 4.0703 - 10" Mg, while the SFR would become S = 4.970% . 10" Mg yr~ " [3].
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We treat v,, vy, and v, as random variables subject to the above constraint. If the particles have no bulk

motion, and move in all directions with equal probability density,
E[vy] =E[v)] = E[v)] (A24)

for any N € R. In particular, given the absence of bulk motion, E[v,] = E[v,] = E[v,] = 0. By taking
expectations on both sides of Eq. A23, using the linearity of expectation, and invoking Eq. A24, we find

E[v?] = Ejv?] = E[v?] = <. (A25)

Yy z

Without loss of generality, we assume the region’s magnetic field B to be oriented along the z-axis. The
speed perpendicular to B is v, = ,/v2 + v2, so that, upon invoking Eq. A25, we find E[v]] = 22 A

typical speed for relativistic particles perpendicular to a magnetic field thus is

VER?] = \/zc ~ 0.8165 c. (A26)

Starting from Fick’s first law of diffusion, and solving the case of Brownian motion in three dimensions,

one obtains
r=vV6DIt, (A27)

where 7 is the typical proper distance to the particles’ origin after a time ¢. To find the diffusion coefficient
D, we consider Bohm diffusion, in which charged particles diffuse through a turbulent magnetic field as
a result of the Lorentz force. Whereas predicting the trajectory of any single charged particle requires
knowledge of the specific magnetic field structure in its surroundings, the statistical properties of Bohm
diffusion are determined solely by the statistical properties of the magnetic field and the charge and
energy of the diffusing particles. The Larmor radius for a particle with Lorentz factor ~, total velocity
v, rest mass m, and charge ¢, is
A(v)my

ry, = ———. A28
L= B (A28)

For a relativistic particle whose v is given by Eq. A26, we obtain a Larmor radius

5 E , E 100G
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where E is the total (i.e. rest plus kinetic) energy of the particle. The diffusion coefficient for charged

particles in a magnetic field with a Kolmogorov turbulence spectrum is well approximated [21] by

D(E) ~ Dponm(Eo) (5))%’ + DBohm(F1) <§1)2 . (A30)

Here, Ej is the energy for which the circumference of gyration equals the magnetic field coherence length

At
27T7“L(E0) = )\c- (A31)

For ¢ = +e, where e is the elementary charge, this equation implies that

3 Aeclq|B 5 Ac B
Eo=4/2 —18-1 : : . A32
0 \/g o 8107 GeV- e 105 G (A32)

Furthermore, E, = %EO. The Bohm diffusion coefficient [e.g. 21] Dpohm is

Dponm(E) = gm(m (A33)

_g0.102 Mp¢ _E_ 107°G

. . A34
Gyr 1 GeV B ( )
We note that
Do (Eo) = —Xe = 1.6 - 101 Mpe® A (A35)
BohmAB0) 7 g e T & Gyr 1 Mpc

is independent of the void’s magnetic field strength. Because Dpopm 71, & E, we have Dponm(E1) =
3 DBohm (Eo).
For E =1 GeV, A\, = 1 Mpc, and B = 107! G, we find D(E) = 2.9 hél;c:. After t = 1 Gyr, the

typical displacement of cosmic rays that escaped from the outflow’s lobes is » = 4.2 Mpc. We note that r

scales slowly with particle energy, magnetic field strength, and (to a lesser degree) with coherence length:

roc ESB 813, (A36)
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017 For short time intervals ¢, we can ignore the expansion of the Universe; defining r. := r(1 + z), the void

915 volume-filling fraction V of a single lobe becomes

V= (i;z)g (A37)

949 For sufficiently short time intervals ¢, particles move in rectilinear fashion, and the typical proper
950 displacement of a relativistic particle within t is r = ct, not r = /6 Dt. Diffusion can only possibly provide
951 an accurate description of the typical displacement for sufficiently large t. As superluminal motion is

952 impossible,
6D
V6Dt < ct, or t > = =T (A38)

oss where 74 is the diffusion timescale (as in Globus et al. [21], but with a factor 6 instead of 4). Diffusion
952 only has a role to play in the description of particle movement through voids when 74 < 7, the ballistic
955 timescale for particle movement through voids. We define
R
T = —, A39
b (14 2)c (A39)
956 where R, is the comoving void radius. As 7q o< D, there is a maximum diffusion coefficient, Dy, above

o057 which the diffusive description is invalid. Solving 7q(Dmax) = b for Dpax, we obtain

R.c

Dmax B E—
6(1+ 2)

(A40)
9s¢  This maximum diffusion coefficient corresponds to a minimum magnetic field strength, By,;,. Approxi-

o050 mating Dmax = DBohm (F, Bmin), we find

Buin = 2\/2(1 +2)8 (A41)

clq|Re
E 20 M 1
pe 1+z ¢ (A42)

=88-107 G- :
1 GeV  R. 1 qf

sso  We should only apply diffusion theory to the problem of particle movement through voids for void
961 magnetic field strengths B > B,i,. For particle energies of 1 GeV, we therefore only consider diffusion

962 for B 2 10718 G
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The diffusing cosmic rays lose energy over time. In voids, losses by inverse Compton scattering to

CMB photons are by far more important than losses by synchrotron radiation, because

Picovms Béys () (A43)

P, Bz 7

and B%MB(Z) > B? in voids. (Here, Pic and P, are, respectively, the inverse Compton and synchrotron
powers of a single cosmic ray.) The inverse Compton loss timescale for an electron or positron of total

energy E at cosmological redshift z is

E

6m2c3 g
= € A45
1PEo01 By 0)(1 1 2)° (A1)
12 Gyr. 4 LGV (A46)

B2 E (14 2)%

where o is the Thomson cross-section for electrons and positrons. For protons, the inverse Compton loss
timescale equals the above multiplied by a factor (%:)4 ~ 1.1-10'3. Therefore, for non-ultra-high-energy
cosmic ray protons, both synchrotron and inverse Compton losses are negligible.

Because % > 0, diffusion slows down as particles lose energy; in other words, a particle’s highest
diffusion coefficient is its initial diffusion coefficient.

Let X. be the comoving displacement along the z-direction. We consider N time steps, each of length
T = % Let X, ; be the comoving displacement along the z-direction achieved in the i-th time step, and

let X; be the corresponding proper displacement.
X = Z Xei (A47)
Because E[X. ;] =0, E[X.] = Zf\;l E[X.:] = 0. Therefore
E[XZ] = VIXc] = > VIXea] = > E[XZ,] (A48)
Because X.; = (1+ z)X;, E[X2;] = (14 2;)?E[X7]. Therefore

EX2 =Y (1+ zi)Z%)fQ] .27 (A49)

i=1

37



980

981

Following Einstein’s definition of the diffusion coefficient, the proper diffusion coefficient in the z-direction

for the i-th time step, Dy 4, is

We can then write
N
E[X2] =27 (14 2)*Da.
i=1
Proceeding analogously for the y- and z-directions, and defining R? := X2 + Y2 + Z2, we find

E[RY] = E[X?] + E[Y7) + E[Z7]

N
=27 Z(l + Zi>2(Dw,i + Dy,i + Dz7i)~
i=1

In the isotropic case, D, ; = Dy ; = D, ; = D;, so that

N

N
E[R2] =67 (1+2)°Di=6 Zl+zl

i=1

Denoting the (time) average of a function f(t) by (f), we have

re = VE[RY = /6((1 + 2)2D)t.

(A50)

(A51)

(A52)

(A53)

(A54)

(A55)

Let E be an RV denoting particle energy, and let fr be its PDF. Let n; be the lobe particle number

density, and let R) be the lobe radius. The number of particles in an outer shell with thickness AR with

energies between F and E + dF is

dN(E) = 47 R}AR - ny fg(E)dE

These particles escape from the shell over a timescale

AR?

Te(E) = ma
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where D . is the compound cross-field diffusion coefficient [19]. The number of particles with energies

between F and F + dFE escaping from the shell per unit of time thus is

AN(E) _ 87R?- D, (E)-nfe(E)dE
To(E) AR '

(A58)

The particulate energy escaping from the shell per unit of time and unit of energy, which we shall call

the power density Pg, is

AN(E) _ 87R?- D, o(E) - mfs(E)E

Pg(FE)=F- A
5 (E) r(E)dE AR (A59)
Finally, the total power P is
2
Pi= / Pp(E) dE = TR / D, (E)Efp(E) dE (A60)
E AR Jp
8TR?n
=k 'Ep[D, (E)E). (A61)
The compound cross-field diffusion coefficient is [17]
A (E)
D J(EY~D, (F)|1 A62
LBy~ D) (14 ). (A62)
where D is the cross-field diffusion coefficient, given by
c
DL(E) ~ gTL(E)(SB(TL(E)). (A63)
Here
I\ 3
op(l) =~ fi- (z) ; (A64)

where [; is the turbulence injection scale and f; is the total turbulence energy density up to this scale,

relative to the energy density of the thermal medium surrounding the lobe [19]. Additionally,

1 d5(Acp) 1/ A 5
Awﬁ@mm>wxmm)’ (A65)

39



1000

1001

1003

1004

1005

1006

1007

1008

1009

1011

1012

1013

1014

1015

where A is the lobe’s magnetic field correlation length. We assume that E has a Pareto distribution

[e.g. 73], so that its PDF, fg, (for p # —1) is given by

1 .
WEP lf Emin < E < Emax;

() = § PR (A66)
0 otherwise;

and Froin = Yminmc® and Fnax = Ymaxmc?. We calculated the total power assuming R, = 100 kpc,
AR= X1 =10kpe, s =10 kpe, fi =1072, B=B =10"7 G, |¢| = ¢, m = me, p = —2.4, Ymin = 10,
Ymax = 10°, and n; = 10710 em 3. We find P = 103° W.

To estimate the final void magnetic field strength B, we followed an argument akin to that in Beck

et al. [4]. If the lobe would expand to fill the entire void, then magnetic flux conservation yields

2
B, = B, (?) . (A67)

By squaring and dividing both sides of this equation by 2u, one recasts it in terms of magnetic energy

densities and obtains

4
up, = up, <}E§l> . (A68>

However, only a fraction of the lobe’s magnetic energy can escape, and it is only this fraction that we
should consider in our calculation. If we assume that the magnetic energy that is carried out of the lobe

is comparable to the energy of the escaped particles, which equals Pt, then

Pt R, 4
up, = EUBI (Rv> ) (A69)

where F is the total magnetic energy of the lobe. Recasting this equation back to magnetic field strengths,

we obtain
Pt [ R 2
s =1/— | —=— ] B (A70)

The energy ratio in Beck et al. [4]’s analogous Eq. 4 should likewise appear under a square root. This
is a matter of typography only: the authors did take the square root to obtain their results (private
communication with M. Hanasz). For ¢t = 10° Gyr, E} = 10°° J, R, = 10! Mpc, and P, R}, and B, as

before, we obtained B, = 6-10716 G.
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