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Abstract

Over the last decade, the number of years of life lost (YLL) became a popular tool in bio-
statistics and epidemiology to measure discrepancies in life expectancy or mortality between
a cohort of patients and the general population. Its prominence in the literature is primar-
ily due to its ease of interpretation and because information on the cause of death is not
required. Moreover, multi-state models are a powerful statistical approach to study the evo-
lution of individuals between several “states”. Derived from data collected by the Belgian
Cancer Registry, encompassing 161,007 cases of melanoma, thyroid, and female breast can-
cer, a three-state (healthy—cancer—death) illness-death model is used to illustrate how it can
be applied to cancer registry data to estimate the incidence risk, and the number of years
of life lost due to cancer at different ages at diagnosis and given that the patient survived
some years after diagnosis. Results suggest that the probabilities of being diagnosed with
cancer over the next 20 years for a healthy individual remain rather low for melanoma and
thyroid cancers for both sexes, but considerably increases with age for female breast cancer.
Results also suggest that, for female breast cancer, the number of years of life lost before the
age of 70 years due to cancer is highest when diagnosed at young ages and then decreases
with age at diagnosis, whereas for melanoma and thyroid cancers, it peaks when diagnosed
at later ages (between 35 and 55 years depending on the cancer and sex). It also turns out
that the number of years of life lost before the age of 70 due to cancer is larger for men than
for women for both melanoma and thyroid cancers. Last, it is found that, for melanoma
and thyroid cancer patients diagnosed between the age of 20 and 70 years, once they have
survived their cancer for 10 years, the number of years of life lost before the age of 70 due to
cancer remains below one year. This indicates that, up to the age of 70 years, these patients
lose a limited number of years of life due to cancer compared to the general population.

Keywords: Years of life lost; Multi-state models; Critical illness; Cancer mortality.



1 Introduction and motivation

Over the last decade, the number of years of life lost (YLL) became a popular tool in
biostatistics and epidemiology to measure discrepancies in life expectancy or mortality. The
idea behind YLL is to quantify the number of years of life a specific cohort of patients has
lost due, for example, to a given disease, compared to the general population. This measure,
as defined by Andersen [1] and Andersen et al. [4], has the advantage (compared to others
such as the hazard ratio or excess hazard) that it is measured on a time metric (usually in
years) making its interpretation easy for policy-makers and meaningful for gauging public
health outcomes [38].

It was first introduced to measure the reduction in life expectancy for a group of individ-
uals compared to a hypothetical cohort where no one dies before a given age [1]. However,
in most situations, it may seem more natural to measure the reduction in life expectancy for
a group of individuals compared to a reference population (where some years of life are lost
because of some standard or background mortality rates). In this sense, YLL can be used
to estimate the number of years a specific cohort of patients (cancer patients, for instance)
are expected to lose compared to the general population (i.e., the reference population to
which the cancer cohort is compared). The difference between the life expectancy of the
general population and the one of the considered cohort of patients corresponds to YLL.
This measure is sometimes referred to as excess YLL because it is the number of years of
life patients lose in excess of that seen in the general population. The greater this measure,
the more important the societal burden of the disease or condition.

Similarly to the excess hazard, information about the cause of death is not required
to estimate YLL, making it a practical measure for population-based studies in which the
cause of death is often unavailable or unreliable [48]. There are two types of YLL. First, the
number of years of life lost by the entire cohort, which can be denoted YLL¢, and which is
of interest if one wants to estimate at one point in time the global number of years of life
lost due to a particular disease (see for instance Aragon et al. [11] who rank leading causes
of premature death based on the total number of years of life lost due to each cause). This
may be used to answers questions such as “How many years of life are lost in the population
due to cancer?” [9]. It is of great interest to economists, governments and policy-makers to
determine which condition or disease has the largest negative impact on citizens and society
as a whole (for resource allocation, public health priorities, cancer control progress, etc.).
Second, the number of years of life lost (on average) per individual, which we denote YLL?,
and which quantifies how many years of life a patient is expected to lose (see for example
Belot et al. [16] or Latouche et al. [38]). It answers questions such as “How much does the
life expectancy of an individual on average change if diagnosed with cancer?”. See examples
with common cancers in Chu et al. [22] who measure health impacts on society using YLL!.
In this situation, YLL? can be seen as an average per person, whereas YLL can be seen as
the sum of the years of life lost for each individual in a patient cohort. See a comprehensive
overview of the years difference measures in Manevski et al. [40]. Note that individuals do
not necessarily lose years compared to the general population; they may also gain years. This
is the case, for instance, in the study of the long-term survival of elite athletes for which
survival may be better than that of the general population [10].

From a general point of view, the major advantages of YLL¢ and YLL are that (i) it is



measured on a time metric (usually in years), facilitating its interpretation and communi-
cation [14, 39], (ii) information on the cause of death is not needed to estimate it, and (iii)
it can be computed for any time horizon and for a comprehensive list of causes of death.
Andersen [2] suggested several measures of life years lost among patients with a given dis-
ease in the framework of a (Markov or non-Markov) illness-death model, illustrated using
data on Danish male patients with bipolar disorder. The main goal of the present study is
to demonstrate how YLL’ can be easily estimated from a multi-state model and what the
advantages are of doing so, with a focus on two applications using data on Belgian cancer
patients. Their use in the context of the right to be forgotten will also be discussed.

Multi-state models (MSM) are a powerful statistical approach to study the evolution
of individuals between several “states” (see Andersen et al. [3] and Hougaard [31] for a
general review). MSM can be seen as an extension of classical survival analysis, in which
only the transition from being alive to being dead is considered [26, 30, 50]. Unlike classical
survival models, MSM are used to model processes which go from an initial state (for instance
“healthy”) to a terminal (also referred as absorbing) state (for example “dead”), but where
more than two states are considered, some being transient. For example, considering that the
“healthy” state is portioned into two or more intermediate states corresponding to specific
stages of a disease [41]. Thus, MSM offer a complete and informative representation of the
occurrence of intermediate events on the pathway to some final event, notably via transition
probabilities which have a natural interpretation [5, 59].

In this paper, a three-state model, assuming that an individual can either be “healthy”,
“II” (diagnosed with cancer), or “dead” is considered. We will see that in our context,
we actually only need to consider transitions from healthy to ill, healthy to dead and ill
to dead. While excluding the possibility to transit from ill back to healthy can be inter-
preted as assuming that cancer is a permanent condition (which is debatable), we actually
decided not to consider it following the parsimony principle since it would not bring any
useful information in our context. Indeed, as it will be shown later, in our type of appli-
cations, distinguishing the health state of patients between diagnosis and death is actually
not required. This non-reversibility greatly simplifies the computations, as in this case, our
three-state process is hierarchical and trajectories can be described in terms of just a few
random variables [27]. See Fig. 1.1 for a visual representation of the model, often referred
in the literature as the ‘(three-state) illness-death model” without recovery. More advanced
types of MSM (known as reversible MSM) can be used in case recoveries are possible and
has to be taken into account for the application considered. Note that this three-state model
is, in its mathematical concept, similar to the well-known SIR model (susceptible — infected
— recovered) in epidemiology [6, 35]. The difference with our three-state illness-death model
is that a susceptible individual must go through the infectious state before being recovered,
he/she cannot go directly from “susceptible” to “recovered”.

The key contribution of this paper is thus to illustrate how disease incidence risk and YLL?
can be estimated based on a Semi-Markov three-state MSM using cancer registry data, and
what type of useful information can be obtained out of it. Furthermore, the main advantage
of computing these quantities in a Semi-Markov context is that it allows to take into account
the number of years a patient survived after the diagnosis. To the best of our knowledge,
most studies refer to the number of years of life lost at the time of diagnosis, without taking
the time survived since diagnosis into consideration. This is a major difference, given that
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Figure 1.1: Visual representation of the ‘illness-death model” without recovery for cancer
patients

time spent in the ill state is known to have an influence on survival for cancer patients.

The remainder of this paper is laid out as follows. Section 2 presents the data used to
perform the present study. Section 3 details the methods and tools, with a focus on Semi-
Markov MSM. Section 4 illustrates two useful MSM-based health indices. The final section
(Section 5) concludes the paper with a discussion.

2 Data

For these applications, the data available from the Belgian Cancer Registry (BCR) are
considered. The BCR is a national population-based cancer registry collecting data on all
new cancer diagnoses in Belgium since the incidence year 2004. For the execution of this
main task, the BCR relies on its own specific legislation (more information can be found on
the BCR website, at kankerregister.org).

To illustrate our work, the methods were applied to three cancer types: melanoma (ICD-
10 C43), thyroid (ICD-10 C73) and female breast (ICD-10 C50) cancer. These three cancer
sites have been selected to evaluate the proposed method in different scenarios. Melanoma
and thyroid cancer patients are known to have a limited excess hazard compared to the
general population and high survival rates [24, 25, 43, 55]. The situation for female breast
cancer patients is different with usually a high survival probability in the first years after
the date of diagnosis before it eventually decreases due to late cancer recurrences [23]. Only
female breast cancer is considered as there are too few registrations regarding male breast
cancer.

Out of a total of 161,007 cases, melanoma, thyroid and breast cancer represent, respec-
tively, 29,213 (18.1%), 12,241 (7.6%) and 119,553 (74.3%) cases diagnosed between 2004 and
2020. Patients were followed-up until April 11, 2022, resulting in a follow-up ranging from
2 to 18 years. Only one record per patient (with the earliest incidence date) within each
cancer site was kept for patients with multiple primary diagnoses. A minority of patients
without national security number were excluded from the analysis. Patients lost to follow-up
(mostly due to moving abroad) and patients still alive at the end of the follow-up period
were treated as censored observations.

Table 2.1 summarizes the number of included cases, number and proportion of deaths
and percentage of lost to follow-up before April 11, 2022 per type of cancer, sex and age
group. The fraction of patients lost to follow-up per subgroup varied from 1.31% for women
with breast cancer aged 50-69 to 4.1% for male thyroid cancer patients aged 20-34. The
total fraction of patients lost to follow-up cases, regardless of sex, site or age group was



Sex Cancer Age at Lost to Number of Number of

site diagnosis follow-up included cases deaths

Men Melanoma 20-34 3.72% 969 94
35-49 2.66% 3,266 404

50-69 1.70% 7,460 1,583

Total 11,695 2,081
Men Thyroid 20-34 4.10% 366 6
35-49 3.12% 961 67

50-69 2.14% 1,773 379

Total 3,100 452
Women Melanoma 20-34 3.62% 2,488 78
35-49 1.47% 6,137 382

50-69 1.35% 8,893 1,112

Total 17,518 1,572
Women Thyroid 20-34 3.80% 1,607 14
35-49 2.67% 3,449 107

50-69 2.06% 4,085 484

Total 9,141 605
Women Breast 20-34 2.76% 3,112 502
35-49 1.78% 32,743 4,058

50-69 1.31% 83,698 15,946

Total 119,553 20,506

Table 2.1: Number of persons diagnosed with melanoma, thyroid and female breast cancer
in Belgium between 2004 and 2020 (BCR data) by sex, site and age group, together with
the percentage of lost to follow-up and the number of deaths.

1.64%. Moreover, mean age at diagnosis was 50.5 years (standard deviation (SD) = 12.1),
48.1 years (SD = 12.4) and 54.6 years (SD = 9.5) for melanoma, thyroid and breast cancer,
respectively.

In order to estimate the number of years of life lost, mortality in the cancer cohort must
be compared to the expected mortality in the general population. Mortality in the general
population is therefore also needed. The complete Belgian population is also required to
estimate the transition from healthy to ill (which cannot be estimated based on the cancer
registry data). These general population data come from the Belgian population life tables,
which are available from Statbel (the Belgian statistical office) and can be freely downloaded
from the website statbel.fgov.be.

Note that as population life tables take into account all deaths, those due to the cancer of
interest are also included. Nonetheless, it is commonly assumed that the fact that population
life tables include cancer mortality is not an issue since mortality for a given cancer represents
only a small fraction of the overall mortality. Correcting for this mortality of the cancer being
studied has, in practice, an insignificant effect on survival of the general population [28, 45].



3 MSM and YLL for cancer patients

A MSM, which is a model for time-to-event data, consists of states and transitions between
pairs of states that reflect the disease and death mechanism in medical applications. Main
motivations for using a MSM are often to obtain (i) more biological insight into the disease
or recovery process of a patient, and (ii) more accurate predictions than standard models
neglecting intermediate states. Indeed, by incorporating intermediate events, predictions
are adjusted in the course of time, giving more precise information about survival duration
26, 30].

When considering MSM, the following concepts must be distinguished: (1) Markovian
and Semi-Markovian, and (2) homogeneous and non-homogeneous models. These concepts
can be defined as follows

- Markovian: what happens next only depends on the current state, not on what hap-
pened before.

- Semi-Markovian: what happens next depends on the current state and how long ago
it was reached (so the duration in that state).

- Homogeneous or time-homogeneous: transition between states do not depend on time
(but time seen as age and not duration in the state, hence the name time-homogeneous).

- Non-homogeneous or time-inhomogeneous: transition between states may depend on
time (seen as age, not duration).

For a non-homogeneous Markov model, the time until the next state is allowed to depend
on the current state and the individual’s age (i.e., time). For a homogeneous semi-Markov
model, the time until the next state is allowed to depend on the current state and the time
since he/she entered this state (i.e., duration). For a non-homogeneous Semi-Markov model,
both aspects (time and duration) are combined: the time until the next state is allowed to
depend on the current state, the time since he/she entered this state, and his/her age.

Thus, in our context, assuming a homogeneous Markov illness-death model would mean
to consider that the expected length of stay in the ill state of a cancer patient depends
only on the current state. In other words, it would assume that two cancer patients have
the same expected length of stay in the ill state (and thus, the same mortality), even if
one has been diagnosed for one year and the other for 10 years. However, it is known that
mortality for cancer patients (and thus expected length of stay in the ill state) varies with
time since diagnosis (and thus sojourn time) [56]. Therefore, the Markovian assumption does
not hold for our situation, and a Semi-Markov assumption taking also into consideration the
time spent in the ill state is preferable. Moreover, the non-homogeneous assumption is
also preferable as transitions may depend on patient’s age. In this non-homogeneous Semi-
Markov case (also known as general Semi-Markov), the expected length of stay in the ill
state of a cancer patient will thus depend on both the age and the time since diagnosis. This
assumption is important because it allows to update the patient’s life expectancy conditional
on the fact that he/she survived up to that time and a given specific age. This is the reason
why our calculations are performed in the context of a non-homogeneous Semi-Markov illness-
death model.



The whole process from birth to death of any individual can be defined formally as a
random process over time X = [X(¢),t > 0], where X (¢) gives the state occupied at age t.
Here, t corresponds to the time since birth. In the irreversible illness-death process depicted
in Fig. 1.1, X(¢) has values in state space S = {0, 1,2} where state 0 corresponds to the
“healthy” state, state 1 to the “ill” state and state 2 to the “dead” state. Individuals are
initially with no cancer detected, thus considered as healthy. Then, they may be diagnosed
with cancer and die, or they may die without having been diagnosed with cancer.

More formally, let’s denote by 7;; the age at which the patient moves from state ¢ to
state j. For patients diagnosed with cancer at age Ty, and who died at age T}, we have

X(t):O O§t<T01,
X(t) =1 T01 §t<T12 and
X()=2 t> T

For patients without cancer who died at age Tys, we have

X(t)zo 0§t<T02and

Remember that it is assumed that a cancer patient stays in the “ill” state until he/she
dies (i.e., the transition from state 1 to state 0 is not allowed). So, in fact the state “ill”
should rather be understood as “having been diagnosed with a cancer”.

In our context, we have to assume that the time spent in state ¢ influences transition to
the next state. Therefore, the random variable Z(t) is introduced, and defined as the time
spent in the state occupied at time ¢. Formally,

Z(t) =max{z <t|X(t) = X(t—h) forall 0 < h < z}.

For an individual in state i at time ¢, Z(t) is the time since entry in the state (i.e., time from
birth for ¢ = 0 and time from diagnosis for i = 1). Henceforth, we work under the Semi-
Markov assumption: the current state X (¢) and the time Z(t) spent in the current state
influence future transitions. This means that the stochastic process [(X (t), Z(t)),t > 0] is a
Markov process.

A fundamental concept in multi-state models is the transition intensities, which govern
movements between the different states depending on the state currently occupied and the
sojourn time. The following transition intensities fully describe the process in an illness-death
model:

PIX(t+h) = 1|X(t) = 0]

oo (1) = lim - (3.1)
oot = lm PIX(t + h) - 20X (t) = 0] 3.
onafts ) — 1 PR =2X(0) =1,2(1) = 2 3.3

h—0 h



where «;;(.) are the transition intensities between state ¢ and state j (i = 0,1;j = 1,2).
Transition intensities from state 0 depend on the time spent in that initial state through
attained age. Furthermore, there is an influence of the duration of stay in state 1 so that
transition intensities from state 1 depend on both attained age and time z since diagnosis. In
our context, ap(.), apa(.) and aya(.; .) are, respectively, the intensity of developing cancer, the
death intensity without cancer and the death intensity with cancer. Also, the exit intensity
from state 0 is denoted age(t), that is, age(t) = ap1(t) + apa(t).

Transition probabilities are meaningful to estimate in addition to transition intensities.
Considering an individual who is healthy at age ¢, that is, who is in state 0 at time ¢, the
probability of being in state 1 at time t + h is denoted as

poi(t,t +h) = PIX(t +h) = 1|X(t) = 0],
the probability of being in state 2 at time ¢ + h is denoted as

po2(t,t+h) =P[X(t+h) =2|X(t) = 0],
and the probability of still being in state 0 at time ¢ + h is denoted as

poo(t,t +h) =P[X(t+ h)=0|X(t) =0].

Since the time spent in state 1 influences future transitions, the random variable Z(¢)
also enters the transition probabilities from that state. Precisely, considering an ill individual
diagnosed at age Ty, and aged t = Ty, + z, that is, who is in state 1 since the last z =t —T{;
years, the probability of being in state 2 at time t 4 h is denoted as

pra(t,t +h;2) =P[X(t+h) =2|X(t) =1,Z(t) = 2]
and the probability of still being in state 1 at time ¢ + h is denoted as

pu(t,t+h;2) =P[X(t+h)=1|X() =1,Z(t) = z].

As explained before, we do not need to consider the possibility to move back to the
initial state, or to transition to an intermediate “recovery” state for our applications. Hence,
transition probabilities poo(t,t + h) and pi1(t,t + h; 2) are in reality sojourn probabilities,
ie.

poo(t,t+h) = P[X(t+u)=0forall 0 <u<h|X(t)=0]
pu(t,t+h;z) = PX({t+u)=1forall 0 <u<h|X(t)=1,2(t) = z|.
More generally, transition probabilities can be rewritten as

and transition intensities can be rewritten as

PIX(t+h) = j|X(t) =i, Z(t) = 2]

a;i(t;z) = }lg% - Vi,j €S
I IULARUL)) Vi,j € S.
h—0 h



While these transition probabilities and transition intensities give useful information on
the evolution of the individuals, obtaining information about survival duration is also of
great interest for clinicians and patients. Life expectancy at birth is a metric widely used in
demography to measure the length of survival present in a population, and corresponds to
the average number of years an individual is expected to live from birth (given that mortality
rates remain constant in the future) [21, 36, 49]. Moreover, remaining life expectancy is the
average number of remaining years an individual is expected to live, starting from a certain
age instead of birth. By computing remaining life expectancy starting at a certain age, it
is meant to be conditional on survival to that certain age. If, in addition to estimate life
expectancy from a given age instead of birth, it is also estimated up to a given time horizon,
it is known as the restricted mean lifetime and it can be interpreted as the average number
of years an individual is expected to live between two specific ages. In this paper, we will
be particularly interested in taking into account both a starting age different than birth (so
conditional on survival to some ages after birth) and a finite time horizon (so considering a
given upper age 7). See Section 4 for more details about the choices of the starting age and
T.

As mentioned earlier, the number of years of life lost can be seen either at the cohort level
(YLL®) or at the individual level (YLL?). When applied to cancer patients, on the one hand,
YLL¢ represents the total number of years of life lost by the cancer cohort. This is useful to
compare, for instance, the societal burden of cancer with other diseases or between different
countries. On the other hand, YLL® can be interpreted as the average number of years of life
lost that a cancer patient experiences from the time of diagnosis in comparison to an healthy
individual of the same age (and possibly sex, year and other covariates such as ethnicity
or socio-economic factors). This latter definition resonates more in the patient-clinician
communication. In this paper, it is the YLL? which is chosen and illustrated.

YLL! in a certain time interval is the sum of life years lost due to (i) population mortality
(governed by mortality rates in that reference population) and due to (ii) the cancer of
interest. This quantity can be computed based on the estimated survival observed in the
general population minus the estimated survival in the cohort of cancer patients considered.
Formally, the number of years of life lost due to cancer starting from the age at diagnosis
Ty, until age 7 is defined as

T T
Y LL(Ty,) = / Sp(t)dt — / Sc(s)ds (3.4)
To1 To1
where Sp(-) denotes the classical survival function estimated via the population mortality
rates, and S’c() is the cancer survival curve (in general, estimated via the non-parametric
Kaplan-Meier [1958] method but it could be estimated via another method as well) [16].
The lower bound Ty, in the integrals represents age at diagnosis (so conditional on survival
to age Tp1) and the upper bound 7 corresponds to the time horizon, chosen arbitrarily or such
that it matches a certain cut-off. The number of years of life lost uses the age at diagnosis
for each cancer patient as its starting point and estimate the expected remaining lifetime at
that age using age-specific mortality rates. The number of years of life lost due to cancer
is then estimated by matching the expected remaining lifetime for someone diagnosed with
cancer with the life expectancy in the general population at that specific age. Age-specific
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mortality rates and life expectancy in the general population are generally available through
life tables (as they are usually stratified by age). For life tables that are stratified by sex in
addition to age, the number of years of life lost can be used to compare cancer patients to
the general population of the same sex and age.

Our objective is to demonstrate how this quantity can be estimated from our MSM. The
idea here is to start from our MSM to compute YLL? using life expectancy, probabilities of
developing the disease within a specific time period, and expected lengths of stay in each
of the different states (also referred in the literature as the mean sojourn time, see Jackson
[32]). Following Eq. (3.4), estimation of YLL? via a MSM starting from the age at diagnosis
is denoted YLLY,¢,,(T01) and corresponds to the number of years of life lost at the time of
diagnosis for someone diagnosed at age Tp;. Fig. 3.1 illustrates the approach, where e(Tys)
is the remaining life expectancy until the expected death of a healthy individual. One could
argue that it does not make sense to speak about age at diagnosis Tj; if the person has no
cancer. However, in fact we compare what would have happened to a patient diagnosed at
age To; if he/she would not have had a cancer at the time he/she was actually diagnosed. We
are now considering the hypothetical trajectory that a patient diagnosed at age Ty, would
have had if he/she had not had cancer and therefore if he/she had remained in state 0.

Someone with cancer:

diagnosis death  YLL!

I

i T T

To1 state 1 Ty9  state 2

Same if he/she would have no cancer diagnosed:

expected death

To1 state 0 e(To2)

Figure 3.1: Representation of MSM to estimate YLL’ from diagnosis

In the context of a Semi-Markov multi-state model, the remaining life expectancy for a
cancer patient diagnosed at age Ty, given the time z elapsed since diagnosis is

T

6{1(T01 + z; Z) = / pn(T(n + z,S8; Z)dS. (35)

Tor1+z
Since t = To; + z, Eq. (3.5) becomes

u(ti2) = [ pultsiz)ds (3.6)
t
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Following Fig. 3.1, to define YLLY,¢,,(7T01) in a Semi-Markov context we add the condi-
tioning on z to have the number of YLL for someone diagnosed at age Ty; but that would
have already survived with his/her cancer for z years. In that case, we obviously have to
update the life expectancy for the cancer patient (the fact that he/she lived already for z
years gives an information on his/her life expectancy) and do the same for his “healthy”
counterpart. This is denoted YLL,4,,(To1; 2) and is defined as follows

Y LL}1(Tor; 2) = remaining life expectancy at age Ty, for a healthy individual
— remaining life expectancy for a cancer patient diagnosed at age Tpq,
given the time z elapsed since diagnosis

= e(Tor) — €11 (Tor + 23 2)
(3.7)

Remaining life expectancy at age Ty, for a healthy individual is usually found with life
tables and population mortality rates. Here, the expected remaining lifetime until age 7
for someone diagnosed with cancer is matched with the 7-restricted life expectancy in the
general population at that specific age.

As often the case in practice, transition intensities are assumed to be piecewise constant
in order to ease calculations but also given the information available in cancer registries. In
that case, transition intensities are easily estimated by the ratio of the observed number of
transitions (diagnosis or death) to the corresponding exposure (in the state to be left) [56].
When (annual) piecewise constant transition intensities are considered, we get

r—t—1 < k—1 ) 1 —exp(—ap(t + k2 +k)) (3.8)

T (t;z) = — t+1; l
it kz—o oxp | = 2 ualt bz ) ona(t + ks 2+ k)

=0

with Zf:_ol app(t + ;2 4+1) = 0if I = 0. The development of e7,(¢;2) is explained in
Appendix A.

Remember that Y LLY,,,;(To1; 2) is defined at an individual level. In this sense, Y LLY, ¢, (To1; 2)
quantifies the number of years of life a patient diagnosed with cancer z years ago is expected
to lose compared to someone who will never develop the disease. It can be seen as an in-
sightful health indicator, complementary to other health indicators already used by clinicians
and policy-makers. Indeed, it can be used to communicate about a patient’s survival, but it
can also serve as a measure of the burden of cancer for the whole society (with comparisons
between diseases, countries or throughout the years for example).

4 Derived health indices - case of three specific cancer
types

One of the main advantages of estimating YLL? from a MSM is that several health indicators
could be derived from it. The focus here is put on two different applications to illustrate
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its potential uses; (i) the cancer incidence risk and (ii) the number of years of life lost due
to cancer given a certain time spent after diagnosis. Note that the first health indicator
requires the 3 states. However, regarding the second one, we consider an individual of age
Toh1 at diagnosis. This means that state 0 is no longer needed, since we are already in state
1. Also note that incidence refers to the number of new cases of a disease over a specified
period, and can be expressed as a risk or an incidence rate [44]. We are interested in the
former, that is, the incidence risk that a subject within a population will develop a given
cancer, over a specified follow-up period. This incidence risk, expressed as a probability, can
be interpreted as an estimation of the risk of cancer in an individual subject over a certain
time frame.

For these applications, our analyses are limited to patients aged 20 to 69 years old at
time of diagnosis for two main reasons. First, childhood cancers can be seen as a category of
cancer on their own and are often studied separately because they differ greatly from adult
cancers. Second, 7 has been set to 70 years, an age in which persons were censored if they
had not died before to focus on active life from a public policy perspective. The estimate of
YLL! has therefore to be interpreted as the number of years of life lost before that specific
age. This is analogous to the 7-restricted mean lifetime, which can be interpreted as the
average number of years lived before time 7. Note that the choice of 7 is arbitrary. In
some settings, researchers may be interested in YLL? before retirement’s age applicable in a
country. In our case, we are interested in potential implications for insurers in the context of
the right to be forgotten, hence the upper limit of 70 years (people aged above are unlikely
to contract a loan). Note the distinction between the maximum age at diagnosis (69 years)
and the upper age limit 7 (70 years). This difference is explained by the fact that we include
patients who have been diagnosed before their 70" birthday (and thus who are still 69 years
old at the time of diagnosis), while we are interested in the number of years of life lost before
the age of 70 due to cancer. This is to avoid the possibility that a patient is diagnosed
between his or her 70" and 71" birthday, while computing the number of years of life lost
before he or she has reached the age of 70 years.

To display our results, the time since diagnosis z is set to 0, 5 and 10 years. Y LL*(Ty;;0)
corresponds to the number of years of life lost due to cancer at the time of diagnosis for
a patient diagnosed at age To;. Y LL'(Tyy;5) and Y LL*(Tyy;10) correspond to the same
quantity computed after having survived to the cancer for respectively 5 and 10 years. A z
of 5 and 10 years after diagnosis has been chosen to cover a relatively large period of time
after diagnosis, while we refrain from setting it higher due to the limited follow-up period in
our data.

4.1 Incidence risk

We start the applications with the estimation of the probability for the population of age ¢
to be diagnosed with of each the three types of cancer we consider between age ¢t and ¢ + n.
In other words, the probability of being diagnosed with cancer for a healthy individual aged
t over the next n years is computed. This measure, similar to the incidence risk and again
assuming yearly-constant intensities, is defined based on a MSM as follows
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Figure 4.1: Probabilities of being diagnosed with breast, melanoma and thyroid cancer over
the next n = 20 years for a healthy individual as function of age t € {20,21,...,40}
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The probabilities of being diagnosed with breast, melanoma and thyroid cancer over the
next 20 years for a healthy individual obtained via the Semi-Markov three-state model are
displayed in Fig. 4.1, for ages t € {20,21,...,40} and for each sex separately. Fig. 4.1 shows
that incidence risk over a 20-year period remains rather low (< 0.71%) for melanoma and
thyroid cancers for both sexes, but considerably increases with age for female breast cancer
(culminating at 5.12% at age 40).

4.2 Years of life lost from diagnosis

Results of Y LL%,4,,(To1; 2) as functions of age at diagnosis (Tp; € {20,21,...,69}) and for
z=10,5 and 10 years after diagnosis are presented by sex and cancer site in Fig. 4.2.

14



Melanoma

Melanoma
Women Men

Thyroid Thyroid

Women Men
rawn)
N 6- z (years)
= — 0
\-(% 0.4- ;
.__IE 0.2-
- =10
>- 00- 1 1 1 1 1 °

20 30 40 50 60 70 20 30 40 50 60 70
Breast
Women

Age at diagnosis
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We can see that, for both sexes and all three cancers of interest, the longer the time sur-
vived after diagnosis (i.e., the greater the z), the lower Y LL%,4,,(Tp1; 2) (with an exception
for women diagnosed with thyroid cancer at the age of 25 and below). For female breast
cancer, Y LLY;¢,,(To1; 2) is highest when diagnosed at the age of 20 and then decreases with
age at diagnosis, whereas for melanoma and thyroid cancers, it peaks when diagnosed at
later ages (between 35 and 55 years depending on the cancer and sex). For both melanoma
and thyroid cancers, Y LLY ;¢,,(To1; ) is larger for men than for women. Botta et al. [17] who
describe the impact of cancer during patients’ entire lives found a similar pattern between
women and men. Comparisons between sexes cannot be made for breast cancer as only
female breast cancer is included. Among men, Y LL},¢,,(To1; 2) is globally lower for thyroid
cancer than for melanoma cancer. Among women, Y LL%,¢,,(To1; 2) is lowest for thyroid
cancer and highest for breast cancer. Note also that, for patients diagnosed with melanoma
or thyroid cancer at all considered ages, Y LLY,¢,;(To1;10) remains below one year. This
indicates that, once they have survived their cancer for 10 years, they lose (compared to the
general population and up to the age of 70 years) a limited number of years of life due to
cancer.

Remember that Y LL%,4,,(To1; ) is computed at the individual level with 7 = 70 years,
so these figures give the number of years of life a patient diagnosed with cancer is expected
to lose due to the disease before the age of 70 years (at the time of diagnosis, 5 and 10 years
after diagnosis). This health indicator can, however, also be analyzed in relative terms, that
is, in comparison with other cancers, diseases or conditions rather than in absolute terms.
Indeed, knowing that a group of patients has more to lose (up to a certain age) in terms
of years of life due to a specific disease compared to another one is more meaningful for
policy-makers and clinicians. This comparison would allow, for example, to rank diseases
in terms of burden to the society, that is, highlight those which are, until a chosen age, the
most lethal and the ones which are the most harmless.

It is also worth noting that curves displayed in Fig. 4.2 would be different if another
age was chosen for 7. Indeed, the higher the upper age limit 7, the more years of life an
individual can lose. The decreasing trend of Y LLY,¢,,(To;; 2) at older ages can be explained
partly by the fact that the survival of a cancer patient is approaching that of the general
population, and partly by the fact that a cancer patient has simply less years of life to lose
before the age of 70 years as he or she approaches that age.

5 Discussion

As it has been highlighted on several occasions in the literature, there are several approaches
and methods to estimate the number of years of life lost due to cancer [2]. Sometimes, it
even has different definitions and meanings depending on the context and the audience [16].
It is therefore hard to compare YLL! due to cancer across different studies, in particular
when the upper age limit 7 is different. In the present study, it is set to 70 years to focus on
young adults and active life, while most studies set it at a higher age to consider the number
of years of life lost during the entire lifetime [20, 29]. As mentioned above, the number of
years of life lost before a given time horizon (70 years in our illustration) obviously depends
on how far is this time horizon. Therefore, it is important to note that results found for the

16



number of years of life lost from diagnosis until age 70 should not be taken as an evaluation
of the risk from a medical or biological point of view. Such an information could however
still be very useful in a situation where this time horizon would be meaningful, as could for
example be the case from an actuarial or economical point of view. Indeed, in the context
of the right to be forgotten for instance, the insurer is mainly interested in the survival until
the end of the loan contracted. More generally, from a public policy perspective, one may
be interested in the number of years of life lost before the age of retirement.

Although it is hard to compare results with existing literature, our results could be
considered as in line with Silversmit et al. [54], who, also using Belgian data, found a YLL!
of 3.2 years for female breast cancer, 2.5 and 3.6 years for female and male melanoma cancer,
and 1.5 and 2.5 years for female and male thyroid cancer, respectively. These results are with
as reference age the life expectancy from general population at age of diagnosis, which is
mostly larger than 78 years. The interested reader is referred to Andersen et al. [4], Andersen
and Pohar Perme [5], Andersson et al. [9], Aragon et al. [11], Baade et al. [14], Belot et al.
[16], Botta et al. [17], Capocaccia et al. [19] for more methodologies and results in the context
of cancer.

There is a vast literature on YLL and MSM in biostatistical and medical studies. The
present paper illustrates their relevance for computing a measure of the number of years of
life lost before a given age, chosen depending on the situation or the research question. Arik
et al. [12] have shown the implementation of years of life lost in the context of a multi-state
model. However, it differs from the present study on several points: (i) it uses a Markov
model (so transition intensities do not depend on the duration of stay in the current state),
(i) it is targeted to another age group as it uses data on women diagnosed with breast
cancer aged 65-89 years, and (iii) it focuses on the number of years of life lost by the entire
cohort. The present paper aims at filling this gap. Some useful applications of MSM-based
calculation to derive health indices such as disease incidence risk and number of years of life
lost due to cancer targeted to this public have been illustrated.

Most studies refer to the number of years of life lost or remaining life expectancy starting
from the date of diagnosis as an estimate of the disease burden [8, 9, 14, 15, 39, 57]. This
is undoubtedly useful when considering patients who have just been diagnosed, the time
at which a patient is most likely to be concerned about his/her survival. Nonetheless, its
relevance should not be limited to quantifying the loss of survival at the time of diagnosis.
For long-term survivors, it becomes even more pertinent when considering its evolution over
time [17, 19]. Indeed, there are many applications where one would be interested in the loss
of survival due to cancer, given that the patient already survived some years after diagnosis.
This is particularly useful for cancers where the amount of time survived since diagnosis has
an influence on the patient’s survival. This is actually the underlying basis behind the right
to be forgotten [42, 51, 55]. Implemented since 2016 in France and since 2019 in Belgium,
it states that no difference can be made, in terms of access to an insurance product and
the level of its premiums, between a healthy client and a cancer patient if he/she survived
10 years after the end of the therapeutic protocol. YLL! over time since diagnosis can be
interpreted as a measure of how close from being cured long-term survivors can be considered
[17]. A decreasing YLL® over time since diagnosis shows some evidences that patients who
are still alive are approaching the same mortality risks as of the general population. In this
context, Capocaccia et al. [19] proposed a cut-off of less than two years of life lost for colon
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cancer patients to be considered as statistically cured.

It is important to note that there has been improvements in treatment of advanced
melanoma over the last decade, leading to a positive impact on quality of life and overall
patient survival [46, 47, 58, 61]. Obviously, the bigger the improvements in treatment and
overall survival, the more the duration in the ill state is underestimated and the more the
number of years of life lost is overestimated. This does not, nonetheless, undermine our
analyses for multiple reasons. First, a better prognosis has no impact on the incidence nor
on the incidence risk (i.e., the first application of the present study). Second, the largest
improvements in treatment and overall survival concern advanced melanoma, so stages III
and IV. These two advanced stages represent a limited share of all tumours considered here
(8.96% and 4.16% for stages III and IV, respectively). Third, improvements in treatment
are quite recent, limiting the impact on the obtained results. Fourth, in the context of
the right to be forgotten and from an insurer’s point of view, it is more conservative if the
number of years of life lost due to cancer before a certain age is overestimated than if it was
underestimated.

Melanoma, thyroid and female breast cancers may include a variety of cancer sub-types
and could be diagnosed at different stages of severity, leading to differences in terms of
survival. It is thus undeniable that including the information on stages of severity would
refine the analysis. This could be achieved, for instance, by stratifying the analyses by cancer
stage. However, it has been omitted on purpose for the sake of illustration of the proposed
approach.

Cancer is not one disease but a family of many diverse diseases with different outcomes.
Results in the present paper focus on melanoma, thyroid and female breast cancer patients,
and cannot, at this stage, be transferred to other cancer types. A natural extension of this
work would be to repeat the analyses for all major cancer types. Arik et al. [13] even showed,
in a comprehensive study using UK data, that for female breast cancer there are regional
differences in terms of cancer morbidity. Thus, the analysis could also be refined to a regional
level instead of national level. This is not done in the present paper as it goes beyond the
scope of this study which primarily aims to advocate a new method to estimate the number
of years of life lost.

Cancer patient survival has improved over the last few decades, with an increasing pro-
portion of patients being cured for many types of cancer [7, 37, 53|. Given the increasing
numbers of people being diagnosed with cancer, informing patients and involved parties with
relevant risk information is crucial [14]. Providing precise and informative estimate of the
reduction in the remaining life expectancy in case cancer is diagnosed or to long-term can-
cer survivors is therefore of prime importance, for patients, policy-makers and society as a
whole. From the literature, it is clear that the number of years of life lost is an important
addition to existing measures that give a complete picture of the impact of a cancer diag-
nosis. The methods proposed in this paper help to estimate this important health indicator
from a multi-state model’s perspective. This will undoubtedly help to assess when the excess
mortality from cancer becomes negligible in cancer survivors, in turn allowing the right to
be forgotten to be developed further.

In this study, the assumption is made that a cancer patient cannot become healthy again
(i.e., transition from the ill to the healthy state is not possible). Although this assumption
is believed to be reasonable for most cancers, one may argue that it does not always hold.
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However, in our context, the real transition of interest is more from ill to dead than from ill
to healthy, following the reasonable paradigm that staying long enough in the ill state to die
from something else is, at least from a statistical point of view, equivalent to be cured (cfr.
the idea of “statistical cure” for example in Boussari et al. [18], Jakobsen et al. [33], Tralongo
et al. [60]). Also, the main objective of this study is to illustrate how the concept of MSM
can be applied to estimate another well-known quantity in medicine and epidemiology, which
has not yet been done so far. Using more advanced MSM to estimate the number of years
of life lost is undoubtedly an interesting question, but left for future research.

For cancer patients, quality of life may be considered as important as the length of life
itself [52]. The number of years of life lost gives an easily interpretable measure about
survival of cancer patients. However, other indicators such as, among others, the disability-
adjusted life years (DALY should also be considered, in particular for diseases or conditions
that cause significant disability or do not result in death. Note that even though it is the
number of years of life lost due to cancer that is estimated, the methods proposed in this
paper is not limited to cancer and could be applied to several other diseases or conditions
(diabetes and HIV, amongst others).
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APPENDIX

A Development of e,(¢; 2)

In this section, we show how Eq. (3.8) is obtained. Assuming 7 > ¢, and 7 and ¢ are integers,

we have

e1,(t; 2) :/ pu(t, w; z)du

tHk+1
pu(t, u; 2)du

> .
e

plltt+k Z)pn(t—i—k u; Z+/€)d

T—t—1

t+k+1
= Z pu(t,t—i—k;z)/ pu(t+k,u; 2+ k)du
k=0

t+k
1) ~~ 4

(2)

The terms (1) and (2) in Eq. (A.4) are developed below.

tk
(1) pra(t, t +k; 2) = exp / arp(u; 2 +u — t)du)

t+l+1
ara(u; 2z +u —t)du

t+l+1
= exp ap(t+ 1z +1)du

:exp< t—i—lz—i—l))

25



t+k+1 t+k+1 u
(2) / pu(t+ k,u;z + k)d / exp <— / arg(u; 2z +u — t)ds) du (A.9)
t+k t+k
t+k+1 u
/ exp <— / app(t +k; 2+ k)ds> du (A.10)
t

+k t+k

t+k+1
/ exp<—a12(t+k‘;z+k‘)(u—t—k))du
t

+k
(A.11)
t+k+1
eXp —ap(t+k; z+/€)(u—t—k)>
= A12
—Oélz(t‘i‘k' Z+k) ( )
t+k
1 —exp —alg(t—f—k z+k)>
= (A.13)

app(t + k;z+ k)

Hence,

r—t—1 k—1 1—exp(—a12(t+k;z+k)>
e (t; 2) Z exp (—Zalg(t+l;z+l)) . (A14)

— ap(t+k;z+k)

(. S
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