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Table 3. Characteristics of the models developed on advanced dentomaxillofacial imaging among the included studies
	Author-Year
	Segmented region
	Dataset size
	Scanning Features
	Segmentation Protocol and Method
	Metric Findings
	Conclusion

	
	
	
	
	Software 
	Reference Standard 
	Architecture
	
	

	CBCT
       Lesion
	
	
	
	
	
	
	
	

	Hung et al. 2022[1]
	Morphological changes of the maxillary sinus mucosa (mucosal thickening(MT) and mucosal retention cysts(MRC))
	890 sinuses
(training, training-monitoring, and testing datasets at a 7:1:2 ratio)
	-
	-
	-
	CNN algorithm built based on V-Net and support vector regression
	
	Low Dose Scans
	Full Dose Scans
	The CNN algorithm proposed in this study can accurately detect and segment MT and MRCs in CBCT scans of the maxillary sinus.

	
	
	
	
	
	
	
	
	MT
	MRC
	Air Space
	MT
	MRC
	Air Space
	

	
	
	
	
	
	
	
	Detection
	0.91
	0.84
	-
	0.89
	0.93
	-
	

	
	
	
	
	
	
	
	Segmentation
	0.729
	0.678
	0.972
	0.663
	0.787
	0.968
	

	Jung et al. 2021[2]
	Maxillary Sinus Lesions
	123
	120 and 90 kVp, 5 and 4 mA, 16.8 and 14.3 s.
FOV=230 x 170 mm and 170x 135 mm
Focal spot=0.58 and 0.70 mm
	AVIEW Modeler
	Manual Segmentation
	3D nnU-Net
	
	1st Step
(Manual)
	2nd Step
(Manually modified CNN- Assisted)
	Last Step
(CNN- Assisted)
	The algorithm made segmentation protocols faster and more accurate. 

	
	
	
	
	
	
	
	DSC
	Air
	0.920 ± 0.17
	0.925 ±0.16
	0.930 ± 0.16
	

	
	
	
	
	
	
	
	
	Lesion
	0.770 ± 0.18
	0.750 ± 0.19
	0.760 ± 0.18
	

	
	
	
	
	
	
	
	Time
	
	1824.0 s
	493.2 s
	362.7 s
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Orhan et al. 2020[3]
	Periapical pathosis
	153
	94 kVp, 14 mA, 360° rotation, 27 s. 
FOV=5 x 5.5 (0.075 mm3 and 0.100 mm3 voxel
size), 5 x 5.5 (0.150 mm3 voxel size) and a 10 x 5.5 (0.200 mm3 voxel size) with isotropic voxels.
	Diagnocat Inc.                                   
	Manual Segmentation
	U-Net
	The reliability of correctly detecting=92.8%.
R= 0.89 P= 0.95 F= 0.93
There was no significant difference between the two measurement methods (P > 0.05)
	The presented automatic segmentation algorithm showed comparable results of volumetric measurements of the lesions with manual segmentation techniques.


	Zheng et al.
2020[4]
	Dental CBCT
Lesion Detection
	Total:20
Training:15
Validation:5
	110 kVp, 5.14–89.37 mAs. 
FOV=
6 × 6 cm, 8 ×
8 cm, 12 × 8 cm, 15 × 12 cm, 15 × 15 cm.
	ITK-SNAP
	standard Dense U-Net
	Anatomically constrained Dense U-Net
	P range: 0.83 to 0.9
R range: 0.8 to 0.84
DSC range for lesion detection: 0.672 to 0.741
	The algorithm performed well and can be used in dental practices. The proposed automatic technique outperformed both the standard Dense UNet and manual segmentation techniques in both lesion detection precision and DICE indices.

	  Jaws(Maxilla and Mandible)
	
	
	
	
	
	
	

	Morgan et al.
2022[5]
	Maxillary Sinus
	264 sinuses
	FOV=
24 × 19, 17 × 12, 16 × 16 , 15 × 12 , 14 × 10 , 10 × 10 , 10 × 5
, 8 × 8
Voxel Size= 0.1-0.3mm
	Mimics Innovation Suite (version 23.0, Materialise N.V., Leuven, Belgium)
	Semi-automatic segmentation
	3D U-Net 
	Automatic:
DSC=0.984±0.004
95%HD=0.232±0.059
IoU=0.968±0.008
Average time=24.4 s
Semi-automatic:
Average time=60.8 min(3649.8s)

	The automated segmentation method showed higher accuracy, better consistency, and faster performance compared to the semi-automatic segmentation method.

	Jeoun et al.
2022[6]
	Mandibular Canals
	Training:60
Test:20
Validation:20
	80 kVp and 8 mA 
Resolution= 841 x 841 x 289 pixels
Voxel sizes=0.2 x 0.2 x 0.2 mm3,
	3D slicer
	Canal-Net, 2D U-Net, SegNet, 3D U-Net, 3D U-Net with MPL (MPL 3D U-Net), and 3D U-Net with ConvLSTM (ConvLSTM 3D U-Net)
	Continuity-aware contextual network (Canal‑Net)
	Canal-Net:
DSC=0.87±0.05
JI=0.80±0.06
P=0.89±0.06
R=0.88±0.06
	The method showed superior performance compared to other networks.
The method can be used before extraction and implant surgeries for complication prevention.  The proposed automatic segmentation model showed better   Dice similarity coefficient scores and mean curve distance compared to other networks such as 2D U-Net, SegNet, 3D U-Net, MPL 3D U-Net, and ConvLSTM 3D U-Net in 2D and 3D performances. In addition, the system improved structural continuity and boundary details of the mandibular canal in CBCT radiographs.

	Verhelst et al. 2021[7]
	Human Mandible
	training = 130
test = 30
	110 kV and 4.3mA 
FOV= 24 × 19cm
Voxel size= 0.3mm3
	Image J and Mimics
	Manual segmentation
	N/A
	Automatic segmentation : time= 17s IoU= 94.6%
Semi-automatic segmentation: time= 1218.4s
Refined AI segmentations (RAI): time= 456.5s 
IoU= 94.4%
	Comparing the automatic, RAI, and semi-automatic segmentation methods, automatic had the most inter- and intra-observer consistency. Also, the 3 methods showed the accuracy of the same metrics. In addition automatic and RAI techniques could segment structures faster than SA.

	Wang et al. 2021[8]
	Multiclass segmentation of the jaw, the teeth, and the background
	28
(training = 80%
Test = 20%)
	N/A
	Mimics Innovation Suite (Version 21.0, Materialise NV, Leuven, Belgium)
	The AI model was compared with user-refined AI segmentations (RAI) and semi-automatic segmentation (SA)
	MS-D network 
	Time: Auto= 25s Manual= 5h
Jaw: DSC= 0.934 ± 0.019
Teeth: DSC= 0.945 ± 0.021

	The network showed minor surface deviations in comparison with manual segmentation and also a large overlap with manually segmented structures. Additionally, the automatic method was accurate and fast.

	Kwak et al.
2020[9]
	Mandibular Canal
	Train:validation: Test ratio 6:2:2
	105 kV, 5.0–5.7 mA, a 24 s, 
Voxel size= 0.2–
0.3 mm, 
FOV= 16 × 16 or 24 × 24
	Mimics 21.0 software (Materialise)

	Automatic segmentation with manual segmentation
	Mixed-scale dense (MS-D) network architecture
	Global accuracy: (highest)
3D UNet:0.99
2D SegNet:0.96
	The 2D networks can be applied to the segmentation of a small object like a mandibular canal but they have lower class and mean IoU because they ignore the spatial contexts in the third dimension. Among the 2D networks, SegNet showed the highest global and class accuracy. But 3D U-Net showed the highest accuracy in every index compared to 2D systems.

	Minnema et al.
2018[10]
	Bone affected by metal artifacts
	20
	105 kVp, 6 mA, and an 
Voxel size=0.2 mm
	"INVIVO (Anatomage, 
San Jose, CA, USA)"

	2D SegNet and 2D U-Net and 3D U-Net
	 SegNet;  U-Net with fewer filters than the original U-Net; U-Net with the original number of filters;  3D U-Net
	DSC:
MS-D=0.87±0.06
U-Net=0.87±0.07
ResNet=0.86±0.05
snake evolution algorithm=0.78±0.07
	The automatic segmentation performed by the MSD network could preserve more anatomical details and use fewer trainable parameters compared to U-Net and ResNet CNN architectures. Additionally, all CNN models could outperform the semi-automatic clinical snake evolution algorithm.MS-D successfully segmented the bone structures affected by metal artifacts

	Manavella et al.
2017[11]
	Severely resorbed alveolar sockets 
	Test:9
	110 kV, 2 mA, 10 s 
slide thickness = 0.4 mm
FOV = 153.60 mm; 
Pixels size = 0.3 mm; 
	3D slicer

	Eight different CNN training strategies, namely 2D (axial, sagittal, and coronal slices),
2.5D (3 and 5 adjacent slices), majority voting, randomly oriented 2D cross-sections and 3D patches
	U-Net and the MS-D network
	Relative error:
Automatic segmentation with Mimics: 1.5%
Manual segmentation with Mimics:7%
Automatic segmentation with ImageJ:10%
	The Mimics automatic method showed the highest accuracy and inter-observer similarity and also produced the minimum errors compared to the ImageJ automatic method and Mimics manual method.

	Janssen et al. 2017[12]
	Assessment of alveolar cleft grafting procedures (segmentation of the maxillary border adjoining the alveolar
cleft defect)
	11
	120 k, 3 to 8 mA, 20 s
FOV= 13 cm
Voxel size =0.4 mm.
	iCat 3D Imaging System/ Matlab™ (v2012b, Mathworks, Natick, MA, USA)/ Maxilim™ 

	N/A
	N/A
	DSC= 0.89
ICC (between the measured volumes of the observers) = 0.98
	The findings showed that reproducible accurate evaluation of postoperative alveolar bone volume on CBCT radiographs is difficult even when a semi-automated segmentation protocol is used.

	Xi et al. 2014[13]
	3D reconstruction of the mandibular condyles
	10
	120 kV, 3–8 mA,  2620 s
FOV=  16 cm diameter/22 cm height Voxel size: 0.4 mm
Radiation dosage:  136 mSv
	Matlab/i-CAT, 3D Imaging System




	Semi-automated segmentation with controls (The  validation group in a previous validation study by Xi et al.)
	N/A
	DSC= 0.98
	Compared to other semi-automated models, the presented model could reduce image post-processing time and improve user-friendliness. Also, it could reduce the magnitude of observer-related errors in comparison with manual methods.

	Antila et al. 2008[14]
	Mandibular Bone Geometry
	14
	Resolution=300 x 300 x 288 and 450 x 450 x 450 voxels, Voxel Dimensions= 0.13 x 0.13 x 0.13 and 0.35 x 0.35 x 0.35 mm
	N/A





	Automatic segmentation with manual segmentation
	N/A
	mean distance from hand-drawn reference= 0.57 ± 0.16mm
The estimation of tooth orientations was accurate with an error of 0.65 ± 8.0 degrees.
	The segmentation results were very good considering the
amount of artifacts and variability exhibited by the dataset. The segmentation outcomes were good even with the artifacts and variabilities. The model was built with the
application of computing simulated images in mind, but
considering the outcomes, it could be used for stand-alone segmentation applications.

	Airways
	
	
	
	
	
	
	

	Leonardi et al.
2021[15]
	Sinonasal cavity and pharyngeal airway
	Total=40
Train=20
Test=20
	120 kVp, 48 mA, 26 s, FOV= 17 cm in height X 23 cm in depth
voxel size=0.3-mm
	Mimics



	Fully automatic segmentation with automatic and manual segmentations
	The architecture consists of a down-sampling path and an up-sampling path, interconnected by skip connections and by the bottleneck layer
	Mean volumetric differences between Manual and CNN segmentation= 1.93±0.73 cm3
DSC: between the assessment
done by our automated method and the manual and semiautomatic segmentation were 3.3% and 5.8%, respectively.
	The fully automatic method and the manual method showed similar accuracy and performance.

	Park et al. 2021[16]
	Airway volume
	315
(training = 80%
Test = 20%)
	105–114 KVP, 5.6–6.5 mA 
FOV=160 mm x 160 mm
voxel size= 0.3 mm 
	MATLAB 2020a (MathWorks, Natick, MA, USA)


	Fully automatic segmentation with manual segmentation
	N/A
	Auto vs Manual = The difference in total
volume was measured as 137.256 ± 146.517 mm3
	A high correlation between manual and DL-based methods was demonstrated.

	Sin et al. 2021[17]
	Pharyngeal airway
	training = 214
validation = 46
test = 46
	120 kVp and 3-5
mA, 12 in (13.48 cm) imaging field

	
ITK-SNAP

	Automatic segmentation with semi-automatic segmentation
	 U-Net
	DSC= 0.919 
IoU= 0.993
	High similarity was achieved between manual and automated segmentation methods. Bigger datasets are required for future development of the model.

	Tooth and Pulp Chamber
	
	
	
	
	
	
	

	Lahoud et al. 2021[18]
	Tooth segmentation
	training = 2095
optimization = 501  validation = 328 

	From previous databases
	N/A











	Manual with automatic segmentation
	N/A
	Automatic :  
IoU= 0.88
Time = 0.5 minutes
Semi-automatic:
IoU= 0.87
Time = 6.6 minutes
	The AI-based method is more time-efficient than the semi-automated method. ( about 6-12 times faster)

	Lin et al. 2021[19]
	pulp cavity and tooth
	training = 25
test = 5
(CBCT+MicroCT)
	CBCT:
85 kV, 4mA, 17.5 s.
FOV= 14 cm×14 cm×10 cm
Voxel Size= 100 μm×100 μm×100 μm
Micro-CT:
70 kV, 200 μA, Resolution= 20 μm,
Thick Aluminum Filter =0.5 mm

	"3-matic software
(Materialise NV, Leuven, Belgium)"

	Automatic segmentation with manual segmentation
	 Feature pyramid network
	Experimental group:  (data pipeline were micro-Ct images)
DSC= 96.20±0.58%
PR= 97.31±0.38%
RR= 95.11±0.97%
ASSD= 0.09±0.01mm 
HD= 1.54±0.51mm 
Control group: (Data pipeline was annotated images by endo specialists)
DSC= 86.75±2.42%
PR= 84.45±7.77%
RR= 89.94±4.56%
ASSD= 0.08±0.02mm
HD= 1.99±0.67mm 
	The model performed accurately showing promise for future use in clinic and endo planning.

	Shaheen et al. 2021[20]
	Tooth segmentation and classification
	Training = 140
Validation = 35
Test = 11
	3D Accuitomo:
 90 kV, 
voxel size: 0.25×0.25×0.25mm3, 
FOV: 100.75×100.75×100 mm3 or 170.25×170.25×120 mm3  
Newtom VGi evo:
170 and 110 kV,
voxel size: 0.2 × 0.2 × 0.2 mm3, 
FOV: 122.8 × 122.8 × 80.2 mm3 or 103.2 × 103.2 × 100.8 mm3 or 244.8 × 244.8 × 188.7 mm3 for 
	N/A

	Automatic segmentation and manual segmentation
	3D U-Net
	Automated segmentation : P= 0.98±0.02 R= 0.83±0.05 HF= 0.56±0.38mm
Time =1800 times faster for AI compared to that of an expert.
Classification : R= 98.5% P= 97.9%
	The proposed system is accurate and time-efficient

	Duan et al. 2021[21]
	tooth and pulp cavity
	20
	85kVp, 10mA, 5000 ms 
FOV= 8 cm × 8 cm × 8 cm, and the voxel size= 0.16
× 0.16 × 0.16 mm.
	PyTorch and NVIDIA Tesla P4

	N/A
	A two-phase network: phase one: RPN (Region Proposal Network) and FPN (Feature Pyramid Network)- Phase two: U-Net 
	DSC: Single rooted tooth (ST)= 95.7%
 Multi-rooted tooth (MT)= 96.2% 
pulp of ST = 88.6% 
pulp of MT= 87.6% 
	The deep learning-based method achieved a high DSC in accurate tooth and pulp cavity segmentation.

	Zheng et al
2020[22]
	First molar Pulp Chamber 
	Total:180
Training:37
Validation:10
Test:133
	110 kVp, 5.14–89.37 mAs. 
FOV=6 × 6 cm, 8 ×
8 cm, 12 × 8 cm, 15 × 12 cm, 15 × 15 cm.
	ITK-SNAP

	Between automatic and manual segmentation
	N/A
	DSC=0.878
	The method can accurately segment the pulp chamber and estimate the human age. High spatial overlap was reported between manual and automatic segmentation.

	Penaloza et al. 2016[23]
	To test the variability of the volume measurements with different segmentation methods applied in pulp volume reconstruction
	21
	70 Kv, 8-10 mA, FOV= 50 mm by 37 mm.
	NVIDIA Tesla P4 and MIMICS 17.0 (Materialise NV, Leuven, 119 Belgium)

	Automated and manual segmentation
	U-Net Network
	Auto compared to Manual: 1)using each fourth slice = the Pearson’s correlation coefficient (r=0.83), shows a greater correlation between them, 2)using only the first and the last slice (r=0.75)
	For manual and automatic segmentation of different teeth, using the same setting parameters is impossible. Furthermore, manual segmentation is more inaccurate and time-consuming

	Benyó et al. 2012[24]
	Segmentation of teeth and root canals (Identification of dental root canals and their medial line)
	Training = 250
Test = 61
(CBCT+MicroCT)
	Resolution=1500-3000dpi

	N/A

	N/A
	N/A
	Overall success rate = 92.0%
Average processing time : MicroCT= 341 sec CBCT= 0.93 sec
	The segmentation is mostly automatically done. Some manual interventions may be required if needed.

	Others
	
	
	
	
	
	
	
	

	Minnema et al. 2021[25]
	Compare 8 different CNN training strategies, namely 2D (axial, sagittal, and coronal slices), 2.5D (3 and 5 adjacent slices), majority voting, randomly oriented 2D cross-sections, and 3D patches
	-
	90 kVp,  10 mA 
Voxel size = 0.2 mm
	Mimics and 3-matic software


	Compared the gold standard segmentation(semi-automated) and the CNN segmentation
	The CNN architecture consisted of four layers: 1. Convolutional layer 2. Activation layer 3. Normalization layer 4. Pooling layer
	U-Net
	Mixed-scale
Dense convolutional neural network (MS-D network)
	The automatic segmentation performed by the MSD
the network could preserve more anatomical details and use
fewer trainable parameters compared to U-Net and ResNet CNN architectures. Additionally, all CNN models could outperform the semi-automatic clinical snake evolution algorithm.MS-D successfully segmented the bone structures affected by metal artifacts.

	
	
	
	
	
	
	
	2D axial
	DSC= 0.805 ± 0.10
Time= 25.6 ± 0.8
	2D axial
	DSC= 0.809 ± 0.10
Time= 12.4 ± 0.8
	

	
	
	
	
	
	
	
	2D sagittal
	DSC= 0.802 ± 0.11

	2D sagittal
	DSC= 0.806 ± 0.10
	

	
	
	
	
	
	
	
	2D coronal
	DSC= 0.799 ± 0.11

	2D coronal
	DSC= 0.813 ± 0.10
	

	
	
	
	
	
	
	
	2.5D (3 adjacent slices)
	DSC= 0.813 ± 0.10
Time= 29.3 ± 1.7
	2.5D (3 adjacent slices)
	DSC= 0.807 ± 0.09
Time= 14.8 ± 0.7
	

	
	
	
	
	
	
	
	2.5D (5 adjacent slices)
	DSC= 0.803 ± 0.10 Time= 27.3 ± 0.3
	2.5D (5 adjacent slices)
	DSC= 0.801 ± 0.09
Time= 15.6 ± 0.7
	

	
	
	
	
	
	
	
	majority voting
	DSC= 0.821 ± 0.11 
Time= 3 x
25.6 ± 0.8
	majority voting
	DSC= 0.821 ± 0.10
Time= 3 x
12.4 ± 0.8
	

	
	
	
	
	
	
	
	randomly oriented 2D (cross-sections)
	DSC= 0.811 ± 0.09
Time= 22,9 ± 0.1
	randomly oriented 2D (cross-sections)
	DSC= 0.808 ±0.09
Time= 10,8 ± 1.1
	

	
	
	
	
	
	
	
	3D patches
	DSC= 0.782 ± 0.13 Time= 259.3 ± 13.5
	3D patches
	DSC= n.a.
Time= n.a.
	

	MDCT
Craniomaxillofacial structures
	
	
	
	
	
	
	

	Steybe et al.
2022[26]
	Craniomaxillofacial structures on head CT
	N/A
	Voxel size =1 mm3
Fixed matrix size=32x32x32 voxels
	NORA imaging platform and Nvidia RTX

	Automated with manual segmentation
	U-Net 
	DSC=0.81±0.13 mm
Surface DSC=0.94±0.06 mm
95%HD=1.93±2.05 mm
ASSD=0.42±0.44 mm
	High accuracy was achieved. The approach may assist in maxillofacial surgeries

	Ryu et al. 2021[27]
	upper-airway morphology
	training = 73
test = 15
	Resolution=512 ×512
Pixel spacing=0.42–0.51 mm
	3D slicer

	Compared network output with manual segmentation
	3D U-Net
	ACC = 81.5%  SE= 89.3%  SP= 86.2%  F1= 87.6%
high-resolution model: DSC=0.76 ±0.041   
low-resolution model: DSC= 0.74 ±0.052

	The diagnostic accuracy of  Obstructive sleep apnea syndrome is increased with the algorithm.

	Zhong et al. 2021[28]
	organs-at-risk 
for head and neck cancer radiotherapy
	364
	120 kVp, 350 mA 
Pixel size= 0.92 × 0.92 mm 
Resolution=512 × 512 matrix.
	Keras

	Automated segmentation with manual segmentation
	U-Net
	Oral cavity: HD= 8.51 ± 5.54 DSC= 0.93 ± 0.07
	The model showed an efficient and consistent performance in clinical practice. Reducing the labor-intensive manual segmentation work.

	Fu et al.
2020[29]
	Vessel
	18766
	Patch dimension= 256 × 256 × 256 voxels
	ITKSNAP

	Automated with manual segmentation
	Modified U-net with the addition of bottleneck-ResNet (BR)
	ACC=0.931
	The automated algorithm decreases labor force and time and can assist in the improvement of patient care.

	Yun et al.
2018[30]
	Airway
	Total:77
Training:59
Validation:10
Test:8
	patch size=32 × 32 pixels
	AVIEWTM (Coreline Soft Inc., Seoul, South Korea) 

	Automatic segmentation with manual segmentation and semi-automatic segmentation
	2.5D CNN
	DSC=0.8997±0.0892
FP=7.74%
Tree length detected=92.16%
	The algorithm can be applied in radiologic practice.


	Minemma et al.
2018[31]
	Bone
	Training:20

	N/A
	Mimics and 3-matic software


	Compared the gold standard segmentation(semi-automated) and the CNN segmentation
	The CNN architecture consisted of four layers: 1. Convolutional layer 2. Activation layer 3. Normalization layer 4. Pooling layer
	DSC=0.92±0.04

	The algorithm is time and effort-efficient for bone segmentation.

	Klinder et al. 2009[32]
	Vertebra detection, identification, and segmentation
	Training = 10
Test= 64
	Resolution: 0.36 mm to 0.96 mm
Voxel size=
3.0 x 3.0 x 3.0 mm
	N/A

	The generated ground truths were verified
by a clinical expert. (Manual segmentation)
	N/A
	mean point-to-surface segmentation error = 1.12 ± 1.04 mm
entire computation time = 179.5 s
	The framework showed considerable results regarding different regions of the spine, e.g., head-neck, thorax, or whole spine images, and not only for one specific type of data.

	Rueda et al. 2006[33]
	Jaw Tissues (cortical bone, trabecular core, and especially
the mandibular canal containing the dental nerve.)
	Training = 215
Test = leave-4-out scheme
	N/A
	N/A

	Automated segmented image with the ground truth image
	Active Appearance Models
	pt.crv : Cortical= 1.63mm Trabecular= 2.90mm  Canal= 4.76mm  Nerve= 3.40mm 

	AAMs can perform automatic and accurate segmentation of various jaw tissues despite the variability of multiple cases.

	Tooth
	
	
	
	
	
	
	
	

	Kang et al. 2015[34]
	Teeth
	10
	85 kV, 4mA, 
Voxel size=
0.2 × 0.2 × 0.2mm
	N/A

	Compared the gold standard segmentation(semi-automated) and the CNN segmentation
	The CNN architecture consisted of four layers: 1. Convolutional layer 2. Activation layer 3. Normalization layer 4. Pooling layer
	The average error = 2.29 ± 0.56% 

	The proposed semi-automated method showed more accuracy in comparison to conventional methods. The proposed method
identified the individual teeth accurately, demonstrating that it can give dentists substantial assistance during dental surgery.

	Thariat et al. 2012[35]
	Dental structures (to guide dental care in the context of intensity-modulated radiotherapy)
	Training = 42
Test = 8
	N/A
	N/A

	ground truth the maximum doses estimated from manual contours compared with manual and automatic contours.
	N/A
	ACC = 75%
	Dose estimation and segmentation using this framework were more practical and suitable for routine use than manual segmentation.

	Le et al.
2009[36]
	Tooth segmentation
	-
	Resolution=512 × 512 at 0.625
Slice thickness=1.25 mm FOV= 25cm or lesser   
Gantry tilt=0◦ 
	OsiriX

	Automated segmented image with the ground truth image
	Active Appearance Models
	0.29 mm error from the ideal segmentation
	The algorithm is fast and time-efficient and outperformed previous methods

	Micro-CT
 Tooth and pulp cavity
	
	
	
	
	
	
	
	

	Lin et al. 2021[19]
	Pulp cavity and tooth
	training = 25
test = 5
	CBCT:
85 kV, 4mA, 17.5 s.
FOV= 14 cm×14 cm×10 cm
Voxel Size= 100 μm×100 μm×100 μm
Micro-CT:
70 kV, 200 μA, Resolution= 20 μm,
Thick Aluminum Filter =0.5 mm

	MIMICS 17.0 (Materialise NV, Leuven, 119 Belgium)

	Comparison of segmentation accuracy between the training samples and  the CBCT images labeled by an endodontic specialist
	U-Net
	Experimental group:  (data pipeline were micro-CT images)
DSC= 96.20±0.58%
PR= 97.31±0.38%
RR= 95.11±0.97%
ASSD= 0.09±0.01mm 
HD= 1.54±0.51mm 
Control group: (Data pipeline was annotated images by endo specialists)
DSC= 86.75±2.42%
PR= 84.45±7.77%
RR= 89.94±4.56%
ASSD= 0.08±0.02mm
HD= 1.99±0.67mm 
	The model performed accurately showing promise for future use in clinic and endo planning.

	Queiroz et al. 2017 [37]
	Root canal volume and surface area
	31
	50 kV, 800 µA
Voxel size= 33.21 μm
Thick Aluminium Filter =0.5 mm
Rotation= 360°
Rotation step=0.4°
	N/A


	N/A
	N/A
	Automatic : Mean and standard deviation : Canal volume = 2.85 (±1.29)a Canal surface = 26.43 (±6.19)b 
Manual : Mean and standard deviation : Canal volume = 2.88 (±1.26)a  Canal surface = 26.95 (±8.26)b
	Both automatic and manual methods can be used for pulp volume calculation but automatic segmentation is the best for threshold determination reproducibility.

	Benyó et al. 2012[24]
	Segmentation of teeth and root canals (Identification of dental root canals and their medial line)
	Training = 250
Test = 61
	Resolution=1500-3000dpi

	Automatic Threshold Tool
	To compare visual and automatic segmentation
	N/A
	Overall success rate = 92.0%
Average processing time : Micro-CT= 341 sec CBCT= 0.93 sec
	The segmentation is mostly automatically done. Some manual interventions may be required if needed.

	Benyó et al. 2009[38]
	detection of the medial
axis of the root canal
	-
	Resolution=1500-3000dpi
	N/A

	N/A
	N/A
	The proposed algorithm can automatically process more than 95% of the recorded image sets, while the rest of the cases need manual interaction.
	The model performs automatically in most cases and is accurate in medial line identification.


	Ultrasonography(US)
	
	
	
	
	
	
	
	

	Keser et al.
2022[39]
	Masseter muscle
	Total:388
Training:312
Validation:38
Test:38
	Resolution:
8 MHz
	US software

	N/A
	PyTorch U-Net
	F1=1.0
SE=1.0
P=1.0
	This method can assist clinicians by reducing the diagnosis time.

	Orhan et al. 2021[40]
	Masseter muscles
	training = 157
validation = 18
test = 20
	NA
	US software
	Manual segmentation with automatic segmentation
	 U-net, Pyramid Scene Parsing Network (PSPNet), and Fuzzy Petri Net (FPN)
	FPN: SE= 0.994 SP= 0.990 P= 0.945 ACC= 0.985 F1= 0.932 
PSPNet: SE= 0.792 SP= 0.964 P= 0.806 ACC= 0.947 F1= 0.762
U-net: SE= 0.792 SP= 0.990 P= 0.794 ACC= 0.969 F1= 0.847

	The presented
algorithm had high sensitivity and precision values like
human observers.

	MRI
	
	
	
	
	
	
	
	

	Ito et al.
2022[41]
	Articular Disc of TMJ
	217
	NA
	Keras

	Compared three fully automated segmentation algorithms: encoder-decoder CNN, U-Net, and SegNet
	Encoder-decoder CNN, U-Net, and SegNet

	
	DSC
	SE
	P
	The method can assist clinicians in TMDs.

	
	
	
	
	
	
	
	3DiscNet
	0.70±0.17
	0.6±0.20
	0.80±0.14
	

	
	
	
	
	
	
	
	UNet

	0.46±0.14
	0.44±0.15
	0.54±0.19
	

	
	
	
	
	
	
	
	SegNet-Basic

	0.74±0.12
	0.70±0.14
	0.80±0.13
	

	Ruthven et al.
2020[42]
	Vocal Cord and articulators
	Total= 392
	Matrix size:
256×256
	PyTorch and NVIDIA TITAN RTX graphics card. 

	Compared Ground truth segmentations and corresponding predicted segmentation after post-processing
	Fully convolutional network with a similar architecture to the original U-Net
	DSC=0.92
General HD=5mm
	The method can segment the vocal cords and the articulators with high accuracy.

	Yang et al.
2014[43]
	Parotid gland
	Test: 42
	Matrix size:
256×256
voxel resolution:
0.8_ 0.8 _ 30
	N/A
	 Automatic segmentation results were compared with physicians’ manual contours (gold standard)
	the kernel support vector machine
	DSC:
Left parotid:91.1%±1.6
Right parotid:90.5%±2.4
Average volume difference:
Left:7.98%
Right:8.12%
	The method showed high accuracy and performance in clinical studies. The method can be useful for addressing xerostomia in patients.


ACC, Accuracy; ASSD, Average Symmetric Surface Distance; AUC, Area Under Curve; CFD, Computational fluid dynamics; CNN, Convolutional Neural Network; DNN, Deep Neural Network; DSC, Dice similarity coefficient; F, F Measure; F1, F1-Score; FOV, Field of View; FP, False Positive; HD, Hausdorff distance; ICC, Interclass Correlation Coefficient; IOU, Intersection Over Union; JI, Jaccard index; P, Precision; PQ, Panoptic quality; PR, Precision Rate; pt.crv, point-to-curve; R, Recall; RQ, recognition quality; RR, Recall Rate; SE, Sensitivity; SP, Specificity; SQ, Segmentation Quality; SVM, Support Vector Machine;
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