
Supplementary A Survival Dataset

In a survival analysis dataset consisting of N patients, the data for each individual
is represented as (xi, ti, δi), where xi ∈ Rd is the feature set for the i-th patient and
ti ∈ R+ is the survival time which is either the censored time or event time. δi ∈ {0, 1}
indicates if the patient was censored or not, where δi = 0 indicates that the i-th
patient was censored and ti is the censoring time, and δi = 1 means that the patient
experienced the event (death), and ti is the time to event. Hence, a survival dataset is
represented as D = {(xi, ti, δi)}Ni=1.

Supplementary B Individualized Survival
Distribution (ISD)

A patient’s ISD curve shows their likelihood of survival as time progresses. This is the
probability of survival until time t given the patient’s features of xi and time t, and it
is represented as S( t | xi ) = P (T > t | X = xi). The ISD curve begins with a survival
probability of 1 at time zero and gradually declines thereafter. Each ISD is specific to
an instance using specific clinical data from that individual patient (xi), distinguishing
them from curves like the KM curve [6], which are derived from an entire population’s
data.

If one needs a single value, many use time-to-event prediction given by the model’s
output (ISD curve), either mean (denoted by Et[S( t | xi ) ]) or median survival time
(denoted by median(S( t | xi )). The truncated adaptations of the mean (expected)
and median survival time with respect to time τ are defined as follows:

t̂i,T-mean,τ = min{ Et[S( t | xi ) ] , τ} (B1)

= min{
∫ ∞

0

S( t | xi ) dt, τ},

and

t̂i,T-median,τ = min{ median(S( t | xi )), τ} (B2)

= min{ S−1(P = 0.5 | xi ), τ},

where τ represents the time point that we truncate, xi denotes the attributes of patient
i, S( t | xi ) is the predicted ISD curve for this patient, and S−1 is the inverse function
of the survival function S. τ can be set to any time point depending on the application,
here in this study, we set it to be the final time point (length of the study). In this
study, we use the truncated median time (Equation B2) as the prediction time.

Note that the ISD curve often does not cross the probability of 0.5. In such cases, the
common approach for calculating the standard median time is to linearly extrapolate
the curve until it reaches the 0.5 probability – we draw a line from the initial time
point with a probability of 1 to the final time point, then continue this line until it
intersects with the probability of either 0 or 0.5. However, in the case of truncated
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median time (Equation B2), extrapolation is not required, as we bound the prediction
by τ . For example, in Figure B1 left, the median of the ISD curve is 22 months, which
is less than τ = 200 months, which is the end of the study – here, we set the time to
event prediction to the median time (22 months). For Figure B1 right, the ISD curve
ends before reaching the probability of 0.5, and as a result, we know that the median
time is after the end of the study. Since we take the minimum of the median time and
the end of the study time (200), we set the truncated prediction time to 200 months.
Note this means that we do not need to extrapolate the ISD curve.

(𝜏) (𝜏)

(𝜏)(𝜏)

Fig. B1: ISD curves for two patients, for a study that ended at τ = 200 months. The
truncated time to event prediction using the median time on the left side is 22 months
and on the right one is 200 months.

Supplementary C Features

Table C1 lists the features we used for each type of cancer. Note that we chose not to
do the feature selection step as: (1) the number of included features was less than 20,
and (2) we viewed this as a distraction from the primary objective of our research.

Supplementary D Motivation for Truncated MAE

In this study, we proposed the truncated variation of MAE-PO; this section motivates
this variation one step further. In Section 3, we discussed truncating the predicted
time-to-event, which is the median time of the ISD curve, and the same issue is raised
in the context of KM curves. When dealing with the KM curve of datasets with high
censorship, this curve often fails to descend to zero and might not even cross the 0.5
survival probability threshold. Consequently, the median time, typically employed as
a time-to-event prediction, is unknown. Among our included datasets, as illustrated
in Figure 2, for cancers of breast, kidney and renal pelvis, prostate, thyroid, and
urinary bladder, the blue KM curve does not intersect the green line (representing 0.5
probability) by the study’s conclusion.

Some prior studies have attempted to address this matter, proposing: (1) dropping
the curve vertically to zero post-study conclusion, (2) employing linear extrapolation
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(which we illustrated in Figure D2), and (3) applying a specific function or distribution
to extend the curve [42, 43]. However, Rich et al. [44] noted that any form of KM
curve extrapolation lacks justification, and any prediction after the study conclusion is
unreliable. Take the prostate # 1 dataset as an instance, where the survival curve does
not reach the probability of 0.5. If we use linear extrapolation – from the starting point
of the curve (0,1) to the final time point, then continue the line to reach the probability
of 0.5 or 0 – to continue the curve and find the median time, as demonstrated in
Figure D2, then we can see that linear extrapolation exceeds 2100 months (175 years)
of survival, and the median time is 1121 months (93 years). Given that the age average
for the prostate #1 cancer dataset is 65 years, then a prediction of 65+ 93 = 158 years
is a wrong and unrealistic prediction.

Therefore, we follow the same suggestion as Rich et al [44], meaning that we
drop the ISD cure vertically to zero post-study conclusion, bound the predictions of
trained models and the best guess estimate for actual time to event by the length of
the study (τ), as any prediction beyond the conclusion of the study is unreliable and
lacks justification.

Fig. D2: KM curve linear extrapolation for prostate #1 dataset.

Supplementary E Evaluation Metrics in Details

In this section, we explain the formula of evaluation metrics and describe them in
detail. Note that we used the SurvivalEVAL [45] package to implement this section.

1. C-index:

The C-index of a model, on a labeled survival dataset, is given by
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C-index(S(.|.),D) =
Number of concordant pairs

Number of comparable pairs
, (E3)

where a pair of instances is considered concordant if the predicted and the actual
outcome follow the same ranking. Among all possible combinations of two subjects
from a sample size of N, a comparable pair means we know which one of the subjects
experienced the event first. For example, as shown in Figure E3, patients A and B
can be considered a comparable pair because it is clear that the event occurred first
with patient A. In contrast, patients B and C do not form a comparable pair since
patient B is censored prior to patient C’s event, leaving ambiguity about whether
patient B experienced the event before or after patient C. Hence, for patients B
and C we do not know who experienced the event first, and remains uncertain and
incomparable. Additionally, any two patients who are not censored are comparable,
making patients A and C a comparable pair. Therefore in Figure E3, we have 2
comparable pairs: {A, B}, and {A, C}.

After computing the number of comparable pairs, given the model’s prediction
versus the ground truth, we compute the number of concordant pairs. So following
our example, if we predict the following time to events: A = 5, B = 13, C = 8, then
we have correctly ranked both of our comparable pairs, since time to event prediction
for B is greater than A, and C is also greater than A. Thus, C-index is equal to 1.

Patient A

Time

Patient B

Patient C

Censored

Event

Event

Fig. E3: Time to event/censorship for three patients.

2. Brier Score:
Brier Score (BS) is the squared difference between the predicted probability of
survival at a specific time t and the true event value (0 or 1) [29]. It ranges between
zero to one, and a value of zero means perfect prediction. For censored patients with
unknown event values, BS uses the inverse probability censoring weight (IPCW) [46],
which uniformly transfers each censored patient’s weight to uncensored patients
after that time.

BS is defined as:

BS(t,D) =
1

N

N∑
i=1

(0− Sm( t | xi ))
2 · 1ti≤t,δi=1

Gi(ti)
+

(1− Sm( t | xi ))
2 · 1ti>t

Gi(t)
,
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where Gi(t) is the probability of not being censored until time t, which is
commonly estimated by running the KM algorithm, but with the censor-bit (event
flag) flipped.

3. MAE:
Mean absolute error (MAE) measures the average absolute difference between the
predicted time (t̂i) and the actual (truth) time (ti):

MAE({t̂i}, {ti}) =
1

N

N∑
i=1

|t̂i − ti| . (E4)

For the prediction time (t̂i), we use the median time of the ISD model (t̂i =
S−1(P = 0.5 | xi )). However, to compute this MAE, the actual time (ti) is unknown
for censored patients. Hence, we need to use another variation of MAE that can
estimate the truth time for censored patients. In this study, we use the MAE-PO
that employs pseudo-observation to estimate the actual time of survival for censored
patients [28].

4. MAE-PO:
Qi et al. [28] proposed the MAE-PO that employs pseudo-observation to estimate

the actual time of survival for censored patients and uses θ̂ as a predictor, which
can be based on the mean value of the KM estimator, θ̂ = Et[SKM(D)( t )], where
SKM(D)( t ) is the group-level survival probability, estimated using KM model on
the dataset D. The idea here is that we measure the contribution of patient i to the
unbiased predictor θ̂. The best guess for MAE-PO can be defined as:

eT-pseudo-obs(ti,D) = N × θ̂ − (N − 1)× θ̂−i , (E5)

where θ̂−i is Et[SKM(D−i)( t )], the predictor applied to the N − 1 data instances,
after removing the patient i. This best guess can be unreliable for patients who get
censored earlier in the study since we do not have much information about them.
Therefore, as suggested by Haider et al. [5], we assign less confidence weight to the
best guess of early censored patients. This confidence weight is calculated as:

ωi = 1− SKM(D)(ti) . (E6)

Note ωi is zero in the beginning (at time zero), and increases after that. Lastly,
MAE-PO is defined as:

Ei∼D[RMAE-PO(t̂i, ti, δi)] = (E7)

1∑N
i=1 ωi

N∑
i=1

ωi

∣∣[(1− δi) · eT-pseudo-obs(ti,D) + δi · ti]− t̂i
∣∣ ,

where symbol R means a scoring rule, which is used to compute the MAE-PO
error. Note that here the prediction time (t̂i) is the median of the ISD model.
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5. Truncated MAE-PO:

As discussed in Section 3, we choose to bound the prediction time and best guess
by the end of the study and use the truncated variation of MAE-PO. Hence, the
best guess for truncated MAE-PO can be defined as:

eT-pseudo-obs,τ (ti,D) = min{epseudo-obs(ti,D) , τ }, (E8)

where epseudo-obs(ti,D) is defined using Euqation E5. Further, we use the same
weighting as described in Equation E6. Therefore, the truncated MAE-PO is defined
as follows:

Ei∼D[RT-MAE-PO,τ (t̂i, ti, δi)] = (E9)

1∑N
i=1 ωi

N∑
i=1

ωi

∣∣[(1− δi) · eT-pseudo-obs,τ (ti,D) + δi · ti]− t̂i
∣∣ ,

where the prediction time (t̂i) is the truncated median time (t̂i = t̂i,T-median,τ )
of the ISD defined in Equation B2, and we use the truncated best guess
(eT-pseudo-obs,τ (ti,D)) defined in Equation E8.

6. Truncated-Log MAE-PO:
The truncated-log (TL) adaptation of MAE-PO is:

Ei∼D[RTL-MAE-PO,τ (t̂i, ti, δi)] = (E10)

1∑N
i=1 ωi

N∑
i=1

ωi

∣∣[(1− δi) · log(eT-pseudo-obs,τ (ti,D)) + δi · log(ti)]− log(t̂i)
∣∣ ,

where again the prediction time (t̂i) is the truncated median time (t̂i =
t̂i,T-median,τ ) of the ISD defined in Equation B2, and we use the truncated best
guess (eT-pseudo-obs,τ (ti,D)) defined in Equation E8. For Equation E10, if the
predicted time to event or the ground truth is zero, we initially add a small value
(ϵ) to prevent the logarithm function from yielding minus infinity. Moreover, we
choose to use log base e.

To further understand how we can interoperate error measured by TL-MAE-PO,
recall that the TL-MAE-PO for AFT on the Prostate #1 dataset is 0.62 ± 0.001.
Here, given that exp (0.62) = 1.86, this is claiming that we expect each prediction to
be within a multiplicative factor of 1.86 of the correct value. So, for instance, if we
predict patient A will live 9.02 months, we are saying that we anticipate that patient
A will live between (9.02/1.86, 9.02 × 1.86) = (4.82, 31.19) months. If another
patient was predicted to live 9.02 days, then we would anticipate that person would
live between (4.82, 31.19) days. This is the nature of multiplicative bounds.
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Supplementary F Model Implementation Details

In this section, we included details of the model implementation that was used in this
paper.

• Kaplan Meier (KM) is a popular estimator that uses the information of a group
of patients. The KM curve provides a stepwise estimate of the probability of event
occurrence. We used KaplanMeierFitter class from lifelines library, and we used
the median time of the training population as the time to event prediction for the
test set.

• Random Survival Forest (RSF): is an extension of the Random Forest algorithm
for time-to-event data, offering a non-parametric approach to model survival out-
comes. RSF is an ensemble of survival trees, each learned on a bootstrapped version of
the training dataset. We used RandomSurvivalForest class from sksurv.ensemble

library for implementation, with 150 trees, min samples split of 25, and min samples
leaf of 20.

• Multi-Task Logistic Regression (MTLR) is a machine learning approach
designed for survival analysis and gives individualized curve prediction. The model
is implemented using MTLR class from torchmtlr package, with a learning rate of
0.001, batch size of 512, and 500 epochs.

• Deep MTLR is another method that predicts individualized survival distribution
and uses the MTLR models as its base and a deep learning model as its core. We
implemented D-MTLR using DeepMTLR class from torchmtlr package, with the
same configuration as MTLR. The architecture of the model is provided in the code
base, and it includes layers of NN nodes, dropout of 0.4, and Exponential Linear
Units (ELUs).

• DeepHit learns the individualized survival distribution using deep learning. The
model is implemented using DeepHitSingle class from pycox.models package. We
used Adam optimizer with early stopping.

• Cox Proportional Hazard (Cox-PH) is a semi-parametric method used in
survival analysis to assess the impact of several risk factors on survival time. It
provides hazard ratios, indicating the relative risk of event occurrence given a change
in predictor variables. It is composed of a baseline hazard function at the population
level (non-parametric) and a parametric partial hazard function. We implemented
Cox-PH using CoxPHSurvivalAnalysis class from sksurv.linear model library.

• Accelerate Failure time (AFT) is a parametric survival analysis technique that
directly models the time to event and provides individualized prediction. We employed
AFT with Weibull parametric assumption. For implementation, we employed the
WeibullAFTFitter class from lifelines library. We used median time for the time-
to-event prediction, and based on our experiments, it works better than using the
average time.

Supplementary G Results in Details

Tables G2, G3, G4, G5, G6, G7, G8, G9, G10, and G11 show the evaluation of
various models by each of the discussed metrics for the selected cancer types. For all
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the tables, the reported C-index and BS are computed at the median time, except for
table G7, in which we computed the C-index and BS at the 10-year time point since we
wanted to compare our results with the reported results of Survival Quilts model [3].
In terms of TL-MAE-PO and T-MAE-PO, our results show that RSF followed by
Deep-MTLR are the top-performing methods in all the datasets except for the prostate
# 1 dataset where AFT is the best.
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