
Appendix A Supplementary Methods751

Total outflow length752

To estimate Porphyrion’s total length from its projected length, we perform statistical deprojection.753

Equation 9 of Oei et al. [48] stipulates the probability density function (PDF) of an outflow’s total length754

random variable (RV) L in case its projected length RV Lp is known to equal some value lp. This PDF755

is parametrised by the tail index ξ of the Pareto distribution assumed to describe L. We calculate the756

median and expectation value of L | Lp = lp for tail indices ξ = −3 and ξ = −4, the integer values757

closest to the observationally favoured ξ = −3.5± 0.5 [48].758

First, we determine the cumulative distribution function (CDF) of L | Lp = lp through integration:759

FL|Lp=lp(l) :=

∫ l

−∞
fL|Lp=lp(l

′) dl′ (A1)

=
−ξ

21+ξπ

Γ2
(
− ξ

2

)

Γ(−ξ)

∫ max {x,1}

1

x′ξ−1

√
x′2 − 1

dx′,

where x := l
lp

and x′ := l′

lp
.760

For ξ = −3, the CDF concretises to761

FL|Lp=lp(l) =
3

2

∫ max {x,1}

1

dx′

x′4√x′2 − 1
(A2)

=





0 if x < 1;

(2x2+1)
√
x2−1

2x3 if x ≥ 1.

The median conditional total length, lm, is defined by FL|Lp=lp(lm) := 1
2 . Numerically, we obtain xm :=762

lm
lp

≈ 1.0664, or lm ≈ 1.0664 lp. As lp = 6.43 ± 0.05 Mpc, we find lm = 6.86 ± 0.05 Mpc. An analogous763

numerical determination of the 16-th and 84-th percentiles then yields l = 6.9+1.6
−0.4 Mpc.764

For ξ = −4, the CDF concretises to765

FL|Lp=lp(l) =
16

3π

∫ max {x,1}

1

dx′

x′5√x′2 − 1
(A3)

=





0 if x < 1;

2
3π

(
(3x2+2)

√
x2−1

x4 + 3arccos 1
x

)
if x ≥ 1.

Numerically, we obtain xm ≈ 1.0515, or lm ≈ 1.0515 lp, and thus lm = 6.76± 0.05 Mpc. In the same way766

as before, we find l = 6.8+1.2
−0.3 Mpc.767
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Equation 10 of Oei et al. [48] gives a closed-form expression for E [L | Lp = lp] (ξ). Table 1 of the same768

work lists E[L | Lp = lp](ξ = −3) = 3π
8 lp and E[L | Lp = lp](ξ = −4) = 32

9π lp. In the case of Porphyrion,769

these expressions concretise to E[L | Lp = lp](ξ = −3) = 7.58± 0.06 Mpc and E[L | Lp = lp](ξ = −4) =770

7.28± 0.06 Mpc.771

By conditioning L on more knowledge than a value for Lp alone, statistical deprojection could be made772

more precise. For example, one could additionally condition on the fact that Porphyrion is generated773

by a Type 2 radiatively efficient (RE) AGN. If Type 1 RE AGN are seen mostly face-on and Type 2774

RE AGN are seen mostly edge-on, as proposed by the unification model [e.g. 27], then the detection of775

a Type 2 RE AGN would imply that the jets make a small angle with the sky plane. Extending the776

formulae to include this knowledge is beyond the scope of this work; however, mindful of the associated777

deprojection factor–reducing effect, we choose ξ = −4 as our fiducial tail index.778

To assess Porphyrion’s transport capabilities in a cosmological context, it is instructive to calculate779

its length relative to Cosmic Web length scales. In particular, the outflow’s total length relative to the780

typical cosmic void radius at its epoch is fv := l(1 + z)R−1
v , where Rv is the typical comoving cosmic781

void radius. For l = 6.8+1.2
−0.3 Mpc, z = 0.896 ± 0.001, and Rv = 20 Mpc [13], we find fv = 64+12

−2 %. For782

our fiducial total length l = 7 Mpc, we find fv = 66%.783

Void penetration probability784

Porphyrion’s orientation relative to its native Cosmic Web filament is currently unknown. We calculate785

the probability that an outflow breaches its filament, thus penetrating the surrounding voids, by assuming786

that jet orientations are independent from filament orientations. We furthermore assume that the jets787

are straight and of equal length, that the filament is of cylindrical shape, and that the host galaxy resides788

at the filament’s spine, where the gravitational potential is lowest. The RV Θf denotes the angle between789

the jet axis and the filament axis, whilst the constants Rf and Df := 2Rf denote the filament radius and790

diameter, respectively. An outflow of total length l penetrates voids with probability791

P (L sinΘf > Df | L = l) = P
(
sinΘf >

Df

l

)

= 1− Fsin Θf

(
Df

l

)
. (A4)

The RV Θf has support on the interval 0 < θ ≤ π
2 . On this interval, the CDF is792

FΘf
(θ) := P(Θf ≤ θ) =

1

2π

∫ θ

0

∫ 2π

0

sin θ′ dφ dθ′

= 1− cos θ. (A5)
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The RV sinΘf has support on the interval 0 < y ≤ 1. On this interval, the CDF is793

Fsin Θf
(y) := P (sinΘf ≤ y) = P (Θf ≤ arcsin y)

= 1− cos arcsin y = 1−
√

1− y2, (A6)

where we use the fact that the arcsine function is monotonically increasing. By combining Eqs. A4 and794

A6, we obtain795

P (L sinΘf > Df | L = l) =





0 if l ≤ Df ;
√

1−
(
Df

l

)2
if l > Df .

(A7)

Typically, however, we only know an outflow’s projected length — not its total length. The quantity of796

highest practical interest therefore is797

pv := P (L sinΘf > Df | Lp = lp)

= P
(
Lp

sinΘf

sinΘo
> Df | Lp = lp

)

= P
(
sinΘf

sinΘo
>

Df

lp

)
= 1− FX

(
Df

lp

)
, (A8)

where the RV Θo is the angle between the jet axis and the line of sight, and the RVX is the ratio of the RVs798

sinΘf and sinΘo. These latter RVs are independent and identically distributed: Fsin Θf
(y) = Fsin Θo(y).799

We derive the PDF fX by using the standard formula for the ratio distribution PDF (for independent800

RVs). This formula demands the determination of fsin Θf
(y) = fsin Θo(y). From Eq. A6, we find that on801

the interval 0 < y ≤ 1, the PDF is802

fsin Θf
(y) =

d

dy
Fsin Θf

(y) =
y√

1− y2
. (A9)

To find the distribution of X, it is helpful to distinguish three intervals. For x ≤ 0, fX(x) = 0, because803

X is the ratio of two positive RVs. Then, for 0 < x < 1,804

fX(x) = x

∫ 1

0

y3

√
1− x2y2

√
1− y2

dy, (A10)

while for x > 1,805

fX(x) = x

∫ 1
x

0

y3

√
1− x2y2

√
1− y2

dy. (A11)
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Fig. A1: From its projected length and an estimated radius for its native filament, one can
calculate the probability that an outflow penetrates the surrounding voids. Outflows with
projected lengths equalling the diameters of their filaments penetrate voids with 50% probability (as the
dots exemplify).

Solving the integrals leads to806

fX(x) =





0 if x ≤ 0;

(x2+1) ln 1+x
1−x−2x

4x2 if 0 < x < 1;

(x2+1) ln x+1
x−1−2x

4x2 if x > 1.

(A12)

At x = 1, fX is undefined. We calculate FX through integration, yielding807

FX(x) =





0 if x ≤ 0;

1
2 + 1

4

((
x+ 1− 1

x

)
ln 1+x

1−x + ln (1−x)2

1−x2

)
if 0 < x < 1;

1
2 + 1

4
x2−1

x ln x+1
x−1 if x > 1.

(A13)

FX is continuously extendable at x = 1 by defining FX(1) := 1
2 . Finally, we define x := Df

lp
, so that808

pv(x) = 1− FX(x):809

pv(x) =





1
2 − 1

4

((
x+ 1− 1

x

)
ln 1+x

1−x + ln (1−x)2

1−x2

)
if 0 < x < 1;

1
2 if x = 1;

1
2 − 1

4
x2−1

x ln x+1
x−1 if x > 1.

(A14)
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The median of X equals unity. Therefore, half of the outflows with projected lengths lp = Df penetrate810

voids. For outflows with larger projected lengths, void penetration is more likely than not. Figure A1811

shows void penetration probabilities for physically relevant parameter ranges.812

For Porphyrion, we take lp as before and adopt a filament (core) radius Rf = 1.2 Mpc [68]; this yields813

x = 0.373± 0.003 and therefore pv = 95.2± 0.1%.814

Filament shape modification815

We predict that powerful, long-lived outflows like Porphyrion cause their host galaxies’ filaments to816

expand thermally. Through lateral shocks, the jets distribute an amount of heat Q over the warm–hot817

IGM. This medium is sufficiently dilute that plasma interactions can be neglected; as a result, the ideal818

gas law, pV = NkBT , may be adopted as the equation of state. Here, p, V , N , and T are the filament’s819

pressure, volume, plasma particle number, and temperature, respectively; kB is Boltzmann’s constant.820

Assuming a thermodynamic process at constant pressure and particle number, the work W is821

W = p∆V = NkB∆T. (A15)

Before the outflow’s emergence, the filament’s equation of state is pVi = NkBTi, where Vi and Ti are822

its initial volume and temperature, respectively. Upon dividing Eq. A15 by this equation of state, one823

obtains824

∆V

Vi
=

∆T

Ti
. (A16)

Assuming that the filament retains a cylindrical shape, initially with radius ri and finally with radius rf ,825

and using that ∆V := Vf − Vi, one obtains826

rf

ri
=

√
1 +

∆T

Ti
. (A17)

The radius ratio, rf
ri
, depends only on the ratio between the temperature increase ∆T := Tf − Ti and the827

initial temperature. The temperature increase is828

∆T =
Q

NCp,m
, (A18)

where Cp,m is the molar heat capacity at constant pressure. For a monatomic gas or a hydrogen plasma,829

Cp,m = 5
2R, where R is the molar gas constant. The number of filamentary electrons and atomic nuclei830
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affected by the outflow is831

N =
πr2

i Lρi

µmp
, (A19)

where L is the length of the cylindrical segment affected, ρi is the initial baryonic mass density, µ is832

the average mass of a plasma particle relative to the proton mass, and mp is the proton mass. We833

estimate L
2 by multiplying the typical speed of lateral shocks with the outflow’s lifetime. We decompose834

ρi = ρc,0ΩBM,0(1 + z)3(1 + δ), where z and δ are the filament’s cosmological redshift and baryonic835

overdensity, respectively.836

We assess the outflow-induced morphological change to Porphyrion’s filament by evaluating Eq. A17,837

taking Q = 1055 J, ri = 1.2 Mpc, L = 7 Mpc, z = 0.9, 1 + δ = 10, µ = 0.5, and Ti = 107 K; we find838

∆T = 9 · 106 K and rf = 1.7 Mpc (an increase of ∼40%). Porphyrion’s heat dissipation renders the839

outflow’s native filament much hotter and thicker than it would have otherwise been.840

Transport of heavy elements to voids841

Outflows from RE AGN could contain more heavy atoms than outflows from RI AGN: RE AGN tend842

to reside in galaxies with higher star formation rates and thus more vigorous stellar winds, suggesting843

increased entrainment of wind-borne atomic nuclei into jets [77]. The order-of-magnitude calculations844

presented here, to be verified by future simulations, indicate that Mpc-scale outflows could supply Mpc3-845

scale volumes in cosmic voids with significant heavy atoms, though consistent with upper limits [65].846

We calculated the heavy element enrichment of the IGM in voids due to the deposition of atomic847

nuclei initially entrained in the jets of Mpc-scale outflows. In particular, we estimated the final metallicity848

in the deposition region considering both internal and external entrainment. Internal entrainment refers849

to the entrainment into jets of atomic nuclei from stellar winds, internal to the host galaxy. External850

entrainment refers to the entrainment into jets of atomic nuclei dwelling in the IGM, external to the851

host galaxy.852

Denoting the (two-sided) internal mass entrainment rate by Ṁi, which we assumed constant through853

time, the total internally entrained mass by an outflow of age T is854

Mi = ṀiT. (A20)

The internal mass entrainment rates of Centaurus A and 3C 31, both Fanaroff–Riley I (FR I) outflows855

in the Local Universe, are estimated to be Ṁi = 2 · 10−3 M⊙ yr−1 [77] and Ṁi = 8 · 10−3 M⊙ yr−1
856

[35], respectively. At M⋆ = 6.3 · 1011 M⊙, 3C 31’s host stellar mass is similar to Porphyrion’s. However,857

Porphyrion is a Fanaroff–Riley II (FR II) outflow, suggesting a smaller jet opening angle ω and thus a858
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smaller Ṁi. If ω is a factor of order unity smaller for FR II outflows than for FR I outflows [e.g. 36, 59],859

and Ṁi ∝ ω2, then ṀFR II ∼ 10−1ṀFR I. On the other hand, Porphyrion’s host is seen much closer860

to the cosmic heyday of star formation, suggesting a larger SFR and thus a larger Ṁi. After z = 1.9,861

SFRs S typically decayed exponentially with an e-folding time of 3.9 Gyr [e.g. 40]. If Ṁi ∝ S, then862

Ṁi(z = zP) ∼ e2Ṁi(z = 0) ∼ 101Ṁi(z = 0), where zP is Porphyrion’s redshift. Assuming that both863

effects are indeed of comparable importance, we provisionally adopted 3C 31’s Ṁi = 8 · 10−3 M⊙ yr−1
864

as our fiducial value. Taking T as before, we obtained Mi = 2 · 107 M⊙. The total externally entrained865

mass is866

Me = 2

∫ l
2

0

ρe(r)Ae(r) dr, (A21)

where Ae(r) is the entrainment cross-section at a distance r from the AGN. Perhaps the simplest approach867

is to parametrise Ae =: πR2
e , where Re is a (constant) effective radius defined such that all baryons closer868

to the jet axis than Re are entrained. Taking l and ρe as before, and Re = 1 kpc [e.g. 55], we obtained869

Me = 4 ·107 M⊙. Although highly uncertain, these estimates suggest that Mi and Me can be of the same870

order of magnitude.871

The total internally entrained mass in heavy elements is ZiMi, where Zi is the mass-weighted mean872

metallicity of the galaxy’s stellar winds. The total externally entrained mass in heavy elements is ZeMe,873

where Ze is the mass-weighted metallicity of the IGM along the jet. Assuming that the IGM in the voids874

is initially pristine, its final metallicity is875

Zv =
ZiMi + ZeMe

Mi +Me + ρvV
, (A22)

where ρv is the baryon mass density within a deposition region of volume V . Taking a spherical deposition876

region with a diameter of 1 Mpc, and ρv as before, we obtained ρvV = 7 · 109 M⊙. Assuming Zi = Z⊙877

[e.g. 77] and Ze = 10−1 Z⊙ [e.g. 42], we found Zv = 3 · 10−3 Z⊙. In conclusion, order-of-magnitude878

arguments suggest that void-penetrating Mpc-scale outflows can endow the local IGM with metallicities879

Zv ∼ 10−3–10−2 Z⊙.880

Quasar mass–based host galaxy candidate elimination881

SDSS J152933.03+601552.5 is the quasar-hosting galaxy 19′′ north-northeast of J152932.16+601534.4,882

the galaxy we have identified as Porphyrion’s host. We initially also considered SDSS883

J152933.03+601552.5 as a host galaxy candidate. However, aforementioned arguments involving the pres-884

ence of jets and their orientation and, to a lesser degree, arguments involving core radio luminosity and885

core synchrotron self-absorption all favour J152932.16+601534.4. We now discuss how our results would886
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change if, instead, SDSS J152933.03+601552.5 were Porphyrion’s host galaxy. Doing so will lead to a887

contradiction that disproves this alternative hypothesis.888

First, we discuss results that do not require dynamical modelling. To start with, Porphyrion would889

remain generated by an RE AGN. The host galaxy redshift would decrease from z = 0.896±0.001 to z =890

0.799±0.001, decreasing Porphyrion’s projected length from lp = 6.43±0.05 Mpc to lp = 6.21±0.05 Mpc.891

Again using ξ = −4, the total length would decrease from l = 6.8+1.2
−0.3 Mpc to l = 6.5+1.2

−0.3 Mpc and its892

conditional expectation from E[L | Lp = lp] = 7.28 ± 0.06 Mpc to E[L | Lp = lp] = 7.03 ± 0.06 Mpc. If893

orientation distinguishes Type 1 from Type 2 RE AGN, as the unification model supposes, then these894

statistical deprojection results may underestimate Porphyrion’s total length. Porphyrion would remain895

the projectively largest galaxy-made structure identified so far. Porphyrion’s total radio luminosity at896

rest-frame wavelength λr = 2 m would decrease from Lν = 2.8± 0.3 · 1026 W Hz−1 to Lν = 2.2± 0.2 ·897

1026 W Hz−1.898

Next, we discuss results that come from dynamical modelling. The jet power would decrease from Q =899

1.3±0.1 ·1039 W to Q = 1.0±0.1 ·1039 W, while the age would slightly increase from T = 1.9+0.7
−0.2 Gyr to900

T = 1.9+0.7
−0.1 Gyr.6 The transported energy would decrease from E = 7.6+2.1

−0.7·1055 J to E = 6.4+1.8
−0.6·1055 J,901

and the black hole mass gain from ∆M• > 8.5+2.4
−0.8 · 108 M⊙ to ∆M• > 7.2+2.0

−0.7 · 108 M⊙.902

Finally, we arrive at a contradiction, as the quasar’s SMBH mass (measured from its SDSS BOSS903

spectrum) M• = 2.5± 0.3 · 108 M⊙ [11]. This mass is lower than the minimum mass gain associated to904

the fuelling of Porphyrion’s jets. Thus, assuming that SDSS J152933.03+601552.5 is the outflow’s host905

galaxy leads to a contradiction. This argument reaffirms that J152932.16+601534.4 is Porphyrion’s host.906

Diffusion of lobe plasma through voids907

When cosmic rays move through the jumbled magnetic fields of galaxy clusters and filaments of the908

Cosmic Web, the Lorentz force scatters them repeatedly. The mean free path of the ensuing random909

walk is so short that the CRs radiate away their energy before they are able to travel a cosmologically910

significant distance [e.g. 6]. Clusters and filaments thus effectively lock into place the CRs that are911

injected into them. By contrast, magnetic fields with Mpc-scale coherence lengths in voids are orders of912

magnitude weaker than those in clusters and filaments [e.g. 10], and as a result, CRs that are released913

into voids might diffuse through their entirety within a few gigayears. Void-filling diffusion of CRs might914

be especially rapid at early epochs: during Porphyrion’s lifetime, for instance, the proper volumes of915

voids were on average an order of magnitude smaller than they are today.916

Consider a void region filled with relativistic particles, so that their velocity components obey917

v2
x + v2

y + v2
z ≈ c2. (A23)

6Significant jet-mediated transport of heavy elements to the IGM would remain plausible. The host’s stellar mass would decrease
from M⋆ = 6.7 ± 1.4 · 1011 M⊙ to M⋆ = 4.0+0.3

−0.3 · 1011 M⊙, while the SFR would become S = 4.9+0.3
−0.4 · 101 M⊙ yr−1 [3].
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We treat vx, vy, and vz as random variables subject to the above constraint. If the particles have no bulk918

motion, and move in all directions with equal probability density,919

E[vNx ] = E[vNy ] = E[vNz ] (A24)

for any N ∈ R. In particular, given the absence of bulk motion, E[vx] = E[vy] = E[vz] = 0. By taking920

expectations on both sides of Eq. A23, using the linearity of expectation, and invoking Eq. A24, we find921

E[v2
x] = E[v2

y] = E[v2
z ] =

c2

3
. (A25)

Without loss of generality, we assume the region’s magnetic field B⃗ to be oriented along the z-axis. The922

speed perpendicular to B⃗ is v⊥ =
√

v2
x + v2

y, so that, upon invoking Eq. A25, we find E[v2
⊥] =

2
3c

2. A923

typical speed for relativistic particles perpendicular to a magnetic field thus is924

√
E[v2

⊥] =

√
2

3
c ≈ 0.8165 c. (A26)

Starting from Fick’s first law of diffusion, and solving the case of Brownian motion in three dimensions,925

one obtains926

r =
√
6Dt, (A27)

where r is the typical proper distance to the particles’ origin after a time t. To find the diffusion coefficient927

D, we consider Bohm diffusion, in which charged particles diffuse through a turbulent magnetic field as928

a result of the Lorentz force. Whereas predicting the trajectory of any single charged particle requires929

knowledge of the specific magnetic field structure in its surroundings, the statistical properties of Bohm930

diffusion are determined solely by the statistical properties of the magnetic field and the charge and931

energy of the diffusing particles. The Larmor radius for a particle with Lorentz factor γ, total velocity932

v, rest mass m, and charge q, is933

rL =
γ(v)mv⊥

|q|B . (A28)

For a relativistic particle whose v⊥ is given by Eq. A26, we obtain a Larmor radius934

rL(E) =

√
2

3

E

c|q|B = 8.8 · 102 pc · E

1 GeV
· 10

−15 G

B
, (A29)
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where E is the total (i.e. rest plus kinetic) energy of the particle. The diffusion coefficient for charged935

particles in a magnetic field with a Kolmogorov turbulence spectrum is well approximated [21] by936

D(E) ≈ DBohm(E0)

(
E

E0

) 1
3

+DBohm(E1)

(
E

E1

)2

. (A30)

Here, E0 is the energy for which the circumference of gyration equals the magnetic field coherence length937

λc:938

2πrL(E0) = λc. (A31)

For q = ±e, where e is the elementary charge, this equation implies that939

E0 =

√
3

2

λcc|q|B
2π

= 1.8 · 102 GeV · λc

1 Mpc
· B

10−15 G
. (A32)

Furthermore, E1 = 3
2E0. The Bohm diffusion coefficient [e.g. 21] DBohm is940

DBohm(E) =
c

3
rL(E) (A33)

= 9.0 · 10−2 Mpc2

Gyr
· E

1 GeV
· 10

−15 G

B
. (A34)

We note that941

DBohm(E0) =
c

6π
λc = 1.6 · 101Mpc2

Gyr
· λc

1 Mpc
(A35)

is independent of the void’s magnetic field strength. Because DBohm ∝ rL ∝ E, we have DBohm(E1) =942

3
2DBohm(E0).943

For E = 1 GeV, λc = 1 Mpc, and B = 10−15 G, we find D(E) = 2.9 Mpc2

Gyr . After t = 1 Gyr, the944

typical displacement of cosmic rays that escaped from the outflow’s lobes is r = 4.2 Mpc. We note that r945

scales slowly with particle energy, magnetic field strength, and (to a lesser degree) with coherence length:946

r ∝ E
1
6B− 1

6λ
1
3
c t

1
2 . (A36)
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For short time intervals t, we can ignore the expansion of the Universe; defining rc := r(1 + z), the void947

volume-filling fraction V of a single lobe becomes948

V =

(
2rc

Dc

)3

. (A37)

For sufficiently short time intervals t, particles move in rectilinear fashion, and the typical proper949

displacement of a relativistic particle within t is r = ct, not r =
√
6Dt. Diffusion can only possibly provide950

an accurate description of the typical displacement for sufficiently large t. As superluminal motion is951

impossible,952

√
6Dt < ct, or t >

6D

c2
=: τd, (A38)

where τd is the diffusion timescale (as in Globus et al. [21], but with a factor 6 instead of 4). Diffusion953

only has a role to play in the description of particle movement through voids when τd < τb, the ballistic954

timescale for particle movement through voids. We define955

τb :=
Rc

(1 + z)c
, (A39)

where Rc is the comoving void radius. As τd ∝ D, there is a maximum diffusion coefficient, Dmax, above956

which the diffusive description is invalid. Solving τd(Dmax) = τb for Dmax, we obtain957

Dmax =
Rcc

6(1 + z)
. (A40)

This maximum diffusion coefficient corresponds to a minimum magnetic field strength, Bmin. Approxi-958

mating Dmax ≈ DBohm(E,Bmin), we find959

Bmin = 2

√
2

3

(1 + z)E

c|q|Rc
(A41)

= 8.8 · 10−20 G · E

1 GeV
· 20 Mpc

Rc
· 1 + z

1
· e

|q| . (A42)

We should only apply diffusion theory to the problem of particle movement through voids for void960

magnetic field strengths B ≫ Bmin. For particle energies of 1 GeV, we therefore only consider diffusion961

for B ≳ 10−18 G.962
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The diffusing cosmic rays lose energy over time. In voids, losses by inverse Compton scattering to963

CMB photons are by far more important than losses by synchrotron radiation, because964

PIC,CMB

Ps
=

B2
CMB(z)

B2
, (A43)

and B2
CMB(z) ≫ B2 in voids. (Here, PIC and Ps are, respectively, the inverse Compton and synchrotron965

powers of a single cosmic ray.) The inverse Compton loss timescale for an electron or positron of total966

energy E at cosmological redshift z is967

τIC,CMB(E, z) :=
E

PIC,CMB(E, z)
(A44)

=
6m2

ec
3µ0

4β2EσTB2
CMB(0)(1 + z)4

(A45)

=1.2 Gyr · 1

β2
· 1 GeV

E
· 1

(1 + z)4
, (A46)

where σT is the Thomson cross-section for electrons and positrons. For protons, the inverse Compton loss968

timescale equals the above multiplied by a factor
(

mp

me

)4

≈ 1.1·1013. Therefore, for non–ultra-high-energy969

cosmic ray protons, both synchrotron and inverse Compton losses are negligible.970

Because dD
dE > 0, diffusion slows down as particles lose energy; in other words, a particle’s highest971

diffusion coefficient is its initial diffusion coefficient.972

Let Xc be the comoving displacement along the x-direction. We consider N time steps, each of length973

τ := t
N . Let Xc,i be the comoving displacement along the x-direction achieved in the i-th time step, and974

let Xi be the corresponding proper displacement.975

Xc :=

N∑

i=1

Xc,i (A47)

Because E[Xc,i] = 0, E[Xc] =
∑N

i=1 E[Xc,i] = 0. Therefore976

E[X2
c ] = V[Xc] =

N∑

i=1

V[Xc,i] =

N∑

i=1

E[X2
c,i]. (A48)

Because Xc,i = (1 + zi)Xi, E[X2
c,i] = (1 + zi)

2E[X2
i ]. Therefore977

E[X2
c ] =

N∑

i=1

(1 + zi)
2E[X2

i ]

2τ
· 2τ. (A49)

37



Following Einstein’s definition of the diffusion coefficient, the proper diffusion coefficient in the x-direction978

for the i-th time step, Dx,i, is979

Dx,i :=
E[X2

i ]

2τ
. (A50)

We can then write980

E[X2
c ] = 2τ

N∑

i=1

(1 + zi)
2Dx,i. (A51)

Proceeding analogously for the y- and z-directions, and defining R2
c := X2

c + Y 2
c + Z2

c , we find981

E[R2
c ] = E[X2

c ] + E[Y 2
c ] + E[Z2

c ] (A52)

= 2τ

N∑

i=1

(1 + zi)
2(Dx,i +Dy,i +Dz,i). (A53)

In the isotropic case, Dx,i = Dy,i = Dz,i =: Di, so that982

E[R2
c ] = 6τ

N∑

i=1

(1 + zi)
2Di = 6t · 1

N

N∑

i=1

(1 + zi)
2Di. (A54)

Denoting the (time) average of a function f(t) by ⟨f⟩, we have983

rc :=
√
E[R2

c ] =
√

6⟨(1 + z)2D⟩t. (A55)

Let E be an RV denoting particle energy, and let fE be its PDF. Let nl be the lobe particle number984

density, and let Rl be the lobe radius. The number of particles in an outer shell with thickness ∆R with985

energies between E and E + dE is986

dN(E) = 4πR2
l ∆R · nlfE(E)dE. (A56)

These particles escape from the shell over a timescale987

τe(E) =
∆R2

2D⊥,c(E)
, (A57)
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where D⊥,c is the compound cross-field diffusion coefficient [19]. The number of particles with energies988

between E and E + dE escaping from the shell per unit of time thus is989

dN(E)

τe(E)
=

8πR2
l ·D⊥,c(E) · nlfE(E)dE

∆R
. (A58)

The particulate energy escaping from the shell per unit of time and unit of energy, which we shall call990

the power density PE , is991

PE(E) := E · dN(E)

τe(E)dE
=

8πR2
l ·D⊥,c(E) · nlfE(E)E

∆R
. (A59)

Finally, the total power P is992

P :=

∫

E

PE(E) dE =
8πR2

l nl

∆R

∫

E

D⊥,c(E)EfE(E) dE (A60)

=
8πR2

l nl

∆R
EE [D⊥,c(E)E]. (A61)

The compound cross-field diffusion coefficient is [17]993

D⊥,c(E) ≈ D⊥(E)

(
1 +

Λ2(E)

lnΛ(E)

)
, (A62)

where D⊥ is the cross-field diffusion coefficient, given by994

D⊥(E) ≈ c

3
rL(E)δB(rL(E)). (A63)

Here995

δB(l) ≈ fi ·
(
l

li

) 2
3

, (A64)

where li is the turbulence injection scale and fi is the total turbulence energy density up to this scale,996

relative to the energy density of the thermal medium surrounding the lobe [19]. Additionally,997

Λ(E) =
1√
2

δB(λc,l)

δB(rL(E))
=

1√
2

(
λc,l

rL(E)

) 2
3

, (A65)
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where λc,l is the lobe’s magnetic field correlation length. We assume that E has a Pareto distribution998

[e.g. 73], so that its PDF, fE , (for p ̸= −1) is given by999

fE(E) =





p+1

Ep+1
max−Ep+1

min

Ep if Emin < E < Emax;

0 otherwise;

(A66)

and Emin := γminmc2 and Emax := γmaxmc2. We calculated the total power assuming Rl = 100 kpc,1000

∆R = λc,l = 10 kpc, li = 10 kpc, fi = 10−2, B = Bl = 10−7 G, |q| = e, m = me, p = −2.4, γmin = 10,1001

γmax = 105, and nl = 10−10 cm−3. We find P = 1030 W.1002

To estimate the final void magnetic field strength Bv, we followed an argument akin to that in Beck1003

et al. [4]. If the lobe would expand to fill the entire void, then magnetic flux conservation yields1004

Bv = Bl

(
Rl

Rv

)2

. (A67)

By squaring and dividing both sides of this equation by 2µ0, one recasts it in terms of magnetic energy1005

densities and obtains1006

uBv = uBl

(
Rl

Rv

)4

. (A68)

However, only a fraction of the lobe’s magnetic energy can escape, and it is only this fraction that we1007

should consider in our calculation. If we assume that the magnetic energy that is carried out of the lobe1008

is comparable to the energy of the escaped particles, which equals Pt, then1009

uBv
=

Pt

El
uBl

(
Rl

Rv

)4

, (A69)

where El is the total magnetic energy of the lobe. Recasting this equation back to magnetic field strengths,1010

we obtain1011

Bv =

√
Pt

El

(
Rl

Rv

)2

Bl. (A70)

The energy ratio in Beck et al. [4]’s analogous Eq. 4 should likewise appear under a square root. This1012

is a matter of typography only: the authors did take the square root to obtain their results (private1013

communication with M. Hanasz). For t = 100 Gyr, El = 1055 J, Rv = 101 Mpc, and P , Rl, and Bl as1014

before, we obtained Bv = 6 · 10−16 G.1015
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